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A solid state spin is an attractive system with which to realize an ultrasensitive magnetic field sensor. A
spin superposition state will acquire a phase induced by the target field, and we can estimate the field strength
from this phase. Recent studies have aimed at improving sensitivity through the use of quantum error correction
(QEC) to detect and correct any bit-flip errors that may occur during the sensing period. Here we investigate
the performance of a two-qubit sensor employing QEC and under the effect of energy relaxation. Surprisingly,
we find that the standard QEC technique to detect and recover from an error does not improve the sensitivity
compared with the single-qubit sensors. This is a consequence of the fact that the energy relaxation induces both
a phase-flip and a bit-flip noise where the former noise cannot be distinguished from the relative phase induced
from the target fields. However, we have found that we can improve the sensitivity if we adopt postselection to
discard the state when error is detected. Even when quantum error detection is moderately noisy, and allowing
for the cost of the postselection technique, we find that this two-qubit system shows an advantage in sensing over
a single qubit in the same conditions.
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I. INTRODUCTION

Measurement of small magnetic fields is an important
objective in the field of metrology because of many practical
applications in material science, biology, and medical science.
It is known that superconducting quantum interference devices
[1], Hall sensors [2], and force sensors [3] show excellent
performance for such field detection.

A two-level system coupled with magnetic fields is an
alternative way to detect a small magnetic field. The magnetic
field typically shifts the resonant frequency of the qubit, and
one can read out the shift from a Ramsey-type interference
experiment, to which we refer as single-qubit sensors. Atomic
vapor magnetometry is one of such ways to use a qubit for
sensing [4]. Nitrogen vacancy centers in diamond are another
candidate to realize such a sensor [5–7], and this typically has
a better spatial resolution compared with other conventional
devices.

One of the obstacles to sensing small magnetic fields with
the qubit is decoherence on the system [8]. The frequency
shift from the magnetic fields induces a relative phase between
coherent superpositions of the qubit, and this provides us with
measurable signals [9]. This means that any deteriorating effect
of the phase coherence decreases the signal-to-noise ratio of
the sensing. Since unwanted coupling with the environment is
inevitable, the decoherence effect is one of the main challenges
to realizing an ultrasensitive field sensor with qubits.

Recently, magnetic field sensing with quantum error cor-
rection (QEC) has been proposed to improve the sensitivity of
qubit-based metrology [10–13]. QEC is a technique to detect
and recover errors by using an encoded state where ancillary
qubits are used to employ redundancy in the code space [14].
QEC has been proposed in the context of scalable quantum
computation, and proof of principle experiments have been
demonstrated in many systems such as superconducting qubits
[15–18], nitrogen vacancy centers [19], and ion traps [20].
Moreover, previous researches have shown that QEC can be
applied to enhance the sensitivity in quantum metrology with

certain conditions [10,11]. Interestingly, even for a two-qubit
system, it is in principle possible to enhance the sensitivity by
QEC if one of the qubits has much longer coherence time than
the other [10,11]. It is worth mentioning that we should not
apply QEC to protect the qubit from the dephasing during the
sensing, because the relative phase from the target magnetic
field is indistinguishable from the unwanted phase induced by
the environment. On the other hand, if a bit-flip noise is relevant
on the qubits, quantum field sensors with QEC can beat the
single-qubit sensors [10–12]. Indeed, an experiment has been
reported where such an enhancement of the sensitivity by QEC
was demonstrated under the effect of artificial bit-flip noise
by using a nitrogen vacancy center in diamond or an optical
setup [21,22]. However, to our knowledge there has not yet
been any experimental demonstration of the enhancement of
the sensitivity of quantum metrology by QEC versus natural
decoherence from the environment.

In this paper, we investigate the performance of the
quantum field sensing with QEC technique under the effect
of energy relaxation. A solid state spin qubit is affected by
two types of decoherence: dephasing and energy relaxation.
The dephasing time of the qubit is characterized by T2 while
the energy relaxation time is characterized by T1 [23]. It
is worth mentioning that dynamical decoupling techniques
are available to suppress the effect of the dephasing, which
can improve the sensitivity for AC magnetic fields [6,24].
With a well-controlled dynamical decoupling technique, the
coherence time of the solid state qubit in principle can be
limited by the energy relaxation process, which is observed
in several systems such as superconducting qubits [25,26].
However, the energy relaxation induces not only bit-flip noise
but also phase-flip noise. As pointed out in Refs. [10–12],
QEC versus dephasing cannot be applied to enhance the
sensitivity of quantum metrology, because QEC erases not
only the environmental unknown phase but also the relative
phase induced by the target fields. So it is not trivially obvious
if QEC can improve the sensitivity if the energy relaxation is
a relevant source of the decoherence. Here we investigate the
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performance of quantum field sensors using QEC, where the
error is detected and recovered on the encoded state with an
ancillary qubit. We show that the standard QEC approach does
not improve the sensitivity over the single-qubit sensors. We
proceed to consider a postselection strategy where we discard
the state when the bit-flip error is detected. Since we need
to wait until we have successful operations, the postselection
effectively decreases the time resource. Interestingly, even if
we take into account the time loss due to the postselection,
we show that such a postselection strategy actually improves
the sensitivity and beats single-qubit sensors. Moreover, this is
true even when the detection process is imperfect and can itself
introduce noise. Our results show that an encoded two-qubit
state is actually beneficial for ultrasensitive magnetic field
sensing in realistic conditions.

The remainder of this paper is organized as follows.
In Sec. II we review the magnetic field sensing with the
standard Ramsey interference. In Sec. III we investigate the
performance of the magnetic field sensing with quantum error
corrections under the effect of energy relaxation. In Sec. IV we
introduce a sensing scheme to use a postselection to discard the
state when the error is detected. Finally in Sec. V we conclude
our discussion.

II. MAGNETIC FIELD SENSING WITH THE STANDARD
RAMSEY-TYPE SEQUENCE

Let us review the standard Ramsey-type sequence to
estimate the magnetic fields with a qubit [8], which we refer to
as single-qubit sensors. Suppose that we have a qubit coupled
with a magnetic field, and the Hamiltonian is described by

H = ω

2
σ̂z, (1)

where ω denotes a detuning due to the magnetic field B, and
we assume that the detuning has a linear relationship with the
magnetic field. First, we prepare |+〉 = 1√

2
(|0〉 + |1〉). Second,

let this state evolve under the Hamiltonian for a time t , and
we obtain |+t 〉 = 1√

2
(e−i ω

2 t |0〉 + ei ω
2 t |1〉). Finally, we perform

a projective measurement about σ̂y on this state, and we
project this state into |+y〉 = 1√

2
(|0〉 + i|1〉) with a probability

of P+1 = |〈+y |+t 〉|2 = 1
2 + 1

2 sin ωt . Throughout this paper,
we assume that the magnetic field is weak (ωt � 1), and so
we have P+1 � 1

2 + 1
2ωt . By repeating this experiment many

times, we can obtain the probability from the experimental
results, and so the value of ω can be estimated. The uncertainty
of the estimation is given by

δω =
√

P+1(1 − P+1)∣∣ dP+1

dω

∣∣
1√
N

, (2)

where N denotes the number of repetitions of the experiments
[8]. We assume that the interaction time t is much longer than
the state preparation time and measurement readout time. In
this case, we have N � T

t
where T is a given time for the

sensing. We can calculate the uncertainty as

δω � 1√
T t

. (3)

We consider the magnetic field sensing under the effect of
energy relaxation. The energy relaxation can be described by
the standard Lindblad-type master equation as [27,28]

dρ(t)

dt
= −i[H,ρ(t)]

− 2�(1 − s)

2
[σ+σ−ρ(t) + ρ(t)σ̂+σ− − 2σ−ρ(t)σ+]

− 2�s

2
[σ−σ+ρ(t) + ρ(t)σ̂−σ+ − 2σ+ρ(t)σ−]. (4)

Here � denotes a decay rate while s depends on the temperature
of the bath where s = 1

2 (s = 0) corresponds to an infinite (a
zero) temperature [29]. An analytical solution for this master
equation is given as [30]

ρI (t) = 1

4
(1 + 2e−�t + e−2�t )ρ0 + 1

4
(1 − e−2�t )σ̂xρ0σ̂x

+ 1

4
(1−e−2�t )σ̂yρ0σ̂y + 1

4
(1 − 2e−�t + e−2�t )σ̂zρ0σ̂z

+ 2s − 1

4
(1 − e−2�t )(σ̂zρ0 + ρ0σ̂z − iσ̂xρ0σ̂y

+ iσ̂yρ0σ̂x), (5)

where ρI (t) = eiHtρ(t)e−iH t and ρ0 = ρ(0). In the Ramsey-
type sequence with the energy relaxation, we obtain

P+1 = Tr[|+y〉〈+y |ρ(t)]

= 1

2
+ 1

2
e−�t sin ωt � 1

2
+ 1

2
e−�tωt. (6)

For the weak magnetic fields, we can calculate the uncertainty
from Eq. (2) as

δω � 2.33√
T/�

, (7)

where we choose a t = 1
2�

to minimize the uncertainty.

III. MAGNETIC FIELD SENSING WITH QUANTUM
ERROR CORRECTION

We adopt a strategy to use the standard quantum error
correction technique for the magnetic field sensing suggested
in Refs. [10–12]. This requires two distinct qubits: a probe
qubit and a memory qubit. The probe qubit is coupled with
the magnetic field, while the interaction of the memory qubit
with the magnetic field is negligible. On the other hand, the
probe qubit is affected by energy relaxation, while the memory
qubit has a much longer coherence time than the probe qubit.
Also, we assume that, on these two qubits, we can implement
any unitary operations and measurements with a much shorter
time scale than the coherence time of the qubits.

The Hamiltonian is described as

H = ω

2
σ̂ (p)

z + ω′

2
σ̂ (m)

z , (8)

where ω (ω′) denotes the resonant frequency of the probe
(memory) qubit. We assume ω � ω′, and so we use an
approximation to drop the ω′

2 σ̂ (m)
z term from the Hamiltonian.
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Also, the Lindblad master equation is described as

dρ(t)

dt
= −i[H,ρ(t)] − 2�(1 − s)

2

× [
σ

(p)
+ σ

(p)
− ρ(t) + ρ(t)σ̂ (p)

+ σ
(p)
− − 2σ

(p)
− ρ(t)σ (p)

+
]

− 2�s

2

[
σ

(p)
− σ

(p)
+ ρ(t) + ρ(t)σ̂ (p)

− σ
(p)
+

− 2σ
(p)
+ ρ(t)σ (p)

−
]
, (9)

where only a probe qubit is affected by the energy relaxation.

A. Parity measurement

To demonstrate magnetic field sensing with QEC, parity
measurements are necessary to detect bit flip errors [10–13],
and we describe how we can construct the parity measurement
by using the two-qubit system without additional ancillary
qubits. We define a controlled-not (CNOT) gate as

UCNOT = |0〉p〈0| ⊗ 1̂m + |1〉p〈1| ⊗ σ̂ (m)
x , (10)

where the probe (memory) qubit is the control (target). By
performing the CNOT gate, a projective measurement in the
basis of σ̂ (m)

z , and another CNOT gate, we can construct the
following projective measurements:

P̂odd = UCNOT

1̂ + σ̂ (m)
z

2
UCNOT = |01〉pm〈01| + |10〉pm〈10|,

P̂even = UCNOT

1̂ − σ̂ (m)
z

2
UCNOT = |00〉pm〈00| + |11〉pm〈11|,

and these are called parity measurements.

B. Single quantum error correction cycle

By using this system, we can implement quantum field
sensing as follows. Let us consider a case when we implement
the QEC cycle only one time. First, we prepare a state ρ0 =
|φ0〉pm〈φ0| where |φ0〉pm = 1√

2
(|00〉pm + |11〉pm). Second, let

this state evolve by the Lindblad master equation in Eq. (9)
for a time t . Third, we perform a parity projection to check
if a bit-flip error occurs on the probe qubit. If the parity
is odd, this provides us with the existence of the bit-flip
error on the probe qubit, and so we will apply a recovery
operation σ̂

(p)
x on the probe qubit. Finally, we measure the

state in the basis of |ψ (±)
f 〉pm = 1√

2
(|00〉pm ± i|11〉pm) where

the projection operator is described as P̂ (pm)
f,± = |ψ (±)

f 〉pm〈ψ (±)
f |.

In this case, the readout probability can be calculated as

P
(QEC)
+1 = Tr

[
P̂ (pm)

f,+ ρ(QEC)(t)
] = 1

2 + 1
2e−�t sin ωt. (11)

Interestingly, this is the same probability as Eq. (6), and so the
uncertainty of the estimation with QEC is the same as that of
the single-qubit sensors.

C. Multiple quantum error correction cycle

Let us consider a case when we implement multiple QEC
cycles. The first step is to prepare a state |φ0〉pm. The second
step is a time evolution of the system by the Lindblad master
equation in Eq. (4) for a time τ = t/n where n denotes
the number of the parity measurements. The third step is

FIG. 1. Uncertainty of the estimation of the magnetic fields with
multiple QEC cycles under the effect of energy relaxation. The
parameters are chosen as s = 0.5 and � = 1. We use two qubits
to construct an encoded state, and one of the qubits is affected by
energy relaxation. By performing parity measurements with a time
period of t

n
where t denotes a total evolution time and n denotes the

number of the parity measurements, we can detect the bit flip error,
and the subsequent bit-flip operation can recover the state. However,
these numerical results show that the uncertainty does not depend
on n, and so we cannot improve the sensitivity even if we increase
the number of QEC cycles. The minimum uncertainty is still 2.33, as
with the single-qubit sensor.

to perform a parity projection. If the parity is odd, we will
apply the recovery operation σ̂

(p)
x on the probe qubit. The final

step is that, after repeating the second step and the third step
n times, we read out the state via the measurement in the
basis of |ψ (±)

f 〉pm where the projective operator is described
as P̂ (pm)

±1 = |ψ (±)
f 〉pm〈ψ (±)

f | . We numerically calculate the
uncertainty δω for this protocol and plot it in Figs. 1 and 2.
Interestingly, δω does not depend on n, and the implementation

FIG. 2. Uncertainty of the estimation of the magnetic fields
against the interaction time with multiple QEC cycles under the effect
of energy relaxation. We adopt the same scheme as Fig. 1, and we
choose n = 5. Except the value of n, we use the same parameters
as Fig. 1. The sensitivity becomes minimize such as δω � 2.33 for
t = 0.5.
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of the multiple QEC does not improve the sensitivity over the
standard Ramsey-type scheme. Although we plot the case of
s = 0.5 in Fig. 1, we obtain the same results for other values
of s.

Let us discuss a possible reason why QEC does not improve
the sensitivity. For simplicity, we specifically discuss the case
for s = 0.5. From Eq. (5), we know that the qubit is affected
by three types of Pauli noise: σ̂x, σ̂y , and σ̂z. Importantly, since
the initial state is an eigenstate of σ̂x , consequently it is σ̂y and
σ̂z errors that mainly decohere the qubit. On the other hand, if
we use the two-qubit encoded state, then σ̂

(p)
x , σ̂

(p)
y , and σ̂

(p)
z all

induce decoherence. Moreover, QEC with the two-qubit code
cannot distinguish the error of σ̂

(p)
x from the error of σ̂

(p)
y , and so

the recovery operation can remove only one of these two errors.
Therefore, even if we implement QEC, two types of error still
remain in the quantum states, which is effectively the same as
the case of the single-qubit strategy. This qualitatively explains
why QEC cannot improve the sensitivity for the metrology
under the effect of energy relaxation.

IV. MAGNETIC FIELD SENSING WITH QUANTUM
ERROR DETECTION

Here we propose to use a postselection where we discard
the state when we detect the bit-flip error, which we refer to as
a quantum error detection (QED) strategy. As with the QEC
strategy, we will use two different systems, a probe qubit and a
memory qubit, so that we can encode the state in a logical basis.
Surprisingly, we will show that this postselection actually
provides us with quantum enhancement over the single-qubit
sensors.

A. Single quantum error detection

Let us discuss the case where we implement the QED only
one time. In the QED strategy, we use the same sequence as
for QEC except that we discard the state when the error is
detected by the parity projection. The final state before the
measurement readout is calculated as

ρ(QED)(t) = 1(
1+e−2�t

2

)e−iH t

[
1

4
(1 + 2e−�t + e−2�t )ρ0

+ 1

4
(1 − 2e−�t + e−2�t )σ̂ (p)

z ρ0σ̂
(p)
z

+ 2s − 1

4
(1 − e−2�t )

(
σ̂ (p)

z ρ0 + ρ0σ̂
(p)
z

)]
eiHt ,

where the success probability to obtain this state is 1+e−2�t

2 .

The probability to project this state into P̂ (pm)
f,+ is calculated as

P
(QED)
+1 = Tr

[
P̂ (pm)

f,+ ρ(QED)(t)
] = 1

2
+ 1

2

sin ωt(
e�t+e−�t

2

) , (12)

and so the uncertainty is given as

δω � e�t + e−�t

2t

1√
N

=
√

e2�t + 1

2

1√
T t

, (13)

where N �
√

T
t

1+e−2�t

2 denotes the number of the measure-
ment readouts when no error is detected. For weak magnetic

fields, we obtain

δω � 1.895√
T/�

, (14)

where we choose t to minimize δω, and this shows that the
QED strategy is better than the single-qubit sensors.

Let us discuss a possible reason why the QED can improve
the sensitivity. The probe qubit is affected by three types of
Pauli noise: σ̂

(p)
x , σ̂

(p)
y , and σ̂

(p)
z . If σ̂

(p)
x or σ̂

(p)
y is applied, we

can detect this error, and the state can be discarded. In our
strategy, only dephasing (an error defined by σ̂z) is relevant to
decrease the sensitivity, and this makes our scheme better than
the single-qubit scheme where both σ̂

(p)
y and σ̂

(p)
z decrease the

coherence of the state.

B. Multiple quantum error detection

We discuss the case when we implement multiple QED
rounds. We use the same sequence as the multiple QEC,
and we perform parity projection n times before the readout.
The only difference is that we now merely postselect rather
than correcting. At the end, we read out the state only if we
do not detect any errors within the n parity measurements.
Otherwise, we will discard the state before the readout
measurement.

We consider a case s = 1
2 where we can get an analytical

solution for the uncertainty of the estimation. Also, for
simplicity, we assume n is an even number. The state before
the readout is calculated as

ρ(MQED)
n (t) = e−iH t

⎧⎨
⎩

⎡
⎣

n
2∑

m=0

nC2m(p1)n−2m(1 − p1)2m

⎤
⎦ρ0

+
⎡
⎣

n
2∑

m=1

nC2m−1(p1)n−2m+1(1 − p1)2m−1

⎤
⎦

× σ̂ (1)
z ρ0σ̂

(1)
z

⎫⎬
⎭eiHt ,

where p1 = 1
4 (1+2e−�τ +e−2�τ )

( 1+e−2�τ

2 )
and nCm = n!

(n−m)!m! . We obtain

this state with a success probability of ( 1+e−2�τ

2 )
n
. We consider

the following probability:

P
(MQED)
+1 = Tr

[∣∣ +(y)
L

〉〈 +(y)
L

∣∣ρ(MQED)
n (t)

]

=
⎡
⎣

n
2∑

m=0

nC2m(p1)n−2m(1 − p1)2m

⎤
⎦1 + sin ωt

2

+
⎡
⎣

n
2∑

m=1

nC2m−1(p1)n−2m+1(1 − p1)2m−1

⎤
⎦

× 1 − sin ωt

2
, (15)
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FIG. 3. Uncertainty of the estimation of the magnetic fields with
multiple QED cycles for s = 0.5 and � = 1. We use the same
sequence as forthe QEC except that we discard the state before
the readout if we detect any errors in the parity projections. As we
increase the number of the parity measurements, we can decrease
the uncertainty, and the minimum uncertainty is δω � 1.65/

√
T �,

which beats the one in the single-qubit sensors.

where |+(y)
L 〉 = 1√

2
(|00〉 + i|11〉). The sensitivity is given as

δω =
√

P
(MQED)
+1

(
1 − P

(MQED)
+1

)
∣∣ dP

(MQED)
+1

dω

∣∣
1√

T
t

(
1+e−2� t

n

2

)n

� 1.65/
√

T �, (16)

where we choose t and n to minimize δω. We plot the δω to
show the dependence of t and n in Fig. 3. As we increase the
number of the parity measurements, the uncertainty decreases
and converges to the value described in Eq. (16).

We also perform numerical simulations to calculate the
uncertainty of the estimation in the QED strategy for other
values of s. The results are plotted in Fig. 4. We confirmed

FIG. 4. Uncertainty of the estimation of the magnetic fields with
multiple QED cycles against the number of the parity measurements
n. Here we choose the interaction time t to minimize the uncertainty,
and we fix � = 1.

FIG. 5. Uncertainty of the estimation of the magnetic fields
against the interaction time with multiple QED cycles under the effect
of energy relaxation. We adopt the same scheme as Fig. 3, and we
choose n = 100. Except the value of n, we use the same parameters
as Fig. 3. The optimize interaction time is t = 0.71, 0.79, 0.90, 0.96,
and 1.0 for s = 0.1, 0.2, 0.3, 0.4, and 0.5.

that the QED strategy actually beats the single-qubit sensors
for the other values of s.

Also, we plot the uncertainty against the interaction time in
Fig. 5. These results provide us with the optimal interaction
time to minimize the uncertainty. As we decrease s, the
optimal interaction time also decreases. We can understand
this behavior as follows. The last term in Eq. (5) includes an
additional phase flip terms (σ̂zρ0 + ρ0σ̂z) as long as s 
= 0.5.
As we decrease s from 0.5, the effect of this additional decay
becomes larger. We can expect that, in a more aggressive
decoherence environment, the optimal interaction time must
be smaller to compensate for the decoherence effect. From
these, we can qualitatively explain the dependence of the
optimal interaction time on s. Moreover, it is worth mentioning
that the optimal interaction time for the Ramsey and QEC
strategy is smaller than those of the QED strategy. This is
reasonable because the postselection effectively suppresses
the decoherence, which can make the optimal interaction time
longer.

We discuss an intuitive reason why a multiple QED strategy
can beat the single QED strategy. If we perform a single
parity measurement in the end of the time evolution, there
will be a possibility that bit flip errors occur twice within the
time evolution, which induces undetected error. Multiple QED
provides us with a capability to eliminate such a possibility so
that we can significantly suppress the effect of the bit flip error.

C. Adaptive feedback

Interestingly, we can further improve the sensitivity by
using an adaptive feedback. In the last subsection, we discussed
multiple QED rounds where we use the same sequence as
QEC except that we discard the state before the readout if
we detect any errors in the parity projections. However, this
strategy is inefficient, because we waste time between the
parity measurement and the readout once we have detected
an error. For example, when we detect the error at kth parity
measurements, we have a time n−k

n
t before the readout, and

we spend this time without contributing to the sensitivity. To
improve this point, we propose to use an adaptive feedback
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FIG. 6. The schematic to perform an adaptive feedback in our
QED strategy to estimate the target magnetic fields. Depending on
the measurement results, we will implement different operations.

where we immediately initialize the state for the next round
whenever we detect the error, as shown in Fig. 6.

First, we consider a case for s = 0.5 to obtain an analytical
solution. In this adaptive feedback strategy, we can calculate
the average time for a single cycle of the sensing as follows. If
we detect the error in the k the parity measurements, the time
between the state preparation and the last parity projection is
k
n
t . This event occurs with a probability of (ps)k−1(1 − ps)

where ps = 1+e−2�τ

2 denotes a probability that we do not detect
the error. On the other hand, if we do not detect any errors
for n parity measurements [which occurs with a probability
of (ps)n], the time between the state preparation and the final
readout is t . So the average time for a single cycle of this

FIG. 7. Uncertainty of the estimation of the magnetic fields
with adaptive feedback for s = 0.5 and � = 1. The detail of the
procedure is given in Fig. 6. As we increase the number of the parity
measurements, we can decrease the uncertainty, and the minimum
uncertainty is δω � 1.25/

√
T �, which is better than the QED strategy

without adaptive feedback.

FIG. 8. Uncertainty of the estimation of the magnetic fields with
adaptive feedback against the number of the parity measurements n.
Here we choose the interaction time t to minimize the uncertainty,
and we fix � = 1.

adaptive feedback strategy is

tav = (ps)
nt +

n∑
k=1

(ps)
k−1(1 − ps)k

t

n
. (17)

We can calculate the number of the readout measurements for
a given time T as N = T

tav
( 1+e−2� t

n

2 )n. The sensitivity is given
as

δω =
√

P
(MQED)
+1

(
1 − P

(MQED)
+1

)
∣∣ dP

(MQED)
+1

dω

∣∣
1√

T
tav

(
1+e−2� t

n

2

)n

� 1.25/
√

T �, (18)

where we choose t and n to minimize δω. We plot the
δω to show the dependence of t and n in Fig. 7. Again,
as we increase the number of the parity measurements, the
uncertainty decreases and converges to the value of Eq. (18).

FIG. 9. Uncertainty of the estimation of the magnetic fields by
using imperfect parity projections with a finite error rate of ε. Here
we fix s = 0.5, ε = 0.02, and � = 1. There exist an optimal set of
the interaction time and the number of measurements.
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FIG. 10. Uncertainty of the estimation of the magnetic fields by
using imperfect parity projections with a finite error rate of ε. Here we
choose the interaction time t to minimize the uncertainty, and we fix
s = 0.5 and � = 1. The solid line denotes the case of the single-qubit
sensors. By using the imperfect parity measurement with an error rate
of ε, our QED strategy with adaptive feedback can beat single-qubit
sensors.

We also performed numerical simulations to calculate the
uncertainty of the estimation in the adaptive feedback strategy
for other values of s. The results are plotted in Fig. 8. We
confirmed that the adaptive strategy improves the sensitivity
over the nonadaptive strategy.

D. Imperfect parity projection

Finally we consider an effect of imperfect parity pro-
jections. In the QED strategy, as we increase the number
of the parity projections, the uncertainty of the estimation
decreases, if we assume ideal parity projections. In the actual
experiments, we cannot avoid the possibility of an error in
the parity measurement, and thus the optimal number of
parity measurements will be finite. We consider a model
such that depolarized noise occurs with a probability ε. If
the measurement result is even, we obtain

ρ ′ = (1 − ε)
P̂evenρP̂even

Tr[P̂evenρP̂even]
+ ε

1

4
1̂pm, (19)

where the state becomes a completely mixed state with a
probability of ε. With this noise model, we numerically
evaluate the performance of the adaptive feedback strategy
with imperfect parity measurements. As Figs. 9, 10, and 11
show, we can beat the single-qubit sensors as long as the error
rate ε is around 4%.

FIG. 11. Uncertainty of the estimation of the magnetic fields by
using imperfect parity projections with a finite error rate of ε. Here we
choose the interaction time t to minimize the uncertainty, and we fix
ε = 0.04 and � = 1. The solid line denotes the case of single-qubit
sensors.

We discuss a possible reason why the large error of about
4% can be tolerated in our scheme. If depolarizing noise occurs
on a qubit, this can be interpreted as a random applications
of Pauli matrices 1̂, σ̂x, σ̂y , and σ̂z with equally probability.
However, the parity measurement in the next round can
eliminate the degrading effect of σ̂x and σ̂y . So only one of
the three noise operators can fully impact the sensitivity of our
scheme.

V. CONCLUSION

In conclusion, we have investigated the performance of
quantum error correction to improve quantum field sensing
under the effect of energy relaxation. We have shown that the
standard quantum error correction, including error detection
and recovery operations, does not improve the sensitivity over
the single-qubit sensors. However, we have found that, if
we adopt a postselection to discard the state whenever an
error is detected, we can actually achieve significant quantum
enhancement, even when the operations we use are imperfect.
Since energy relaxation is one of the typical noise types in
solid state systems, our results pave a way to realize a quantum
enhanced sensor in realistic conditions.
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