
PHYSICAL REVIEW A 95, 032302 (2017)

Error suppression for Hamiltonian quantum computing in Markovian environments

Milad Marvian1,2 and Daniel A. Lidar1,2,3,4

1Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA
2Center for Quantum Information Science & Technology, University of Southern California, Los Angeles, California 90089, USA

3Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
4Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA

(Received 13 December 2016; published 3 March 2017)

Hamiltonian quantum computing, such as the adiabatic and holonomic models, can be protected against
decoherence using an encoding into stabilizer subspace codes for error detection and the addition of energy
penalty terms. This method has been widely studied since it was first introduced by Jordan, Farhi, and Shor
(JFS) in the context of adiabatic quantum computing. Here, we extend the original result to general Markovian
environments, not necessarily in Lindblad form. We show that the main conclusion of the original JFS study
holds under these general circumstances: Assuming a physically reasonable bath model, it is possible to suppress
the initial decay out of the encoded ground state with an energy penalty strength that grows only logarithmically
in the system size, at a fixed temperature.
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I. INTRODUCTION

Hamiltonian quantum computing includes the adiabatic and
holonomic models. Adiabatic quantum computing (AQC) [1]
is a model that can achieve universality [2–7] and appears
promising for near future large-scale realization (for a review,
see Ref. [8]). In AQC, the computation is performed using
a time-dependent Hamiltonian that evolves slowly from an
initial Hamiltonian with a known and easily preparable
ground state, to a final Hamiltonian whose ground state is
unknown and encodes the desired result. The adiabatic theorem
guarantees that the final state will be close to the ground
state of the final Hamiltonian if the evolution is sufficiently
slow [9]. Holonomic quantum computing (HQC) is another
universal model, wherein quantum gates are performed as
holonomies (non-Abelian geometric phases) in the degenerate
ground eigensubspace of the system Hamiltonian [10–12].

Unfortunately, AQC lacks a theory of fault tolerance, unlike
all other universal models of quantum computation [13]. The
first scheme to suppress the detrimental effect of the bath
on AQC [14–22] was proposed by Jordan, Farhi, and Shor
(JFS) [23]. In this scheme, a stabilizer subspace code that
can detect the errors introduced by the system-bath interaction
Hamiltonian is chosen, and the system Hamiltonian is encoded
using the logical operators of the same code. Adding a penalty
Hamiltonian breaks the induced degeneracy and stabilizes the
computation in the code subspace, while any excitation out
of this subspace is penalized. The short-time performance of
this scheme was investigated for a specific Markovian model
in Ref. [23] and also for a general non-Markovian bath in
Ref. [24], where numerical simulations were used to extend
the study beyond the short-time limit. For a general but local
non-Markovian bath in the regime of weak coupling to the
bath, it was shown that, modulo a unitary rotation in the code
space due to the Lamb shift, the same scheme can result in an
exponential suppression of decoherence [25]. Generalizations
to subsystem codes have been proposed [26], and theoretically
proven to work [27]. Variants of the JFS scheme tailored to
current experimental quantum annealing [28], where encoding
of the initial Hamiltonian is not possible, have also been
proposed and studied [29–31].

The effects of decoherence and its mitigation in HQC have
also been the subject of intensive study [32–38]. While unlike
AQC, a theory of fault tolerance has been developed for HQC
[39,40], it is of interest to develop less demanding alternatives,
such as the error suppression strategy we consider here.

In Sec. II we show how the results of JFS [23] can be
extended beyond the specific (photonic bath) model considered
there to arbitrary Markovian dynamics, and beyond protecting
pure states to the protection of mixed states in degenerate
ground subspaces. Starting from a master equation derived in
Ref. [41] for a system evolving adiabatically while weakly
coupled to the bath, we show that the main conclusion of
Ref. [23] holds very generally for physically reasonable (i.e.,
local and thermal) models of the bath and for arbitrary ground-
state degeneracy: The energy penalty is only required to grow
logarithmically in the system size, at fixed temperature. In
Sec. III we show that this result stands even if the Markovian
master equation is not in Lindblad form, i.e., is derived without
applying the rotating-wave (or secular) approximation.

The reason we are interested in Markovian models, despite
the fact that general results of a similar nature have already
been established for non-Markovian models [24,25], is that
Markovian models are special: Not only are they widely used
[42], decay in these models (e.g., of the purity) is always
exponential [43]. This means that they preclude any use of
ultrashort-time recurrence effects that soften decoherence. In
particular, error suppression techniques such as dynamical
decoupling [44–46] or the Zeno effect [47] (shown to be
formally equivalent to the JFS scheme [48]) are ineffective
for Markovian models. In this sense, error suppression for
Hamiltonian computation in the presence of a Markovian
environment is more challenging than in the non-Markovian
case.

II. ERROR SUPPRESSION FOR GENERAL MASTER
EQUATIONS IN LINDBLAD FORM

Assuming a time-dependent system Hamiltonian H (t), a
general bath Hamiltonian HB , and an interaction Hamiltonian
HSB = ∑

α Aα ⊗ Bα , an adiabatic Markovian master equation
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in Lindblad form [49,50] can be derived [41],

ρ̇ = −i[H (t) + HLS(t),ρ] + D(t)[ρ], (1)

where HLS(t) is the Lamb shift, and D(t) denotes the
dissipative, i.e., nonunitary part (see Ref. [22] for a concise
summary and definitions), and we set h̄ ≡ 1 throughout.
Henceforth we mostly suppress the time dependence of the
various terms for notational simplicity, but it important to
remember that all our quantities are explicitly time dependent.

Consider the spectral decomposition

H =
∑
l�0

εl�l, (2)

i.e., �l denotes the projection onto the (possibly degenerate) H

eigensubspace with energy εl . The eigenprojectors are orthog-
onal: �l�l′ = δll′�l . Defining Aα(ω) = ∑

εl′−εl=ω �lAα�l′ ,
the dissipator becomes

D[ρ] =
∑

ω

∑
αβ

γαβ(ω)

[
Aβ(ω)ρA†

α(ω) − 1

2
{A†

α(ω)Aβ(ω),ρ}
]
,

(3)

where the matrix of decay rates

γαβ(ω) =
∫ ∞

−∞
dt eiωt 〈Bαβ (t)〉 = γ ∗

βα(ω) (4)

is the Fourier transform of the bath correlation function

〈Bαβ(t)〉 = Tr
[
ρBe−iHB tBαeiHBtBβ

]
, (5)

where ρB is the initial state of the bath.
From now on we assume that the system-bath coupling

exhibits a local structure, in the sense that the system operators
Aα in HSB = ∑

α Aα ⊗ Bα are k local, with k a constant that
is independent of the number of qubits n. This guarantees that
the interaction Hamiltonian can be expressed in terms of a
number of terms that is polynomial in n.

A. General expression for the excitation rate after encoding and
error suppression

Assume that the system is initially prepared in the (possibly
degenerate) ground subspace of the Hamiltonian H , with
energy ε0, i.e., ρ(0) = �0ρ(0)�0. We are interested in the
initial excitation rate out of the ground subspace,

R ≡ ∂tTr[�0ρ]|t	0 = Tr[�0ρ̇(0)], (6)

where the second equality is proved in Appendix A. In AQC
one is usually interested in the case that the ground state of
the initial Hamiltonian is nondegenerate and the initial state is
pure. In this case the excitation rate R is proportional to the
initial purity decay, with purity defined as Tr ρ2. In HQC the
initial state belongs to a degenerate subspace. In Eq. (6) we do
not assume that the initial state is pure, and later consider the
special case when it is [see below Eq. (14)].

It is not hard to show (see Appendix B) that the dissipative
part yields

Tr{�0D[ρ(0)]}
= −

∑
αβ

∑
l 
=0

γαβ(ε0 − εl)Tr[ρ(0)A†
α�lAβ]. (7)

We now choose a code C that can detect all the errors
(system operators) Aα in the system-bath Hamiltonian [51],

∀α : PCAαPC = 0, (8)

where PC projects onto the code space. We encode the system
Hamiltonian using the logical operators of this code, and add
a penalty Hamiltonian that has the code space as its ground
subspace. Such a Hamiltonian can be constructed by summing
the stabilizer generators of the code [23]. Thus, H is the sum
of an encoded computational Hamiltonian HS and a penalty
Hamiltonian Hp,

H (t) = HS(t) + ηpHp, (9)

where the dimensionless quantity ηp > 0 quantifies the
strength of the energy penalty, and by construction
[HS(t),Hp] = 0. This allows us to choose the �l’s as the
simultaneous eigenprojectors of HS and Hp, and write the
eigenvalues of H (t) as

εl(t) = ωl(t) + ηpξl, (10)

where ωl(t) and ξl are, respectively, the eigenvalues of HS(t)
and Hp. Let us assume that Hp is chosen so that its ground
subspace is the code space, defined by the projection operator

PC =
∑
l∈C

�l, (11)

and that the initial state belongs to the (now definitely degen-
erate) ground subspace of H (t), i.e., again ρ(0) = �0ρ(0)�0.
Since Tr(X[Y,X]) = 0 for any pair of operators X,Y , the
unitary part −i[H + HLS,ρ(t)] of the master equation (1) does
not contribute to the initial excitation rate.1 Moreover, because
of the error detection properties of the code [Eq. (8)], we have

∀l ∈ C : �0Aα�l = 0. (12)

Using the master equation (1) and Eq. (7) we thus have

R = −
∑
αβ

∑
l∈C⊥

γαβ(ε0 − εl)Tr[ρ(0)A†
α�lAβ]. (13)

Note that the matrix γ is positive semidefinite and can be
diagonalized by a unitary U :

∑
α′β ′(U †)αα′γα′β ′Uβ ′β = δαβγα

with positive γα (the eigenvalues of γ ). Introducing new
Lindblad operators Fα′ (ω) via Aα(ω) = ∑

α′ Uαα′Fα′(ω) into
Eq. (13) we have the following general expression for the
excitation rate,

R = −
∑

α

∑
l∈C⊥

γα(ε0 − εl)Tr[ρ(0)F †
α�lFα]. (14)

Alternatively, when the initial state is a pure state |ψ0〉, we
can define the excitation rate as R′ ≡ Tr[|ψ0〉〈ψ0|ρ̇(0)]|, but
it is easy to check that as a result of the encoding we have
R = R′. This means that the encoding also suppresses the
errors induced by the system-bath interaction in the ground
subspace, which are logical errors for HQC.

1The effect of the Lamb shift on the code space is captured by other
measures such as the fidelity (see, e.g., Ref. [25]).
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B. The excitation rate scales only polynomially
in the system size

Despite the fact that the sum over l ∈ C⊥ involves exponen-
tially many terms, the excitation rate scales only polynomially
in the system size. To see this, we first define

γmax ≡ max
l∈C⊥,α

γα(ε0 − εl). (15)

Using the spectral decomposition ρ(0) = ∑
i λi |i〉〈i|, it is

clear that Tr[ρ(0)F †
α�lFα] = ∑

i λi‖�lFα |i〉 ‖2 � 0. There-
fore, using Eq. (11), the excitation rate satisfies the bound

|R| � γmax

∑
α

∑
l∈C⊥

Tr[ρ(0)F †
α�lFα]

= γmax

(∑
α

Tr[ρ(0)F †
αFα] −

∑
α

Tr[ρ(0)F †
αPCFα]

)

� γmax

∑
α

Tr[ρ(0)F †
αFα]. (16)

None of the terms in the last sum depends on the number
of qubits n. The number of terms itself can increase at most
polynomially in n, due to the sum over α [both the explicit one
in Eq. (16) and also the implicit one in Fα = ∑

α′(U †)αα′Aα′].
This proves that the excitation rate grows at most polynomially
in n.

C. The excitation rate is exponentially suppressed by the
energy penalty

Next, let us show that for reasonable models of the bath
the excitation rate is exponentially suppressed with increasing
energy penalty ηp. If the bath is in thermal equilibrium at
inverse temperature β, then under rather general conditions
(analyticity of the bath correlation function in a strip) the
matrix of decay rates satisfies the quantum detailed bal-
ance, or the Kubo-Martin-Schwinger (KMS) condition [52],
γαβ(−ω) = e−βωγβα(ω). The diagonalization used above then
implies that the eigenvalues of the γ matrix also satisfy the
KMS condition, i.e.,

γα(−ω) = e−βωγα(ω). (17)

Let �l denote an eigenprojector of H with energy εl =
Tr[�lH ]. It follows from Eq. (9) and [HS,Hp] = 0 that these
are simultaneous eigenstates of HS and Hp as well. Let us
assume that Hp has a ground-state gap g = minl∈C⊥ Tr[(�l −
�0)Hp]. We have ∀l ∈ C⊥,

εl − ε0 = Tr[�l(HS + ηpHp)] − Tr[�0(HS + ηpHp)]

= Tr[(�l − �0)HS] + ηpTr[(�l − �0)Hp]

� ηpg. (18)

When Hp is a sum of commuting terms, as is true for
the stabilizer construction we consider here, the gap g is
guaranteed to be a constant [53].2

2For Hp that is a sum of noncommuting terms, e.g., when it is
chosen as a sum of gauge group elements [26,27], g may decrease

Now, using the KMS condition (17), we have

γα(ε0 − εl) = e−β(εl−ε0)γα(εl − ε0)

� e−βgηpγα(εl − ε0). (19)

It follows that

γmax � e−βgηp max
l∈C⊥,α

γα(εl − ε0), (20)

and thus the bound on |R| depends on maxl∈C⊥,α γα(εl − ε0) =
maxl∈C⊥,α γα(ωl + ηpξl − ε0), where we used Eq. (10). To
ensure a nontrivial bound on |R|, this quantity has to be
finite, which is a natural assumption. For example, for a
bath satisfying an Ohmic-like relation of the form γ (ω) =
μωke−ω/ωc for ω > 0, where ωc is a finite cutoff frequency, the
maximum value of γ (ω) is μ(kωc)ke−k . Even if this is not the
case [e.g., in the quantum optical master equation γ (ω) ∝ ω3

for sufficiently large ω [42]] it is reasonable to assume that
the system itself imposes a high-frequency cutoff, i.e., that
maxl∈C⊥{ωl,ξl} < ∞.3

We also assume that γ (ω) is a polynomial function (or
any subexponential function in ω) for ω > 0; this too is an
assumption that is compatible with all commonly used bath
models [42].

Combining this with Eq. (16), we have

|R| � exp(−βgηp)poly(ηp)poly(n). (21)

It follows that the excitation rate is exponentially suppressed as
the penalty strength ηp is increased. In other words, by using
stabilizer error detecting codes (constant g), for Markovian
models with a thermal bath that satisfy our assumptions above,
to keep the initial excitation rate (or purity decay) out of
the code space constant while the system size n increases,
one only needs to increase the strength of energy penalty
ηp, logarithmically in n, at any fixed inverse temperature β.
The flatter the initial purity decay, the longer the adiabatic or
holonomic quantum computation will proceed in the ground
state.

D. Relation to the JFS work

In the pioneering JFS work [23], a very similar result to
Eq. (21) was already established, under somewhat less general
conditions. Rather than dealing with a general Markovian
master equation, they assumed a particular system of spins
weakly coupled to a photon bath and a pure initial state. They
then provided the lowest-weight possible subspace stabilizer
codes for detecting 1-local and 2-local noise compatible
with the error suppression scheme. Here, following and
generalizing the JFS proof technique and providing all the
necessary details, we generalized the suppression result to
arbitrary Markovian master equations in Lindblad form and
arbitrary stabilizer subspace error detection codes, while
allowing for a degenerate initial state. We now proceed

with increasing system size. Even this case remains interesting if the
gap of HS decreases faster in the system size than g [27].

3This is certainly reasonable for condensed-matter systems, where
the finite number density naturally imposes a high-frequency cutoff,
such as a Debye frequency.
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to establish the result even more generally, for Marko-
vian master equations derived without the rotating-wave
approximation.

III. ERROR SUPPRESSION FOR NON-LINDBLAD
MARKOVIAN MASTER EQUATIONS

The derivation from first principles of a master equation
with a dissipator in Lindblad form [Eq. (3)] requires several
approximations [42]. Prominent among these is the rotating-
wave approximation (RWA), whose validity has often been
questioned [54–61]. Reference [41] presented a derivation
not only of the Lindblad-form adiabatic master equation (1),
which required the use of the RWA and guarantees complete
positivity, but also a so-called double-sided adiabatic master
equation (DSAME), derived without the RWA (the Lindblad
form follows from the latter master equation after using the
RWA). In this section we show that the DSAME also exhibits
the same suppression of purity decay or the excitation rate
out of the ground space. Thus, the suppression effect does not
depend on the RWA.

The DSAME has the following form,

ρ̇ = −i[H (t),ρ] + D̃[ρ], (22a)

D̃[ρ] =
∑
αβ

∑
ll′

�αβ(ωll′)[�lAβ�l′ρ,Aα] + H.c., (22b)

where H.c. denotes the Hermitian conjugate. Note the non-
Lindblad form of the dissipator D̃ and the absence of an
explicit Lamb shift term (such a term, i.e., a Hermitian part, can
nevertheless be separated from D̃). Here, the frequencies are
the time-dependent Bohr frequencies of the system, ωll′(t) =
εl′(t) − εl(t), where H (t) |εl(t)〉 = εl(t) |εl(t)〉, and

�αβ(ω) =
∫ ∞

0
dt eiωt 〈Bαβ (t)〉 (23)

is the one-sided Fourier transform of the bath correlation
function. The double-sided and one-sided Fourier transforms
are related via

�αβ(ω) = 1
2γαβ(ω) + iSαβ (ω), (24)

where Sαβ(ω) = S∗
βα(ω) is the remaining Cauchy principal

value (see, e.g., Ref. [41]).
We again calculate the excitation rate Tr[�0ρ̇(0)] for a state

initialized in the ground subspace of the Hamiltonian H , with
energy ε0, i.e., ρ(0) = �0ρ(0)�0. First,

Tr

{
�0

∑
ll′

�αβ(ωll′)[�lAβ�l′ρ(0),Aα]

}

=
∑
ll′

�αβ(ωll′)(Tr{�0�lAβ�l′[�0ρ(0)�0]Aα}

−Tr{�0Aα�lAβ�l′[�0ρ(0)�0]})
= �αβ(0)Tr[ρ(0)Aα�0Aβ] −

∑
l

�αβ(ω0l)Tr[ρ(0)Aα�lAβ].

(25)

Next, after subtracting the l = 0 term, we are left just with the
sum over l 
= 0. Thus, using Eq. (24),

Tr{�0D̃[ρ(0)]}

= −
∑
αβ

∑
l 
=0

[
1

2
γαβ(ω0l) + iSαβ (ω0l)

]
Tr[ρ(0)Aα�lAβ]

+ H.c. (26)

Accounting for the fact that without loss of generality we can
always choose the system operators Aα to be Hermitian, and
that the sum over all α and β allows us to interchange the order
of summation, the imaginary part vanishes after summation
with the Hermitian conjugate, and we are left exactly with
Eq. (7) for the Lindblad form. The unitary part has no effect in
the DSAME either (i.e., Tr{ρ(0)[H (0),ρ(0)]} = 0). Therefore,
the same conclusions as reported in the previous section for
master equations in Lindblad form follow for the DSAME
about the excitation rate out of the ground subspace of the
Hamiltonian.

IV. CONCLUSION

We have extended the JFS result [23], that it suffices to
increase the energy penalty logarithmically with system size
in order to protect AQC against excitations out of the ground
state, to general Markovian dynamics and mixed states. We
have also pointed out that these results apply to HQC, and
shown that the same results continue to hold even if the master
equation is not in Lindblad form, i.e., without assuming the
rotating-wave approximation. These results only concern the
initial excitation rate. A natural next generalization of these
results is to subsystem codes and longer evolutions.
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APPENDIX A: PROOF OF EQ. (6)

The excitation rate is R = Tr[�̇0ρ(0)] + Tr[�0ρ̇(0)]. Let
us prove that the first term vanishes, which will prove the
second equality in Eq. (6).

The initial state satisfies ρ(0) = �0ρ(0)�0, so that
Tr[�̇0ρ(0)] = Tr[�0�̇0�0ρ(0)]. Now, differentiating the
identity �2

0 = �0 yields

�0�̇0 + �̇0�0 = �̇0 =⇒ �̇0�0 = �⊥
0 �̇0

=⇒ �0�̇0�0 = 0, (A1)

where �⊥
0 = I − �0.

APPENDIX B: PROOF OF EQ. (7)

We explicitly compute the terms that need to be summed.
We will use the fact that the initial state is in �0: ρ(0) =
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�0ρ(0)�0. First,

∑
ω

γαβ(ω)Tr[�0Aβ(ω)ρ(0)A†
α(ω)]

=
∑

ω

γαβ(ω)Tr[�0Aβ(ω)�0ρ(0)�0A
†
α(ω)]

=
∑

ω

γαβ(ω)
∑

εl′−εl=ω

∑
εl′′′−εl′′=ω

×Tr[�0(�lAβ�l′)�0ρ(0)�0(�l′′′A
†
α�l′′ )]

= γαβ(0)Tr[�0Aβρ(0)A†
α]

= γαβ(0)Tr[ρ(0)A†
α�0Aβ]. (B1)

Second, similarly,∑
ω

γαβ(ω)Tr[�0A
†
α(ω)Aβ(ω)ρ(0)]

=
∑

ω

γαβ(ω)
∑

εl′′′−εl′′=ω

∑
εl′−εl=ω

×Tr[�0(�l′′′A
†
α�l′′ )(�lAβ�l′ )�0ρ(0)]

=
∑

l

γαβ(ε0 − εl)Tr[�0A
†
α�lAβρ(0)]

=
∑

l

γαβ(ε0 − εl)Tr[ρ(0)A†
α�lAβ]. (B2)

We also note that Tr[�0A
†
α(ω)Aβ(ω)ρ(0)] =

Tr[�0ρ(0)A†
α(ω)Aβ(ω)], and so both terms of the

anticommutator produce the same result. Adding these
terms according to the dissipator, Eq. (3), yields Eq. (7).
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[18] M. Tiersch and R. Schützhold, Phys. Rev. A 75, 062313

(2007).
[19] M. H. S. Amin, D. V. Averin, and J. A. Nesteroff, Phys. Rev. A

79, 022107 (2009).
[20] M. H. S. Amin, C. J. S. Truncik, and D. V. Averin, Phys. Rev. A

80, 022303 (2009).
[21] M. Sarovar and K. C. Young, New J. Phys. 15, 125032 (2013).
[22] T. Albash and D. A. Lidar, Phys. Rev. A 91, 062320 (2015).

[23] S. P. Jordan, E. Farhi, and P. W. Shor, Phys. Rev. A 74, 052322
(2006).

[24] A. D. Bookatz, E. Farhi, and L. Zhou, Phys. Rev. A 92, 022317
(2015).

[25] I. Marvian, arXiv:1602.03251.
[26] Z. Jiang and E. G. Rieffel, Quantum Inf. Process. 16, 89 (2017).
[27] M. Marvian and D. A. Lidar, Phys. Rev. Lett. 118, 030504

(2017).
[28] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze,

N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E.
M. Chapple, C. Enderud, J. P. Hilton, K. Karimi, E. Ladizinsky,
N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M. C. Thom, E.
Tolkacheva, C. J. S. Truncik, S. Uchaikin, J. Wang, B. Wilson,
and G. Rose, Nature (London) 473, 194 (2011).

[29] K. L. Pudenz, T. Albash, and D. A. Lidar, Nat. Commun. 5,
3243 (2014).

[30] S. Matsuura, H. Nishimori, T. Albash, and D. A. Lidar, Phys.
Rev. Lett. 116, 220501 (2016).

[31] W. Vinci, T. Albash, and D. A. Lidar, Nat. Quantum Inf. 2,
16017 (2016).

[32] P. Solinas, P. Zanardi, and N. Zanghı̀, Phys. Rev. A 70, 042316
(2004).

[33] L. A. Wu, P. Zanardi, and D. A. Lidar, Phys. Rev. Lett. 95,
130501 (2005).

[34] G. Florio, P. Facchi, R. Fazio, V. Giovannetti, and S. Pascazio,
Phys. Rev. A 73, 022327 (2006).

[35] M. S. Sarandy and D. A. Lidar, Phys. Rev. A 73, 062101
(2006).

[36] D. Parodi, M. Sassetti, P. Solinas, and N. Zanghı̀, Phys. Rev. A
76, 012337 (2007).

[37] O. Oreshkov and J. Calsamiglia, Phys. Rev. Lett. 105, 050503
(2010).

[38] G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek,
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