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We investigate how ultracold atoms in double-well potentials can be used to study and put bounds on models
describing wave-function collapse. We refer in particular to the continuous spontaneous localization (CSL)
model, which is the most well studied among dynamical reduction models. It modifies the Schrödinger equation
in order to include the collapse of the wave function in its dynamics. We consider Bose Josephson junctions,
where ultracold bosons are trapped in a double-well potential, since they can be experimentally controlled with
high accuracy and are suited and used to study macroscopic quantum phenomena on a scale of microns, with a
number of particles typically ranging from ∼102–103 to ∼105–106. We study the CSL dynamics of three atomic
states showing macroscopic quantum coherence: the atomic coherent state, the superposition of two atomic
coherent states, and the NOON state. We show that for the last two states, the suppression of quantum coherence
induced by the CSL model increases exponentially with the number of atoms. We observe that in the case of
optically trapped atoms, the spontaneous photon emission of the atoms induces a dynamics similar to the CSL
one, and we conclude that magnetically trapped atoms may be more convenient to experimentally test the CSL
model. Finally, we discuss decoherence effects in order to provide reasonable estimates on the bounds that it is
(or will be) possible to obtain for the parameters of the CSL model in such class of experiments. As an example,
we show that a NOON state with N ∼ 103 with a coherence time of ∼1 s can constrain the CSL parameters in a
region where the other systems presently cannot.
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I. INTRODUCTION

Matter-wave optics and atom interferometry are nowadays
routinely used for a variety of precision measurements [1],
paving the way for the development of the tools needed to
perform a class of experiments aimed at testing quantum
mechanics and general relativity, with applications ranging
from metrology to atomtronics [2,3]. In this paper, we focus on
the use of ultracold atoms to study wave-function collapse and
we consider atomic gases weakly coupled via a double-well
potential. Such a setup provides an atomic counterpart of
Josephson devices [4,5] and it has been experimentally realized
and studied for both ultracold bosons [6–9] and fermions [10].
A Josephson physics and coherent tunneling have also been
studied, not only in space (as in a double-well potential) but
also between internal levels [11–14]. Due to the high tunability
of experimental parameters, the Bose Josephson junction is
one of the paradigmatic setups in which to probe and study
quantum coherence on a mesoscopic and/or macroscopic scale.
For this reason, we use it to study the bounds that can be put
on models for the wave-function collapse.

The continuous spontaneous localization (CSL) model [15]
is the most well-studied model among dynamical reduction
models [16,17]. It adds extra terms to the Schrödinger equation
in order to describe the collapse of the wave function.
The new terms are stochastic and nonlinear to mimic the
collapse while avoiding faster-than-light signaling [18–20].
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The resulting modified Schrödinger equation preserves the
quantum mechanical predictions for microscopic systems,
while inducing the macroscopic system to be localized in
space.

The CSL model contains two new phenomenological
parameters: a collapse rate λ and a resolution length rC . The
differences between standard quantum mechanics and the CSL
model depend on the values of these two new parameters.
With too-small values, CSL predictions are practically indis-
tinguishable from the quantum mechanical ones (the model
then loses its effectiveness); at the other extreme, too-large
values are excluded since then CSL would contradict known
experimental facts. Ghirardi et al. proposed a collapse rate
λ = 10−16 s−1 and a resolution length rC = 10−7 m in their first
dynamical reduction model [21], slightly modified later with
λ = 10−17 s−1 (and the same resolution length) for the CSL
model [15]. Adler proposed stronger values, i.e., rC = 10−7

m, λ = 10−8±2 s−1 and rC = 10−6 m, λ = 10−6±2 s−1, based
on the analysis of the process of latent image formation in
photography [22].

Bounds on the parameters are of course ultimately set by ex-
periments. In recent years, a great effort in comparing collapse
models with experiments has been made through a large variety
of experimental setups: from matter-wave interferometry [23],
to heating effects in cantilevers [24,25], to spontaneous x-ray
emission from matter [26], which currently sets the strongest
upper bound, λ � 10−11 s−1 (for rC = 10−7 m). The resulting
exclusion plot in the λ − rC parameter space is shown in
Fig. 2, where the white region must still be experimentally
probed, while the nonwhite regions have been excluded by
experiments listed above. Taking into account the challenge to
entirely probe this white region by currently used experimental
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FIG. 1. Action of the collapse noise on an atom in a double-well
potential (blue curve). The initial state (yellow curve) is delocalized
over the two wells. The interaction of the atom with the collapse noise
localizes the atomic state in one of the two wells (red curve).

setups, and considering that ongoing experiments with atomic
gases in double-well potentials are able to create and detect
strongly correlated entangled states [27], we think it is of great
interest to study the possibility to perform experimental tests of
quantum mechanics using ultracold bosons in Bose Josephson
junctions and to determine what requests the experimental
values have to satisfy in order to put new bounds on the
parameters of the CSL model.

Although the spontaneous localization mechanism of col-
lapse models is very weak, the progress in the last two decades
in the control and manipulation of ultracold gases makes such
a system a promising setup to test the CSL model. Together
with their very low temperature (T ∼ 10—100 nK), ultracold-
atomic systems are characterized by quantum phenomena
involving a mesoscopic or large number of atoms (N ranging
from 102–103 to 105–106) [28,29]. A first work that studied
the CSL effects in a cold-atomic system [30] set the upper
bound of λ � 10−7 s−1 (for rC = 10−7 m) from the analysis
of the heating effects on a Bose-Einstein condensate. In [31], a
theoretical analysis of a recent experiment [32] was performed,
where an out-of-equilibrium gas of 87Rb atoms was cooled to
a temperature T ∼ 50 pK. The dynamical equations for the
CSL model were studied, concluding that the resulting bounds
are beaten only by measurements of the spontaneous x-ray
emission and by experiments with cantilevers. It was also
shown that the bounds are not changed by non-Markovian
extensions of the CSL model.

In this paper, we study how CSL affects cold atoms in
a double-well potential, i.e., a Bose Josephson junction, as
qualitatively depicted in Fig. 1, where we also schematically
describe the effect of the collapse of the wave function. A Bose
Josephson junction can be experimentally implemented, e.g.,
by superimposing an optical lattice to a parabolic potential
[6,33] or by the use of a laser beam to create the barrier [10].
In a Bose Josephson junction, when the barrier is high enough
(much larger than the chemical potential), the atoms can be
only in two states. Each wave function is spatially localized in
one of the two wells: the higher the barrier separating the two
wells, the lower the overlap between the two wave functions.
Experimental quantities such as the height of the barrier and
the geometry of each well [29] can be tuned with a high degree
of control.

A phase difference between the two wells emerges as
a consequence of the weak link also for a small number

of atoms [34] and it can be fixed (giving rise to the so-
called phase state). This possibility, for example, leads to the
use of Bose Josephson junctions as an atom interferometer
[1,35,36]. The quantum mechanical evolution of the phase
state is characterized by the typical collapse and revival of
the interference fringes, while the CSL dynamics decreases
the interference until the fringes disappear and each atom
is localized in one of the two wells. In this paper, we will
determine how fast the CSL dynamics collapses phase states,
compared to the typical longest coherence time experimentally
detected (e.g., ≈200 ms in [37]).

Besides the phase states, Bose Josephson junctions also
provide a promising possibility for creating macroscopic
entangled states, including Schrödinger’s cat states [38,39].
The use of squeezed states in atomic interferometers and clocks
leading to sub-shot-noise performance has been exploited
in experiments [13,14,40,41], while the detection of Bell
correlations between the spins of ∼500 atoms in a Bose-
Einstein condensate was recently reported in [27]. In this
paper, we focus on two types of macroscopic entangled
states: the superposition of two phase states and the so-called
NOON state. Even if a Schrödinger’s cat state has not been
experimentally detected yet in a double-well potential, for
these two macroscopic entangled states several preparation
techniques have been proposed and analyzed [42–46] (see a
review in [47]).

Macroscopic entangled states are notoriously extremely
sensitive to external noise sources. Therefore, in this paper,
we will study the collapse induced by CSL dynamics to
the macroscopic entangled states considered here, comparing
the result with two typical decoherence sources in opti-
cally trapped systems: phase noise [48] and spontaneous
photon-emission process [49–51]. The effects of thermal
fluctuations and three-body recombination terms will also be
addressed.

The paper is organized as follows: we start by briefly
describing the Bose Josephson junction system within the
two-mode approximation and introducing the coherent atomic
state (or phase state) and the two macroscopically entangled
states we consider in our investigation. We then introduce
the CSL model and find the density matrix evolution for
a gas of bosonic atoms in a Bose Josephson junction with
CSL dynamics. Next, we find the correlation evolution for
the phase state, for the superposition of phase states, and for
the NOON state. Finally, we compare the CSL dynamics with
several typical decoherence sources: phase noise, spontaneous
photon-emission process, thermal effects, and three-body
recombination terms. A discussion of the results and of
perspectives is presented in the conclusions.

II. TWO-MODE MODEL FOR THE BOSE
JOSEPHSON JUNCTION

Within the usual two-mode approximation [52], valid for
large energy barriers between the two wells (and much larger
than the chemical potential), one assumes that the atoms can
be either in the state |ψ〉L of the left well or in the state |ψ〉R of
the right well. The left and the right states are taken orthogonal,
〈ψR|ψL〉 = 0 (see [52]). In the second quantization formalism,
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the Hamiltonian for the interacting gas is

Ĥ =
∫

dx â†(x)

(
−h̄2∇2

2m
+ VDW(x)

)
â(x)

+ g

2

∫
dx â†(x)â†(x)â(x)â(x), (1)

where g = 4πh̄2aS/m is the coupling constant of the atom-
atom interaction, with aS the scattering length of the atoms,
and we introduce the external double-well potential VDW

whose specific form determines the left and right Wannier
wave functions ψL(x), ψR(x) (and therefore the coefficients
of the two-mode model). The total number of particles is
fixed to N . Usually, the wave functions ψL(x), ψR(x) are
well approximated from the solutions of the time-independent
Gross-Pitaevskii equation:

−h̄2∇2

2m
ψ(r) + VDW(r)ψ(r) + g|ψ(r)|2ψ(r) = μψ(r). (2)

Denoting by ψG and ψE the ground and the first-excited states
of (2), one has ψL(x) = [ψG(x) + ψE(x)]/

√
2 and ψR(x) =

[ψG(x) − ψE(x)]/
√

2. This way of constructing the wave
functions ψL(x), ψR(x) is typically good if the number of
particles per well is not too large and they do not depend on
the interactions via the atom numbers NL and NR (in that case,
one has to resort to a nonlinear tight-binding ansatz [53,54]).

Let us introduce â
†
L(âL) and â

†
R(âR) as the creation

(annihilation) operators for, respectively, the left and right
states. Rewriting the operators â(x) in terms of âL

and âR as

â(x) = ψL(x)âL + ψR(x)âR (3)

(with the wave functions ψL(x), ψR(x) appropriately normal-
ized to 1), the Hamiltonian operator in Eq. (1) becomes [52,55]

Ĥ = −J (â†
LâR + â

†
RâL) − U â

†
LâLâ

†
RâR, (4)

where J and U are expressed as appropriate integrals of
the wave functions ψL(x), ψR(x). In Eq. (4), we choose
the convention to have U positive (negative) for aS positive
(negative), i.e., for repulsive (attractive) interactions. The
distance d between the wells varies typically between ≈0.5
and ≈5 μm: if the double-well potential is created by an
optical potential Vopt = V0 cos2 kx with k = 2π/λopt (being
d = λopt/2), then for 87Rb with λopt ∼ 1 μm, one has that
being in the two-mode regime requires V0/h � 5 kHz [5,56],
while for λopt ∼ 10 μm it is sufficient to have V0/h � 500
Hz [6]. If the barrier is created by a laser beam having the
maximum at the center of the trap, the distance is �2 μm.
In [10] with 6Li atoms, the barrier was created by a laser
beam at 532 nm, blue detuned with respect to the main optical
transition of lithium atoms, and, at the trap center, the beam
was Gaussian shaped, with a 1/e2 beam waist of 2 μm. In this
case, in the BEC regime, the two-model regime was reached
for V0/μ � 1.5 with the chemical potential μ ∼ 100h̄ω, with
ω = 15 Hz. In all cases, of course, by increasing the barrier
energy V0, the ratio U/J increases (see, e.g., [28,33]; a study
of the dependence of the ratio for different dimensionality of
the system can be found in [57]). Finally, we observe that in

the presence of a negative scattering length, the coefficient U
can be negative (and yet the two-mode model be valid). The
quantum phase transition occurs at a finite value of |U | for
which a population imbalance between the two wells has been
recently observed [9].

III. STATES

In this section, we introduce the states whose collapse (and
decoherence) is studied in the remainder of the paper.

A. Phase state

The creation of atomic coherent states using Bose-Einstein
condensates is a fundamental result for the study of many-body
physics with ultracold atoms. Considering our case of interest,
the phase state has the following expression [29]:

|φ〉 = 1√
N !2N

(â†
L + eiφâ

†
R)N |0〉. (5)

The phase-coherence properties of the above state are ex-
pressed by the off-diagonal elements of the single-particle
density matrix defined as follows:

ρ(1) = 1

N

(
〈â†

LâL〉 〈â†
LâR〉

〈â†
RâL〉 〈â†

RâR〉

)
, (6)

where 〈·〉 = 〈φ| · |φ〉. Using Eq. (5), one has

〈â†
LâR〉 = N

eiφ

2
. (7)

Coherence properties of the state (5) are detected through
the presence of interference fringes in the momentum density
of the gas [29]. As discussed in Appendix A, the average of
the momentum density for a generic state in the symmetric
double-well potential (4) is

〈â†(p)â(p)〉 = N |ψL(p)|2
{

1 + 2

N
Re

(
e−i

2apx
h̄ 〈â†

LâR〉)}, (8)

where px is the x component of the momentum p. Using Eq. (7)
for the phase state (5) in expression (8), we obtain

〈â†(p)â(p)〉 = N |ψL(p)|2
{

1 + cos

(
φ − 2apx

h̄

)}
. (9)

We observe that the phase coherence (7) is not, generally, a
constant of motion of the Hamiltonian (4) due to the presence
of the interaction term. In fact, in the case of negligible
tunneling, i.e., with J = 0, the time evolution of the phase
coherence (7) is (see the derivation in Appendix B)

〈â†
LâR〉t = 〈φ|e i

h̄
Ĥ t â

†
LâRe− i

h̄
Ĥ t |φ〉

= N
eiφ

2

[
cos

(
tU
h̄

)]N−1

≈ N
eiφ

2
e−N( tU

h̄
)2
, (10)

where the approximation in the last line holds for small time
t � h̄/|U | and large number of atoms N 	 1 (see the study
of the phase diffusion in [58,59]). The phase coherence is
periodically reestablished with period T = h̄/|U | [60–62].
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B. Superposition of phase states

Bose Josephson junctions are also promising systems
to create macroscopically entangled states. The first state
considered in this paper is the superposition of phase states
as given in (5). They can be dynamically created from a single
phase state, with dynamics given by Hamiltonian (4) with
J = 0. Indeed, after a time t2 = h̄π/(2U), the initial phase
state (5) evolves in∣∣φt2

〉 = 1√
2

(|φ〉 + eiβ |φ + π〉), (11)

where β is a fixed phase difference between the two phase
states. The state (11) does not show any single-particle
coherence properties (7), but it shows N -particle coherence.
As shown in Appendix B, one finds

〈φ|â†k

L âk
R|φ + π〉 =

{
0 if k < N
N!eiNφ

2N if k = N .
(12)

Equation (12) means that the way to distinguish the state (11)
from the statistical mixture ρ̂ = (|φ〉〈φ| + |φ + π〉〈φ + π |)/2
is through a measure of N -particle observables, i.e., the
reduced density matrix at k particles does not show any
coherences, unless k = N .

C. NOON states

The second macroscopically entangled state considered in
this paper is the so-called NOON state, defined as

|NOON〉 = 1√
2N !

(
â
†N

L + â
†N

R

)|0〉. (13)

The NOON state (13) is the ground state of the Hamiltonian
(4) with J = 0 and U < 0. Even though several proposals
have been formulated to create a NOON state in a double
well (see, e.g., [42–46,63]), its very short lifetime with respect
to decoherence makes its experimental realization an open
problem. A first step in this direction has been taken recently
[9], where the experimental realization of double-well bosonic
systems with negative and controllable scattering length was
achieved.

A relation similar to Eq. (12) is found (see Appendix B),

〈NOON|â†k

L âk
R|NOON〉 =

{
0 if k < N
(N!)2

2 if k = N .
(14)

The meaning of Eq. (14) is the same as for Eq. (12): the only
way to distinguish the NOON state (13) from the statistical
mixture ρ̂ = (|NL,0R〉〈NL,0R| + |0L,NR〉〈0L,NR|)/2 is by
looking at N -particle observables.

The fact that NOON state (13) and the superposition of
coherent states (5) show similar N-particle coherences can
be understood considering that the superposition of coherent
states (5) can be obtained from a NOON state passing through
a 50:50 beam splitter [38,44]. The unitary single-particle
dynamics of the beam splitter does not destroy the initial
N-particle coherence of the NOON state. As a consequence,
the CSL effects on the NOON state and superposition of phase
states are the same, as we will see in the next section.

From this point of view, the difference between the atomic
coherent state (5) and the macroscopic entangled states (11)

and (13) is quite evident. In fact, in the coherent state, all
the atoms are in the same superposition of single-particle
states. Single-particle observables are enough to detect the
quantumness of a coherent state. On the contrary, in the
macroscopic entangled states (11) and (13), the superposition
is at the level of the whole system and, in order to detect it,
the proper N -particle observables are required. Notice that
differently from the coherence properties (7) of the phase state
(5), the N -particle coherences (12) and (14) are left unchanged
by the Hamiltonian (4) with J = 0.

IV. CSL MODEL FOR A BOSE JOSEPHSON JUNCTION

In the CSL model, the density matrix evolution for a bosonic
system with N particles is described by the following master
equation [30]:

dρ̂(t)

dt
= − i

h̄
[Ĥ ,ρ̂(t)] − λA2

2

∫
dy

∫
dy′ e

− (y−y′)2
4r2

c

×{â†(y)â(y),[â†(y′)â(y′),ρ̂(t)]}, (15)

where A is the number of nucleons in each atom, and λ and
rC are the parameters characterizing the model, as described
in Sec. I.

In order to apply the CSL model to a Bose Josephson
junction, it is convenient to rewrite the master equations (15)
in terms of the left and right states. Using Eq. (3) in Eq. (15),
we get

dρ̂(t)

dt
= − i

h̄
[Ĥ ,ρ̂(t)] − λA2

2

∑
i,j

k,l

γ
i,j

k,l {â†
i âj ,[â

†
kâl,ρ̂(t)]},

(16)
where

γ
i,j

k,l =
∫

dy
∫

dy′ e
− |y−y′|2

4r2
c ψ∗

i (y)ψj (y)ψ∗
k (y′)ψl(y′), (17)

with i,j,k,l = L,R. We can immediately note that couplings
with an odd number of the same index, such as γ

L,R
L,L , are null

due to the orthogonality of the two modes. Therefore, we have
to evaluate two types of couplings: (i) γ

R,R
L,L = γ

L,L
R,R ≡ γi,j =i ,

where the equality holds because of the parity in the CSL
Gaussian term and (ii) γ

L,L
L,L = γ

R,R
R,R ≡ γi,i , where the equality

holds because of the symmetry of the double-well potential.
By taking into account that the total number of particle is

fixed, i.e., â
†
LâL + â

†
RâR = N , it is possible to show that the

dissipative term in the master equation (16) takes the following
expression:∑

i,j = L,R

γi,j {â†
i âi ,[â

†
j âj ,ρ̂(t)]}

=
∑
i=j

γi,i{â†
i âi ,[â

†
i âi ,ρ̂(t)]} +

∑
i =j

γi,j {â†
i âi ,[â

†
j âj ,ρ̂(t)]}

=
∑

i

(γi,i − γi,j =i){â†
i âi ,[â

†
i âi ,ρ̂(t)]}

= γ̄
∑

i

{â†
i âi ,[â

†
i âi ,ρ̂(t)]}, (18)
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where we have defined

γ̄ =
∫

dy
∫

dy′ e
− |y−y′ |2

4r2
c |ψL(y)|2[|ψL(y′)|2 − |ψR(y′)|2]

≈ 1 − e
− d2

4r2
C . (19)

The last equality is expected to be satisfied in the two-mode
approximation.

The master equation (16) then becomes

dρ̂(t)

dt
= − i

h̄
[Ĥ ,ρ̂(t)] − λA2γ̄

2

∑
i = L,R

{â†
i âi ,[â

†
i âi ,ρ̂(t)]}.

(20)
To have an explicit solution, we neglect the hopping term of
(4). As shown in Appendix C, the solution of Eq. (20) is

ρ̂(t) = e
4iU t
h̄

â
†
LâLâ

†
RâR e−λA2γ̄ t(

←−
â
†
RâR−

−→
â
†
RâR )2

ρ̂(0)e− 4iU t
h̄

â
†
LâLâ

†
RâR

= e−λA2γ̄ t(
←−

â
†
RâR−

−→
â
†
RâR )2

ρ̂Sch(t), (21)

where
←−

â
†
RâR(

−→
â
†
RâR) acts on the left (right) of the density matrix,

and

ρ̂Sch(t) = e
iU t
h̄

â
†
LâLâ

†
RâR ρ̂(0)e− iU t

h̄
â
†
LâLâ

†
RâR (22)

is the density matrix evolved under the Schrödinger (unitary)
dynamics only.

Collapse dynamics due to CSL

Let us see how an initial phase state evolves under the CSL
dynamics, looking in particular to the coherence properties
given by Eq. (7). From Eq. (21), it is possible to see that (see
Appendix C)

〈â†
LâR〉CSL

t = Tr[â†
LâRρ̂(t)] = e−λA2γ̄ t 〈â†

LâR〉Sch
t . (23)

Taking into account the Schrödinger evolution of the phase
state coherence (10), we obtain

〈â†
LâR〉CSL

t = Ne−λA2γ̄ t e
iφ

2

[
cos

(
tU
h̄

)]N−1

≈ N
eiφ

2
e−λA2γ̄ t e−N( tU

h̄
)2
, (24)

where the last line is valid only for t � h̄U−1.
From Eq. (24), it is clear that the action of the CSL dynamics

is to break the spatial superposition (7) of the phase state. Since,
in this case, the many-body state is a coherent factorization of
delocalized single-particle states, an amplification mechanism
is missing, and the CSL collapse rate does not depend on the
total number of particles N . Thus, the use of phase states such
as (5) to set experimental bounds on the CSL parameters is not
convenient in general.

For example, let us consider the experiment in Ref. [37],
where the long coherence time of 200 ms with a gas of
23Na atoms was observed. Using Eq. (19), we have that the
exponential decrease of the coherence in Eq. (24) induced
by CSL dynamics becomes experimentally visible only if
λ � 1/(tA2). Then, from Eq. (24), it is possible to put a bound
of λ � 10−2 s−1. This is a weak bound for two main reasons:

FIG. 2. Recent exclusion plot of the CSL model [64]. The upper
colored regions represent the values of λ and rC that have been
excluded by experimental data. The lower gray region is a lower
bound coming from the requirement that CSL must be effective in
localizing macroscopic objects. The white region—that of interest—
is still unexplored. The picture shows the bounds of a hypothetical
experiment involving the macroscopically entangled states (11) or
(13). Here, we made the hypothesis that their N -particle coherences
are preserved for a time t = 1 s, with three different number of
particles: N = 104 (black dashed line), 106 (blue dot-dashed line),
and 108 (red dotted line). The excluded regions are the upper part of
the related lines.

first, the expected values of the collapse rate λ theoretically
predicted by Ghirardi et al. [21] (λ = 10−16 s−1) and by Adler
[22] (λ = 10−8±2 s−1 and λ = 10−6±2 s−1) are much smaller
than 10−2 s−1; second, much stronger bounds have been set
by other experiments, as can be seen in the exclusion plot of
Fig. 2.

Let us now consider the CSL evolution of the macro-
scopically entangled states (11) and (13). In this case, the
N -particle coherence properties (12) and (14) are preserved
by the Schrödinger evolution. Using Eq. (21), as discussed in
Appendix C, it is possible to see that〈

â
†N

L âN
R

〉CSL
t

= e−λN2A2γ̄ t
〈
â
†N

L âN
R

〉Sch
t

. (25)

Differently from the phase-decoherence case (24), the expo-
nential decoherence of the macroscopically entangled states
(25) is faster due to a factor N2. This is due to the
macroscopicity of the states (11) and (13), i.e., these are
the superposition of localized N -particle states, which is
expressed by the N -particle quantum coherences (12) and
(14). As a consequence, an amplification mechanism occurs
in the CSL dynamics, increasing the collapse rate by a
factor N2.

In Fig. 2, we show the exclusion plot in the λ − rC parameter
space of CSL [64]. The upper colored regions indicate the
excluded values of the parameters set by experimental data.
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The lower gray region comes from requiring that the CSL
mechanism is strong enough to localize macroscopic objects
[23], which is the main motivation that introduced collapse
models initially [16]. Figure 2 also shows the exclusion plot
for a hypothetical experiment involving the macroscopically
entangled states (11) or (13). Here, we had to fix a time t for
which the N -particle coherences (12) and (14) are preserved
and observed. The longer t , the smaller the number of atoms
needed to be used (the dependence on the time is linear; the one
on the number is quadratic). An inspection of results shows
that in order to have both reasonable values for the particle
number N and at the same time explore the white region in
Fig. 2, i.e., the one not yet excluded by experiments, one has to
use t ∼ 1 s. This is presently a very challenging request, and
the goal of the present computation is to clarify and predict
what value of t is needed to explore the uncovered region of
the CSL parameter space for N going from 102 to 106.

We then choose t = 1 s and we considered a Rb gas, with
width of each well given by σ , and with the two wells distant
d. With d = 10 μm, J is negligible, and the results for J =
0 apply and are plotted in Fig. 2 for three different values
of N (with σ ≈ 1 μm). Also reducing d in order to have a
finite J does not quantitatively change the region that can be
explored in the λ − rC space (actually, we expect it shrinks);
similarly, increasing σ , which results in decreasing U , does
not change the boundaries of the region, as soon as the two-
mode approximation holds. We conclude that with t = 1 s, one
needs N ∼ 103–104 to enter the white region not yet explored,
and that with the (presently prohibitive) number N = 108, the
whole white region can be probed. From Fig. 3, where the time
evolution (25) is represented, the strong dependence on N is
clear.

All of the computations above have been done under
the hypothesis that the unitary Schrödinger dynamics is
modified only by CSL noise, without taking into account other
decoherence sources. In the next section, we compare the main
decoherence sources with CSL, and we give estimates on the
conditions that experiments must fulfill in order to properly
test the CSL model.

FIG. 3. Time evolution (25) of the normalized N -particle co-
herences �t = 〈â†

LâR〉CSL
t /〈â†

LâR〉CSL
0 , for different number of atoms.

Here we fix the CSL parameters λ = 10−11 s−1 and rC = 10−7 m,
which are among the weakest parameters of the white region in Fig. 2.

V. ENVIRONMENT DECOHERENCE ON BOSE
JOSEPHSON JUNCTIONS AND COMPARISON WITH THE

CSL MODEL

Problems in testing CSL dynamics in experiments usually
arise from environmental decoherence sources, leading to
similar loss of coherences. This is the topic of this section,
in which we compare the decoherence of the CSL noise
with the decoherence induced by the external environment.
In particular, we focus on four main sources, i.e., the
thermal cloud surrounding the condensate, the three-body
recombination processes, phase noise, and the trapping laser.
We then study the conditions that experiments have to fulfill in
order to reduce environment decoherence, which is a necessary
condition to detect CSL effects. For each decoherence source,
we consider realistic values of the parameters from typical
experimental setups; see, e.g., [9,30,65]. It turns out that
these setups generally present environmental decoherence that
covers any CSL effect within the white region of Fig. 2. We
then estimate the values of experimental setup parameters
needed to lower environmental decoherence and test CSL
according to the analysis described in the previous section.

A. Interaction with a thermal cloud

Even if the temperature is very low, a small amount of
thermally excited atoms is always present. Atoms in excited
states interact with the condensate, leading to two main effects:
a loss of atoms from the condensate to the thermal cloud and
a decoherence on the condensate in the position basis. As
reviewed in Appendix D, the master equation describing the
dynamics of a condensate interacting with its thermal cloud is

dρ̂(t)

dt
= − i

h̄
[Ĥ ,ρ̂(t)] +

∑
i=1,2

L(i)
t [ρ̂(t)], (26)

where L(1)
t [ρ̂(t)] describes the atom loss dynamics, which can

be written in the following way for the particular case of a
condensate in a double-well potential [66]:

L(1)
t [ρ̂(t)] = �loss

∑
j=L,R

âj ρ̂(t)â†
j − 1

2
{â†

j âj ,ρ̂(t)}, (27)

where �loss is the rate of atom losses from the condensate
to the thermal cloud, which, according to the discussion
in Appendix D, is given by the following local correlation
function of the thermal cloud:

�loss = g2

h̄2

∫
dx |ψL(x)|2

× Tr[â†(x)â†(x)â†(x)â(x)â(x)â(x)ρ̂therm]. (28)

The term L(2)
t [ρ̂(t)] introduced in Eq. (26) describes interac-

tions between the condensate (C) and noncondensate (Cnon)
atoms of the type C + Cnon → C + Cnon. This interaction is in
position and leads to a decoherence dynamics that preserves
the populations of the gas. In particular, for a double-well
potential, the following identity holds:

L(2)
t [ρ̂(t)] = −�dec

2

∑
j=L,R

{â†
j âj ,[â

†
j âj ,ρ̂(t)]}, (29)
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where

�dec = g2

h̄2

∫
dx Tr[â†(x)â(x)â†(x)â(x)ρ̂therm]

× |ψL(x)|4. (30)

Let us consider first the term in Eq. (28). Neglecting the
Hamiltonian dynamics, it is easy to see that the N -particle
correlation has the following time dependence:〈

â
†N

L âN
R

〉loss
t

= e−�lossNt
〈
â
†N

L âN
R

〉
0. (31)

Differently from the CSL case (25), the decoherence rate
induced by atom losses increases linearly with the number
of atoms. Therefore, in order to test CSL effects on a NOON
state, we need CSL decoherence (25) to be stronger than the
decoherence induced by atom losses (31). This means that if
we want to experimentally test CSL in the white region of
Fig. 2, then we must have NλA2γ̄ � �loss, with γ̄ given by
Eq. (19). In the particular case of rC = 10−7 m [15], γ̄ ≈ 1
for typical distances d � 0.5 μm between the wells (see the
discussion in Sec. II).

The one given above is the general condition to test CSL
effects against atom losses. Let us now consider, for example,
the experimental setup described in [65], where the authors
measured �loss ≈ 4 × 10−3 s−1 for a nonhomogeneous gas
at fractional temperature T/TC ≈ 1/3, with TC critical tem-
perature of the gas. Comparing the decay rates of the CSL
model in Eq. (25) with the decay given by the atomic losses
as in Eq. (31) with the parameters given in [65], the CSL
damping turns out to be faster only if the NOON state is
composed of N > �loss/(λA2) ≈ 1010 atoms, considering the
value λ = 10−17 s−1 as proposed in [15], and A ≈ 100. From
Eq. (28), the decoherence rate induced by the atomic losses can
be reduced either by a proper decreasing of the temperature
of the gas (so reducing the thermal density) or by decreasing
the coupling interaction, which can be achieved by use of
Feshbach resonances. We have that

�loss ≈ g2n3
therm

h̄2 . (32)

In order to detect CSL effects on a NOON state with, for
example, N = 108 atoms (the number of atoms we need in
order to probe the whole unexplored region of the parameter
space, as shown in Fig. 2), Eq. (32) shows that the experimental
setup described in [65] must be modified either by reducing
the thermal density or by decreasing the coupling constant by
one order of magnitude.

Let us now focus on the term in Eq. (29). We immediately
note the similarities between Eq. (29) and the CSL master
equation (20), with λA2 → �dec. Through Eqs. (30) and (32),
it is possible to relate the decoherence rate due to the atomic
losses to the decoherence rate described in Eq. (29) as follows:

�dec ≈ �loss

Ntherm
, (33)

where Ntherm is the number of atoms in the thermal cloud.
As before, we can experimentally test CSL within the white
region of Fig. 2 if λA2γ̄ � �dec.

As an example, let us consider again the experiment
described in [65], with Ntherm ≈ N (T/TC)3 ≈ 104, where

we used the relation between the total number of atoms
with the number in the thermal cloud of an ideal gas in a
harmonic trap [29]. Using then Eq. (33), we have �dec ≈
4 × 10−10 s−1. If λ = 10−17 s−1 and rC = 10−7 m, then γ̄ ≈ 1,
and �dec < λA2 ≈ 10−13 s−1. Accordingly, the experimental
setup described in [65] must be modified either by reducing
the thermal density or by decreasing the coupling constant by
two orders of magnitude.

B. Decoherence induced by three-body recombination processes

We consider in this section the effect of three-body
recombination processes, according to which atoms leave the
trap, with negligible probability that they interact again with
other atoms in the trap. We write the effective master equation
describing the dynamics of a Bose-Einstein condensate with
three-body recombination processes [66–69] in the form

dρ̂(t)

dt
= − i

h̄
[Ĥ ,ρ̂(t)] + �3

∑
j=L,R

â3
j ρ̂(t)â†3

j

− 1

2

{
â
†3

j â3
j ,ρ̂(t)

}
, (34)

where

�3 ≈ h̄a4
S

m

∫
dx|ψL(x)|6. (35)

Using Eqs. (34) and (35), one finds the following relation:〈
â
†N

L âN
R

〉
3(t) = e− h̄a4

S
n2

BEC
m

Nt
〈
â
†N

L âN
R

〉
0, (36)

where nBEC is the condensate density. Comparing the three-
body decoherence rate in Eq. (36) with the CSL decoherence
rate λA2N2, we have a lower bound on the number of atoms
of the NOON state,

N � h̄a4
Sn

2
BEC

mλA2
. (37)

Consider, for example, the experimental measure described in
[65], where h̄a4

S/m ≈ 5 × 10−30 cm6/s and the peak density
of the condensate is 5 × 1014 cm−3. In this case, the CSL
decoherence is faster if N � 1013 atoms, for the particular
case of λ = 10−17 s−1. The three-body decoherence rate can
be decreased either by reducing the condensate density or by
reducing the scattering length through the use of Feshbach
resonance. For example, if we consider an experiment with
a condensate density of ≈1013 cm−3 and a scattering length
aS � 10−9 m, the CSL localization dynamics is dominant with
N � 107 atoms.

C. Phase noise

A very common technique to trap atoms is to use an
external laser source. Thanks to the large experimental control
on the laser electric field, several external potentials can
be realized, with a large control on the parameters of the
trap [70]. However, every optical trap is also a decoherence
source for the trapped atomic system, leading to decoherence
of the atomic density matrix in the position basis. Two of
the main decoherence sources due to the laser are a phase
noise, induced by fluctuations of the laser beam pointing [48],
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and spontaneous photon-emission processes from the atoms
[49–51].

The phase noise in a Bose Josephson junction can be studied
and treated as a stochastic noise modifying the energy levels
of the system [48]. The effective density matrix evolution is
given by

ρ̂(t) =
∫ +∞

−∞
dφ f (φ,t)e−iφâ

†
RâR ρ̂Sch(t)eiφâ

†
RâR . (38)

If the phase noise is a Gaussian noise with null average, then
we have that

f (φ,t) = 1√
2π(t)

e
− φ2

22(t) , (39)

where the variance 2(t) completely characterizes the noise.
Using Eq. (39) in Eq. (38), the density matrix evolution of a
Bose Josephson junction under a Gaussian phase noise is

ρ̂(t) = e− 2(t)
2 (

←−
â
†
RâR−

−→
â
†
RâR)2

ρ̂Sch(t). (40)

By comparing Eq. (40) with the density matrix evolution under
the CSL dynamics (21), it is clear that the latter can be tested
only if the phase noise is reduced enough in the experiment.
In [30], the authors studied the effect of the fluctuations of
the laser beam pointing on a single well potential for a gas of
133Cs atoms. In this work, the heating effect induced by the
phase noise turns out to be negligible, compared to the heating
of the CSL model, if λ > 105[rC/(1 m)]2 s−1. If we choose
the value rC = 10−7 m (proposed by Ghirardi et al. [15,21]),
then, for the experimental setup described in [30], the phase
noise becomes negligible if λ > 10−9 s−1. This means that
the interesting part of the parametric space shown in Fig. 2
cannot be explored by such experimental setup due to a too-
strong phase noise. For example, in order to test CSL effects
with the parameters λ = 10−16 s−1, rC = 10−7 m, the phase
noise should be reduced by a power 10−7, showing the very
high control on the phase noise needed to explore the λ − rc

parameter space.

D. Spontaneous photon emission

Another decoherence source related to optical traps is due to
the spontaneous photon emission. In [51], the authors derived
the master equation for two-level atoms in a far-detuned optical
trap, which is given by

dρ̂(t)

dt
= − i

h̄
[Ĥ ,ρ̂(t)] − �

8δ2

∫
dy

∫
dy′ �(y)�(y′)

×F (k(y − y′)){â†(y)â(y),[â†(y′)â(y′),ρ̂(t)]}, (41)

where � is the spontaneous emission rate, δ = ωl − ω0, ωl is
the frequency of the laser, ω0 is the frequency resonance of the
two-level atoms, k = ω0/c with c the speed of light in vacuum,
and �(x) is the Rabi frequency, related to the effective optical
trap by

V (x) = h̄
|�(x)|2

4δ
. (42)

The function F (z) in Eq. (41) is defined by the following
integration:

F (z) =
∫

‖u‖=1
due−iu·z. (43)

We note that the spontaneous-emission master equation (41)
has the same form as that of the CSL master equation (15),
with the replacement

λA2e
− (y−y′)2

4r2
c → �

4δ2
�(y)�(y′)F (k(y − y′)). (44)

Using Eq. (3) in Eq. (41), with a similar procedure used to
derive Eqs. (16) and (21), it is possible to write the density
matrix for a gas of atoms trapped in an optical trap with a
spontaneous-emission process:

ρ̂(t) = e
− ��̄t

4δ2 (
←−

â
†
RâR−

−→
â
†
RâR )2

ρ̂Sch(t), (45)

where

�̄ =
∫

dy
∫

dy′ �(y)�(y′)F (k(y − y′))

× |ψL(y)|2(|ψL(y′)|2 − |ψR(y′)|2). (46)

Compared to the CSL dynamics given in Eq. (21),
the spontaneous-emission processes are negligible only if
λA2γ̄ 	 ��̄/(4δ2). For example, let us consider the exper-
imental setup described in [9], where a laser with wavelength
of 1064 nm is used to trap a gas of 39K atoms. The resonance
frequency of 39K is ω0 ≈ 390 THz. Setting rC = 10−7 m, we
have that hypothetical CSL effects would be visible only if
λ > 10−12 s−1. This means that the decoherence induced by
spontaneous photon emission is strong enough to cover a large
part of the parametric space shown in Fig. 2. In order to
probe the interesting part of the CSL parametric space, the
spontaneous photon emission in [9] should be reduced by a
power of 104. We conclude that the laser-decoherence effects
discussed in this and the previous sections are alleviated by
using magnetic traps [71]. Thermal and three-body effects
cannot be fully removed. Thermal decoherence can be reduced
either by weakening the atom-atom interaction or by lowering
the cloud density; three-body effects can be reduced again
by weakening the interaction or by reducing the condensate’s
density. This would allow one to decrease the number of atoms
required to test CSL in the white region of Fig. 2, from the
values discussed in this section to the values presented in
Sec. IV.

VI. CONCLUSIONS

Given the challenge to probe with current experiments the
whole white region (not yet explored) in the CSL exclusion plot
in Fig. 2, and motivated by the fact that nowadays experiments
with Bose gases in double-well potentials are able to create
and detect strongly correlated many-body entangled states
[27], we studied the possibility to test continuous spontaneous
localization (CSL) dynamics in a Bose Josephson junction
of ultracold bosons. We also determined what requests the
experimental values have to satisfy in order to put new bounds
for the parameters of the CSL model in the white region of
Fig. 2.
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The collapse noise localizes the wave function in the posi-
tion, which means that in a double well there is a localization
in the left or in the right states. By solving the CSL exact
master equation in the limit of negligible tunneling between
the two wells of the potential, we found that the coherence of
a phase state is slowly decreased by the localization process
of the CSL model. At variance, the CSL effects are much
stronger in macroscopically entangled states as superposition
of phase states and NOON states. Their N -atom coherences
are suppressed by a factor exponentially depending on the
number of atoms, leading to a fast localization process that
can be used to test the CSL model. We also compared the
CSL dynamics with two typical decoherence sources, namely,
the phase noise and the spontaneous photon-emission process.
Their density matrix evolution mimics the CSL dynamics and,
usually, they are strong enough to cover CSL effects. We
discussed under which conditions CSL effects would become
stronger than these decoherence sources. We also concluded
that magnetically trapped systems are more suitable to test the
CSL model. We also compared the results of the CSL dynamics
with thermal and three-body effects.

Our analysis determines the bounds on the CSL parameters
obtainable in experiments with cold atoms. The results are
summarized in Fig. 2. In the λ − rC parameter space, there is
presently a region not yet explored, and we pointed out that

having entangled states, as the NOON state, with N � 103

and coherence time t � 1 s would make it possible to probe
such a region. A similar outcome may be obtained when
considering entangled states in an array of weakly coupled
ultracold bosonic gases described by the Bose-Hubbard model
[72] or by varying the distance between (and the width of) the
wells.

Although very demanding for current-day experiments,
our results together with the recent very promising results
on the implementation of squeezed states and the detection
of multiparticle correlations [27] show that, in perspective,
further advancements in the manipulation of highly entangled
states may open the possibility to study collapse models and to
test quantum mechanics with ultracold atoms in double-well
potentials.
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APPENDIX A: MOMENTUM DISTRIBUTION

From a Fourier transform of Eq. (3), one finds

â(p) = ψL(p)âL + ψR(p)âR. (A1)

For parity symmetry of the double-well potential, we can relate the left and right states as follows:

ψR(p) = e−i
dpx
h̄ ψL(p), (A2)

where we imposed that the right well is displaced d from the left well along the x direction.
Using Eqs. (A1) and (A2), the momentum density operator, averaged over the phase state given in Eq. (5), becomes

〈â†(p)â(p)〉 = |ψL(p)|2〈â†
LâL〉 + |ψR(p)|2〈â†

RâR〉 + 2Re[ψ∗
L(p)ψR(p)〈â†

LâR〉] = N |ψL(p)|2
{

1 + cos

(
φ − dpx

h̄

)}
, (A3)

where we also imposed a fixed number N of atoms.

APPENDIX B: TIME-DEPENDENT EXPECTATION VALUES

From the definition of phase state, using the Hamiltonian (1) with J = 0, we have

〈â†
LâR〉t = 〈φ|e i

h̄
Ĥ t â

†
LâRe− i

h̄
Ĥ t |φ〉

= 1

N !2N

N∑
j,k=0

(
N

k

)(
N

j

)
eiφ(j−k)〈0|âN−k

L âk
Re− i

h̄
tU â

†
LâLâ

†
RâR â

†
LâRe

i
h̄
tU â

†
LâLâ

†
RâR (â†

L)N−j (â†
R)j |0〉

= 1

N !2N

N∑
j,k=0

(
N

k

)(
N

j

)
eiφ(j−k)e− i

h̄
tUk(N−k)e

i
h̄
tUj (N−j )〈0|âN−k

L âk+1
R (â†

L)N−j+1(â†
R)j |0〉

= eiφ

N !2N

N−1∑
k=0

(
N

k

)(
N

k + 1

)
e

i
h̄
tU[(k+1)(N−k−1)−k(N−k)](N − k)!(k + 1)!

= N
ei[φ+(N−1) tU

h̄
]

2N

N−1∑
k=0

(
N − 1

k

)
e− 2i

h̄
tUk = N

ei[φ+(N−1) tU
h̄

]

2N

(
1 + e− 2i

h̄
tU)N−1 = N

eiφ

2

[
cos

(
tU
h̄

)]N−1

. (B1)
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Considering the superposition of phase states (11), we have that

〈φ|â†k

L âk
R|φ + π〉 = 1

N !2N

N∑
l,m=0

(
N

l

)(
N

m

)
eiφ(l−m)(−1)m〈0|âN−l

L âl
Râ

†k

L âk
R(â†

L)N−m(â†
R)m|0〉

= 1

N !2N

N∑
l,m=0

(
N

l

)(
N

m

)
eiφ(l−m)(−1)mδl,k+ml!(N − l + k)! = N !

2N

N−k∑
l=0

(
N − k

l

)
(−1)l−k. (B2)

With a similar computation, the time evolution of Eq. (B2) becomes

〈φ|e− i
h̄
tU â

†
LâLâ

†
RâR â

†k

L âk
R e

i
h̄
tU â

†
LâLâ

†
RâR |φ + π〉 = N !

2k
(−1)keiφkiN−ke− i

h̄
U tk2

[
sin

(Ukt

h̄

)]N−k

. (B3)

APPENDIX C: CSL MASTER EQUATION

The general density matrix in the two-mode approximation can be written as follows:

ρ̂ =
N∑

k,j = 0

ck,j (â†
L)N−j (â†

R)j |0〉〈0|(âL)N−k(âR)k, (C1)

where ck,j are complex coefficients satisfying the self-adjointness and normalization conditions of the density matrix. We use
the expansion given by Eq. (C1) in order to solve the master equation (16), as follows:

d

dt
〈0|(âL)N−m(âR)mρ̂(t)(â†

L)N−l(â†
R)l|0〉

≡ ρ̇(m,l,t) = iU
h̄

〈0|(âL)N−m(âR)m[â†
LâLâ

†
RâR,ρ̂(t)](â†

L)N−l(â†
R)l|0〉

− λA2γ̄

2

∑
i = L,R

〈0|(âL)N−m(âR)m{â†
i âi ,[â

†
i âi ,ρ̂(t)]}(â†

L)N−l(â†
R)l|0〉

= iU
h̄

[(N − m)m − (N − l)l]ρ(m,l,t) − λA2γ̄ (m − l)2ρ(m,l,t)

⇒ ρ(m,l,t) = e
iU t
h̄

(l+m−N)(l−m)e−λA2γ̄ t(m−l)2
ρ(m,l,0). (C2)

From Eq. (C2), the density matrix is easily obtained.
We also have that

〈â†
LâR〉CSL

t = Tr[â†
LâRρ̂(t)] =

N∑
k = 0

1

(N − k)!k!
〈0|(âL)N−k(âR)kâ†

LâRe−λA2γ̄ t(
←−

â
†
RâR−

−→
â
†
RâR )2

ρ̂Sch(t)(â†
L)N−k(â†

R)k|0〉

= e−λA2γ̄ t

N∑
k = 0

1

(N − k)!k!
〈0|(âL)N−k(âR)kâ†

LâRρ̂Sch(t)(â†
L)N−k(â†

R)k|0〉 = e−λA2γ̄ t 〈â†
LâR〉Sch

t . (C3)

APPENDIX D: INTERACTION BETWEEN A
CONDENSATE AND A THERMAL CLOUD: MASTER

EQUATION AND DECOHERENCE RATES

We derive the master equation describing the dynamics of
a Bose-Einstein condensate interacting with its thermal cloud.
We start by writing the Hamiltonian of the total system,

Ĥ =
∫

dx â†(x)

[
−h̄2∇2

2m
+ Vext(x)

]
â(x)

+ g

2

∫
dx â†(x)â†(x)â(x)â(x). (D1)

We rewrite the Hamiltonian operator in terms of the energy
eigenstates â

†
i |0〉 = |ψ〉i of the single-particle Hamiltonian

−h̄2∇2

2m
+ Vext(x),

Ĥ =
∑

i

εi â
†
i âi + 1

2

∑
i,j

k,l

γ
i,j

k,l â
†
i â

†
j âkâl , (D2)

where

γ
i,j

k,l =
∫

dx ψ∗
i (x)ψ∗

i (x)ψk(x)ψl(x). (D3)

By splitting the condensate modes i ∈ [0, . . . ,J ] ≡ C from the
thermal modes i ∈ [J + 1, . . . , + ∞[≡ CN , the Hamiltonian
operator in Eq. (D2) becomes

Ĥ = ĤC + ĤCnon + V̂int, (D4)
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where

ĤC =
∑
i∈C

εi â
†
i âi + 1

2

∑
C

γ
i,j

k,l â
†
i â

†
j âkâl , (D5)

ĤCnon =
∑
i∈CN

εi â
†
i âi + 1

2

∑
CN

γ
i,j

k,l â
†
i â

†
j âkâl , (D6)

V̂int = 1

2

∑
C+CN

γ
i,j

k,l â
†
i â

†
j âkâl . (D7)

In the interaction picture (I), an initial density matrix ρ̂0 evolves
in time as follows:

ρ̂I (t) = T
{
e− i

h̄

∫
dτ V̂ I

int(τ )
}
ρ̂0T

{
e

i
h̄

∫
dτ V̂ I

int(τ )
}
, (D8)

where T {·} refers to time-ordering operations. In the weak-
coupling limit [73], we expand the two time-ordered expo-
nentials in Eq. (D8) up to the second order in the coupling g,
obtaining the following expression:

ρ̂I (t) = ρ̂0 − i

h̄

∫
dτ

[
V̂ I

int(τ ),ρ̂0
] +

(
i

h̄

)2 ∫ t

0
dτ1

∫ τ1

0
dτ2

× [
V̂ I

int(τ1)V̂ I
int(τ2)ρ̂0 + ρ̂0V̂

I
int(τ2)V̂ I

int(τ1)
]

−
(

i

h̄

)2 ∫ t

0
dτ1

∫ t

0
dτ2V̂

I
int(τ1)ρ̂0V̂

I
int(τ2). (D9)

We work in the Born-Markov approximation [73], with the
initial state given by

ρ̂0 = ρ̂C
e−βĤCnon

Tr[e−βĤCnon ]
. (D10)

We are interested only in the condensate modes C; thus, in
Eq. (D9), we perform a partial trace over the noncondensate
modes CN . In computing the reduced master equation for the
condensate, we neglect the processes that do not conserve
the energy of the system, such as C + C → Cnon + Cnon and
C + C → Cnon + C, where C refers to a condensate atom,
and Cnon refers to a noncondensate atom. We thus obtain the
following reduced master equation in the Schrödinger picture:

dρ̂C(t)

dt
= − i

h̄
[ĤC,ρ̂C(t)] +

∑
i=1,2

L̃(i)
t [ρ̂C(t)], (D11)

where

L̃(1)
t [ρ̂C(t)] =

∫
dx

∫
dy �loss(x,y){â†(x)â(y)ρ̂C(t)

+ ρ̂C(t)â†(x)â(y) − 2â(y)ρ̂C(t)â†(x)}, (D12)

L̃(2)
t [ρ̂C(t)] =

∫
dx

∫
dy �dec(x,y)

× {â†(x)â(x),[â†(y)â(y),ρ̂C(t)]}, (D13)

with damping rates given by the following quantities:

�loss(x,y) = g2

2h̄2 Tr

{
â†(x)â(x)â(x)

×â†(y)â†(y)â(y)
e−βĤCnon

Tr[e−βĤCnon ]

}
, (D14)

�dec(x,y) = g2

2h̄2 Tr

{
â†(x)â(x)â†(y)â†(y)

e−βĤCnon

Tr[e−βĤCnon ]

}
.

(D15)

As one can note, the damping rates introduced in Eqs. (D14)
and (D15) are proportional, respectively, to the three-particle
correlation and the two-particle correlation of the thermal
cloud. For a homogeneous thermal cloud, both quantities are
strongly peeked around x = y, so we can further simplify the
expressions as follows:

�loss(x,y) ≈ g2

2h̄2 Tr

{
â†(0)â(0)â(0)

×â†(0)â†(0)â(0)
e−βĤCnon

Tr[e−βĤCnon ]

}
δ(x − y), (D16)

�dec(x,y) = g2

2h̄2 Tr

{
â†(0)â(0)â†(0)

× â†(0)
e−βĤCnon

Tr[e−βĤCnon ]

}
δ(x − y), (D17)

where δ(x − y) is the Dirac delta. The expressions in Eqs. (35)
and (36) are easily found in standard textbooks on cold-atomic
systems [74]. Imposing the two-mode approximation on the
master equation (D11), Eqs. (30) and (32) are easily obtained.
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