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There exist two formulations for quantum heat engines that model energy transfer between two microscopic
systems. One is the semiclassical scenario and the other is the full quantum scenario. The former is formulated
as unitary evolution for the internal system and is adopted by the statistical mechanics community. In the latter,
the whole process is formulated as unitary and is adopted by the quantum information community. This paper
proposes a model for quantum heat engines that transfer energy from a collection of microscopic systems to a
macroscopic system like a fuel cell. In such a situation, the amount of extracted work is visible for a human. For
this purpose, we formulate a quantum heat engine as the measurement process whose measurement outcome is
the amount of extracted work. Under this model, we derive a suitable energy-conservation law and propose a
more concrete submodel. Then we derive a trade-off relation between the measurability of the amount of work
extraction and the coherence of the internal system, which limits the applicability of the semiclassical scenario
to a heat engine transferring energy from a collection of microscopic systems to a macroscopic system.
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I. INTRODUCTION

Thermodynamics started as a study that clarifies the upper
limit of the efficiency of macroscopic heat engines [1] and
has become a huge realm of science that covers from electric
batteries [2] to black holes [3]. Today, with the development
of experimental techniques, the study of thermodynamics
is reaching a new phase. The development of experimental
techniques is realizing micromachines in the laboratory [4–6].
We cannot apply standard thermodynamics to these small-size
heat engines as it is, because it is a phenomenological theory
for macroscopic systems. In order to study such small-size heat
engines, we need to use statistical mechanical approaches.

In the statistical mechanical approach, the internal system
of the heat engine can be formulated as a system obeying
time-dependent Hamiltonian dynamics, which is called the
classical standard formulation in this paper. The classical
standard formulation has been used since Einstein and Gibbs
[7]. For example, Bochkov and Kuzolev [8–11] showed
the second law under the standard formulation for cyclic
operations and it was extended to general operations as a
corollary of the Jarzynski equality [12]. In this way, the
classical standard formulation works well for classical heat
engines and has been adopted by the statistical mechanics
community [13–18]. In the statistical mechanics community,
as a quantum extension of the classical standard formulation,
the work-extraction process was formulated to be unitary for
the internal system, which is called the semiclassical scenario
in this paper. As an example, employing this scenario, Lenard
showed the second law for cyclic processes in the quantum
setting [19]. Also, based on this scenario, Kurchan [20] and
Tasaki [21] gave a quantum generalization of the Jarzynski
equality. The semiclassical scenario has been adopted by the
statistical mechanics community [22–34]. Here they assume
that the time evolution of the internal system is unitary.
On the other hand, researchers in the quantum information
community recently discussed unitary dynamics of the whole
system including the external system storing the extracted

work [35–44], which is called the fully quantum scenario in
this paper.1 Although both models are different, Åberg (see
Sec. II D in the Supplemental Material in [45]) showed that
the internal unitary dynamics in the semiclassical scenario can
be realized as the approximation of the unitary of the whole
system.2 So both models have succeeded in analyzing heat
engines that transfer energy between two microsystems.

To further develop quantum thermodynamics, this paper
discusses heat engines transferring discernible energy from a
collection of quantum systems to a macroscopic system, which
is a new frontier of quantum thermodynamics. This kind of
heat engine is used in our daily life. As a typical example,
fuel cells with microstructure have been developed recently
as solid oxide fuel cells (SOFCs) [47–49]. A fuel cell has a
collection of microscopic systems as an internal system and
a macroscopic output power, which can be measured as the
amount of extracted work by humans and affects our daily
life, while the amount of extracted work does not need to be
measured in the previous case, as shown in Fig. 1. As the next
topic, in order to analyze such a fuel cell with microstructure
as a quantum heat engine, it is interesting to develop a model
for a heat engine that includes a measurement process to
produce the output power. That is, it is an interesting study

1Our classification between the semiclassical scenario and the fully
quantum scenario is based on the range of the unitary dynamics of our
interest. Although the papers [35–43] discuss only states diagonal in
energy basis, the unitary dynamics of their interest covers the whole
system, including the external system storing the extracted work.
Hence, we classify them as the fully quantum scenario.

2To realize the approximation of the unitary of the whole system,
Åberg [45] employed the coherence in the external system storing the
extracted work. Also, Åberg [45] showed that the coherence of the ex-
ternal system can be used repeatedly to perform coherent operations.
As was commented in [46], when we repeatedly use the same external
system, the overall coherent operation has diminished accuracy and
is necessarily accompanied by an increased thermodynamic cost.
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collection of
microscopic systems macroscopic system

FIG. 1. Energy extraction from a collection of microscopic
systems to a macroscopic system.

to treat the output power as a measurement outcome, i.e., to
formulate the heat engine as a quantum measurement process
for the quantum internal system. In this scenario, people do not
measure the inside of the fuel cell, but measure alternatively
the macroscopic object.

Indeed, the measurability of the amount of extracted work is
a very crucial task due to the following real situation. Consider
the case when an electric bill is charged by an electric power
company. In fact, at the time of a disaster, a SOFC is intended
to be used as an electric power source [50]. If the measured
amount of extracted work is different from the true amount of
extracted work, the user will not pay the electric bill because
he or she cannot trust the amount charged. To avoid such
trouble, we need to precisely measure the amount of extracted
work as a fundamental requirement for our model of a heat
engine. However, it is an open problem to extend quantum
thermodynamics to such a case. That is, it is our desire to
formulate our model for a quantum heat engine as the energy-
extraction process that equips a quantum measurement process
to output the amount of extracted work.

In the present article we propose a general formation
of quantum heat engines based on quantum measurement
theory [51,52] as completely positive (CP) work extraction,
in which the total system is composed of the internal system
and the external system, which can be regarded as a work
storage system. As shown by Ozawa [52], such a quantum
measurement process is realized by an indirect measurement
process, that is, the combination of a unitary on the whole
system and the measurement of the energy on the meter
system, which is the work storage in the current situation.
In this scenario, the initial unitary can be regarded as the fully
quantum scenario [35–43]. So the initial unitary has to satisfy
the energy-conservation law in the sense of the fully quantum
scenario.

There are three issues to discuss about our model. First,
it is not trivial to identify the energy-conservation law under
our CP work-extraction model. To clarify a natural condition
for energy conservation, we consider the natural energy-
conservation law in the dynamics between the internal system
and the quantum storage of the fully quantum model, which
can be regarded as the first step of the measuring process

in the indirect measurement model in the context of the CP
work-extraction model [52]. When additionally we impose a
natural constraint of the initial state for the quantum storage,
we derive a very restrictive energy-conservation law in an
unexpected way, which will be called the level-4 energy-
conservation law (Theorem 1). That is, the restrictive condition
is naturally obtained by considering the indirect measurement
model and the existing energy-conservation law in the fully
quantum model [37–43]. However, there is a case when this
constraint is satisfied only partially. Under such conditions, we
derive weaker conditions as other types of energy-conservation
laws for CP work extractions.

Second, we need a more concrete model as a natural
extension of the classical standard formulation [7] because
the above CP work extraction is too abstract and contains
an unnatural case when the dynamics of the internal system
depends on the state of the external system, while the dynamics
of the internal system is not independent of the state of
the external system in the classical standard formulation [7].
Fortunately, Åberg (see Sec. II of the Supplemental Material in
[45]) discussed a concrete model that satisfies this requirement
as a fully quantum model with the energy-conservation law;
we call the model the shift-invariant model because shift
invariance guarantees the independence of the state of the
external system. However, he did not discuss the measurability
of the amount of extracted work because the main topic of his
work was work coherence. So we investigate how to naturally
convert the model to a CP work extraction with the level-4
energy-conservation law. Since the shift-invariant model is
obtained from a semiclassical model in a canonical way, this
model can be regarded as a modification of the semiclassical
model. Under this modification, the semiclassical model works
properly when we discuss the amount of extracted work and
endothermic energy.

Third, we examine how the semiclassical scenario works
approximately when the measurability of the amount of
extracted work is imposed. Indeed, it has been expected that
the fully quantum scenario converges to the semiclassical
scenario in a proper approximation, although the semiclassical
scenario assumes that the internal system evolves unitarily
under a time-dependent Hamiltonian controlled by a classical
external system. This examination checks this expectation. To
discuss this issue, we investigate the trade-off between the
approximation of the internal unitary and the measurability
of the amount of extracted work. As a result, we derive two
remarkable trade-off relations between information gain for
knowing the amount of extracted work and the maintained
coherence of the thermodynamic system during the work-
extraction process. These trade-off relations clarify that we
can hardly know the amount of extracted work when the time
evolution of the internal system is close to unitary.

This paper is organized as follows. In Sec. II we formulate
work extraction as a measurement process by using CP
work extraction. We give four energy-conservation laws,
level-1, level-2, level-3, and level-4 energy-conservation laws,
among which the level-4 energy-conservation law is the
most restrictive. In Sec. III we discuss fully quantum work
extraction as a unitary process between the internal system
and the work storage as well as the energy-conservation law.
We discuss what kind of energy-conservation laws in the
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CP work-extraction model are derived from the respective
conditions for the fully quantum work extraction. In Sec. IV
we introduce the shift-invariant model as a modification of
the semiclassical model. We consider how well this model
works as a model for a heat engine. In Sec. V we derive two
remarkable trade-off relations between information gain for
knowing the amount of extracted work and the maintained
coherence of the thermodynamic system during the work
extraction process. These trade-off relations clarify that we
can hardly know the amount of extracted work when the time
evolution of the internal system is close to unitary.

II. WORK EXTRACTION AS A MEASUREMENT PROCESS

In this section we give the basic idea of our measurement-
based formulation of work extraction from a quantum system
to a macroscopic system. Let us start with standard thermo-
dynamics; in a macroscopic heat engine, the work is given as
a discernible energy change of a macroscopic work storage.
In our quantum setting, we extract energy from a collection
of quantum systems to a macroscopic system. That is, a
discernible energy change of a macroscopic work storage is
caused by the effect of a collection of quantum systems. In
quantum physics, such a macroscopic discernible influence
caused by a quantum system can be described only by a
measurement process as in Fig. 1. Therefore, we need to
formulate work extraction from the quantum system to the
macroscopic system as a measurement process.

Let us formulate the above idea more concretely. We
consider a heat engine in which the internal system is a
collection of microscopic systems and the meter system is
a macroscopic system, which can be regarded as the output
system of the heat engine. For example, a fuel battery has
fuel cells as the internal system and the motor system as the
meter system. Hence, as the internal system we consider a
quantum system I , whose Hilbert space is HI . We refer to the
Hamiltonian of I as ĤI . The internal system I usually consists
of the thermodynamical system S and the heat baths {Bm}Mm=1,
but we do not discuss such detailed structure of the internal
system I here. Let us formulate the work extraction from I .
We assume that the amount of the work is indicated by a meter
(Fig. 2).

In other words, we assume that we have equipment to assess
the amount of extracted work and that the equipment indicates
the work wj with the probability pj . In quantum mechanics,
such a process that determines an indicated value aj with
the probability pj is generally described as a measurement
process. Thus, we formulate work extraction from the quantum
system as a measurement process [52]. As the minimal

ρI

with wj pj
work extraction

ρI

with pj

measurement process
aj

{Ej}j∈J

CP-instrument

FIG. 2. Work extraction as a measurement process.

FIG. 3. Concepts of the energy-conservation laws.

requirement, we demand that the average of wj is equal to
the average energy loss of I during the measurement.

Definition 1 (CP work extraction). Let us take an arbitrary
set of a CP instrument {Ej }j∈J and measured values {wj }j∈J
satisfying the following conditions: (a) each Ej is a CP map, (b)∑

j Ej is a completely positive and trace-preserving (CPTP)
map, and (c) J is a discrete set of outcomes. When the set
{Ej ,wj }j∈J satisfies the above condition, we refer to the set
{Ej ,wj }j∈J as a CP work extraction.

Here we note that the measurement process {Ej } is not
necessarily a measurement of the Hamiltonian of the internal
system. It is not difficult to treat the case where J is
a continuous set, but to avoid mathematical difficulty, we
consider only the case where J is discrete. Since the heat
engine needs to satisfy the conservation law of energy, we
consider four kinds of energy-conservation laws for a CP work
extraction {Ej ,wj }j∈J (Figs. 3 and 4). First, we consider the
weakest condition.

Definition 2 (level-1 energy-conservation law). The follow-
ing condition for a CP work extraction {Ej ,wj }j∈J is called the
level-1 energy-conservation law. Any state ρI on HI satisfies

TrĤI ρI =
∑

j

wj TrEj (ρI ) +
∑

j

TrĤIEj (ρI ), (1)

where ĤI is the Hamiltonian of I .
Since the level-1 energy-conservation law is too weak,

as explained later, we introduce stronger conditions with an
orthonormal basis {|x〉}x of HI such that |x〉 is an eigenstate
of the Hamiltonian ĤI associated with the eigenvalue hx . For

FIG. 4. Level-2, -3, and -4 energy-conservation laws.
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this purpose, we introduce the spectral decomposition of ĤI

as ĤI = ∑
h hPh, where Ph is the projection to the energy

eigenspace of ĤI whose eigenvalue is h.
Definition 3 (level-4 energy-conservation law). A CP work

extraction {Ej ,wj }j∈J is called a level-4 CP work extraction
when

Ej (�x) = Phx−wj
Ej (�x)Phx−wj

(2)

for any initial eigenstate �x := |x〉〈x|. This condition is called
the level-4 energy-conservation law.

The meaning of (2) is that the resultant state 1
TrEj (�x )Ej (�x)

must be an energy eigenstate with energy hx − wj because the
remaining energy in the internal system is hx − wj . That is, the
level-4 energy-conservation law requires the conservation of
energy for every possible outcome j . One might consider that
the level-4 energy-conservation law is too strong a constraint.
However, as shown in Theorem 1, this condition holds if
and only if the natural energy-conservation law holds as the
dynamics between the internal system and the quantum storage
of the full quantum model, which can be regarded as the first
step of the measuring process in the indirect measurement
model (Definition 6) and the initial state for the quantum
storage is an energy eigenstate. Further, as precisely mentioned
in Lemma 12, when the level-4 energy-conservation law holds,
the measurement outcome precisely reflects the amount of
energy lost from the internal system. So such a CP work
extraction can be used for the purpose mentioned in the second
paragraph of the Introduction.

However, there is a possibility that the initial state of the
quantum storage is not an energy eigenstate. To characterize
such a case, we introduce intermediate conditions in between
the level-1 and level-4 energy-conservation laws. In Lemmas
4 and 8 we will clarify what physical situations in the indirect
model correspond to these two conservation laws.

Here, to introduce two other energy-conservation laws, we
introduce several notions for a CP work extraction {Ej ,wj }j∈J .
Let the initial state on I be an eigenstate |x〉. After the CP
work extraction {Ej ,wj }j∈J , we perform a measurement of
{�y := |y〉〈y|} on the resultant system HI . We obtain the
joint distribution PJY |X(j,y|x) of the two outcomes j and y as

PJY |X(j,y|x) = 〈y|Ej (�x)|y〉. (3)

Then we introduce the random variable K := hX − hY − wJ

that describes the difference between the loss of energy and
the extracted energy. So we define the two distributions

PK|X(k|x) :=
∑

j,y:hx−hy−wj =k

PJY |X(j,y|x), (4)

PK|YX(k|y,x) :=
∑

j :hx−hy−wj =k

PJ |YX(j |y,x), (5)

where

PJ |YX(j |y,x) := PJY |X(j,y|x)∑
j PJY |X(j ′,y|x)

. (6)

Definition 4 (level-2 and -3 energy-conservation laws).
Now we introduce two energy-conservation laws for a CP work
extraction {Ej ,wj }j∈J when the level-1 energy-conservation
law holds. When the relation PK|X(k|x) = PK|X(k|x ′) holds

for k and x �= x ′, the CP work extraction {Ej ,wj }j∈J is called
a level-2 CP work extraction. Similarly, when the relation
PK|Y,X(k|y,x) = PK|Y,X(k|y ′,x ′) holds for k and (x,y) �=
(x ′,y ′), the CP work extraction {Ej ,wj }j∈J is called a level-3
CP work extraction. These conditions are called the level-2
and -3 energy-conservation laws.

The level-4 energy-conservation law can be characterized
in terms of the distribution PK|X. That is, a CP work extraction
{Ej ,wj }j∈J is a level-4 CP work extraction if and only if

PK|X(k|x) = δk,0 (7)

for any initial eigenstate |x〉. So we find that the level-4
energy-conservation law is stronger than the level-3 energy-
conservation law. To investigate the property of a level-4
CP work extraction, we employ the pinching PĤI

of the
Hamiltonian ĤI = ∑

h hHp as

PĤI
(ρ) :=

∑
h

PhρPh. (8)

Lemma 1. A level-4 CP work extraction {Ej ,wj }j∈J
satisfies

PĤI
(Ej (ρ)) = PĤI

(Ej (PĤI
(ρ))) = Ej (PĤI

(ρ)). (9)

That is, when we perform a measurement of an observable
commuting with the Hamiltonian ĤI after any level-4 CP work
extraction, the initial state PĤI

(ρ) has the same behavior as the
original state ρ.

If we measure the Hamiltonian ĤI , we have the same result
even if we apply the pinching PĤI

before the measurement of
the Hamiltonian ĤI . Thus, due to Lemma 1, if we measure the
Hamiltonian ĤI after a level-4 work extraction {Ej ,wj }j∈J ,
we have the same result even if we apply the pinching PĤI

before the level-4 work extraction {Ej ,wj }j∈J .
Proof. We employ the Kraus representation {Aj,l} of Ej ,

Ej (ρ) =
∑

l

Aj,lρA
†
j,l . (10)

Then, due to the condition (2), Aj,l has the form

Aj,l =
∑

h

Aj,l,h, (11)

where Aj,l,h is a map from ImPh to ImPh−wj
and ImPh is the

image of Ph. Thus,

PhEj (ρ)Ph = Ej

(
Ph+wj

ρPh+wj

) = PhEj

(
Ph+wj

ρPh+wj

)
Ph.

(12)

Taking the sum in h, we obtain (9). �
Note that an arbitrary Gibbs state of a quantum system

commutes with the Hamiltonian of the quantum system. Thus,
when the internal system I consists of the systems in Gibbs
states, a level-4 CP work extraction gives the energy loss of I

without error.
We also consider the following condition for a CP work

extraction.
Definition 5 (CP unital work extraction). Consider a CP

work extraction {Ej ,wj }j∈J . When the CPTP map
∑

j Ej is
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unital, namely, when ∑
j

Ej (1̂I ) = 1̂I (13)

holds, we refer to the CP work extraction {Ej ,wj }j∈J as the
CP unital work extraction.

Because an arbitrary unital map does not decrease the
von Neumann entropy [53], the CP unital work extraction
corresponds to the class of work extractions that do not
decrease the entropy of I . That is, an arbitrary ρI satisfies

�SI := S

⎛
⎝∑

j

Ej (ρI )

⎞
⎠ − S(ρI ) � 0, (14)

where S(ρ) := Tr[−ρ log ρ], and the base of the logarithmic
function is e throughout this paper. In contrast, we have the
following characterization of the entropy of the output random
variable.

Lemma 2. Let {Ej ,wj }j∈J be a level-4 work extraction. We
denote the random variable describing the amount of extracted
work by W . Then, for any initial state ρI of the internal system,
the resultant entropy S[W ] of the system W is

S[W ] � 2 log N, (15)

where N is the number of eigenvalues of the Hamiltonian ĤI

in the internal system.
One might consider that Lemma 2 is too weak to justify the

unital condition. However, as shown in Theorem 2, the unital
condition is a natural condition for CP work extraction.

Proof. Due to the condition for a level-4 work extraction,
for a possible wj there exist eigenstates x and x ′ such that
wj = hx − hx ′ . Hence, the number of possible wj is less than
N2. Thus, we obtain (15). �

When a CP work extraction is level 4 as well as unital, we
refer to it as a standard CP work extraction for convenience
of description because Theorems 1 and 2 guarantee that these
conditions are satisfied under a natural setting as illustrated in
a Venn diagram (Fig. 5) of the CP work extractions.

FIG. 5. Venn diagram of the CP work extractions.

III. FULLY QUANTUM WORK EXTRACTION

Next we consider the unitary dynamics of a heat engine
between the internal system I and the external system E that
stores the extracted work from I . This dynamics is essential
for our CP work-extraction model as follows. Here the internal
system I is assumed to interact only with E and the external
system E is described by the Hilbert space HE and has the
Hamiltonian ĤE . In relation to the CP work-extraction model,
this type of description of a heat engine is given as an indirect
measurement process that consists of the following two steps
[52]. The first step is the unitary time evolution UIE that
conserves the energy of the combined system IE and the
second step is the measurement of the Hamiltonian ĤE . That
is, the second step is given as the measurement corresponding
to the spectral decomposition of the Hamiltonian ĤE . While
previous works [35–43] have discussed the unitary time
evolution UIE with a proper energy-conservation law, the
relation with the CP work-extraction model was not discussed.

Definition 6 (fully quantum work extraction). Let us
consider an external system HE with the Hamiltonian ĤE =∑

j∈J hE,jPE,j . Then a unitary transformation U onHI ⊗ HE

and an initial state ρE of the external system HE give the CP
work extraction {Ej ,wj }j∈J as

Ej (ρI ) := TrEU (ρI ⊗ ρE)U †(1̂I ⊗ PE,j ), (16)

wj := hE,j − TrĤEρE. (17)

The quartet F = (HE,ĤE,U,ρE) is called a fully quan-
tum (FQ) work extraction. The above CP work extraction
{Ej ,wj }j∈J is simplified to CP(F). In particular, the FQ
work extraction F satisfying CP(F) = {Ej ,wj }j∈J is called
a realization of the CP work extraction {Ej ,wj }j∈J .

Here any FQ work extraction corresponds to a CP work
extraction. Conversely, considering the indirect model for an
instrument model, we can show that there exists a FQ work
extraction F with a pure state ρE for an arbitrary CP work
extraction {Ej ,wj }j∈J such that CP(F) = {Ej ,wj }j∈J [52]
(see also Theorem 5.7 in [54]).

Since the heat engine needs to satisfy the conservation law
of energy, we consider the following energy-conservation laws
for a FQ work extraction (HE,ĤE,U,ρE).

Definition 7 (FQ energy-conservation law). When a unitary
U is called energy conserving for the Hamiltonian ĤI and ĤE ,

[U,ĤI + ĤE] = 0. (18)

Then an FQ work extraction F = (HE,ĤE,U,ρE) is called
energy conserving when the unitary U is energy conserving
for the Hamiltonian ĤI and ĤE .

The condition (18) is called the FQ energy-conservation
law. Note that the above condition does not depend on the
choice of the initial state ρE on the external system. Indeed,
the condition (18) is equivalent to the condition

Tr(ĤI + ĤE)U (ρI ⊗ ρE)U †

= Tr(ĤI + ĤE)(ρI ⊗ ρE)∀ρI ,ρE. (19)

When we make restrictions on the state ρE , the condition
(19) is weaker than the condition (18). For example, when
the condition (19) is given with a fixed ρE , the CP work
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extraction CP(F) satisfies the level-1 energy-conservation
law. However, such a restriction is unnatural, because such
restricted energy conservation cannot recover the conventional
energy conservation. Thus, we consider the condition (19)
without any constraint on the state ρE . Hence, we have
no difference between the condition (18) and the average
energy-conservation law (19) in this scenario. Indeed, if we
do not consider the measurement process on the external
system E, the model given in Definition 7 corresponds to
the formulations that are used in Refs. [37–43].

Here we discuss how to realize the unitary U satisfying
(18). For this purpose, we prepare the following lemma.

Lemma 3. For an arbitrary small ε > 0 and a unitary U

satisfying (18), there exist a Hermitian matrix B and a time
t0 > 0 such that

‖B‖ � ε, U = exp[it0(ĤI + ĤE + B)]. (20)

Proof. Choose a Hermitian matrix C such that ‖C‖ � π

and U = exp(iC). Since C and ĤI + ĤE commute, we can
choose a common basis {|x〉} of HI ⊗ HE that diagonalizes
C and ĤI + ĤE simultaneously. For any t , we can choose
a set of integers {nx} such that ‖Dt‖ � π , where D := C −
t(ĤI + ĤE) − ∑

x 2πnx |x〉〈x|. Hence, the Hermitian matrix

B := 1
t
D satisfies both conditions in (20) with ε = π

t
. So,

choosing t large enough, we obtain the desired result. �
Due to Lemma 3, any unitary U satisfying (18) can be

realized with a sufficiently long time t by adding the small
interaction Hamiltonian term B. Note that the interaction B

does not change in 0 < t < t0. Thus, in order to realize the
unitary U , we only have to turn on the interaction B at t = 0
and to turn it off at t = t0. From t = 0 to t = t0, we do not have
to control the total system IE time dependently. Namely, we
can realize a “clockwork heat engine,” which is programmed
to perform the unitary transformation U automatically.

Now we have the following lemma.
Lemma 4. For an energy-conserving FQ work extraction

F = (HE,ĤE,U,ρE), the CP work extraction CP(F) satisfies
the level-2 energy-conservation law.

Proof. For any j , due to the FQ energy-conservation law
(18), we can choose j ′ such that

〈x|U †(1̂I ⊗ PE,j )|y〉 = 〈x|(1̂I ⊗ PE,j ′ )U †|y〉. (21)

Then the FQ energy-conservation law (18) implies that

hx − hy − wj = hx − hy − hE,j + TrĤEρE

= −hE,j ′ + TrĤEρE. (22)

Hence, we can show that the distribution PK|X=x does not
depend on x as follows:

PK|X(k|x) =
∑

j,y:hx−hy−wj =k

TrU (�x ⊗ ρE)U †(�y ⊗ PE,j )

=
∑
j ′,y :

hE,j ′ = −k + TrĤEρE

TrU (�x ⊗ ρE)(1̂I ⊗ PE,j ′ )U †(�y ⊗ 1̂E)

(a)=
∑

j ′:hE,j ′=−k+TrĤEρE

TrU (�x ⊗ ρE)(1̂I ⊗ PE,j ′ )U †(1̂I ⊗ 1̂E)

=
∑

j ′:hE,j ′=−k+TrĤEρE

Tr(�x ⊗ ρE)(1̂I ⊗ PE,j ′ )

=
∑

j ′:hE,j ′=−k+TrĤEρE

TrEρEPE,j ′ , (23)

which does not depend on x, where (a) follows from the
combination of (21) and (22). �

The external system interacts with the macroscopic outer
system before and after the work extraction. So it is difficult to
set the initial state ρE of the external system to a superposition
of eigenstates of the Hamiltonian ĤE . Hence, it is natural
to restrict the initial state ρE to be an eigenstate of the
Hamiltonian ĤE . More generally, we restrict the initial state so
that the support of the initial state ρE belongs to an eigenspace
of the Hamiltonian ĤE .

Now we have the following theorem.
Theorem 1. Let F = (HE,ĤE,U,ρE) be an energy-

conserving FQ work extraction. Then the support of
the initial state ρE belongs to an eigenspace of
the Hamiltonian ĤE if and only if the CP work

extraction CP(F) satisfies the level-4 energy-conservation
law.

Proof. The support of the initial state ρE belongs to an
eigenspace of the Hamiltonian ĤE . Due to the assumption, the
probability TrEρEPE,j ′ takes a nonzero value only in the case
when hE,j ′ = TrĤEρE . Due to (23), the above condition is
equivalent to the condition that the probability PK|X(k|x) has
nonzero value only when k = 0. Hence, we obtain the desired
equivalence relation. �

Finally, we have the following characterization of the
entropy of the external system E.

Lemma 5. Let F = (HE,ĤE,U,ρE) be an energy-
conserving FQ work extraction. We assume that ρE is a
pure eigenstate of ĤE and that the external system HE has a
nondegenerate Hamiltonian ĤE , i.e., ĤE = ∑

j hj�j , where
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�j := |j 〉〈j |. Then the entropy of the final state in the external
system is

S(TrIU (ρI ⊗ ρE)U †) � log 2N, (24)

where N is the number of eigenvalues of the Hamiltonian ĤI

in the internal system.
Proof. Due to Lemma 1, this FQ work extraction generates

a CP work extraction satisfying the level-4 condition. So
Lemma 2 guarantees (15). Since ĤE is nondegenerate, the
random variable W given in Lemma 2 satisfies

S[W ] = S

⎛
⎝∑

j

�j TrIU (ρI ⊗ ρE)U †�j

⎞
⎠

� S(TrIU (ρI ⊗ ρE)U †). (25)

The combination of (15) of Lemma 2 and (25) yields (24). �

IV. SHIFT-INVARIANT MODEL

The above CP work extraction and fully quantum work
extraction are too abstract in comparison with the classical
standard formulation. Also, these models contain the case
when the dynamics of the internal system depends on the
state of the external system, which seems unnatural. To
discuss this issue, we recall the classical standard formulation
[7–11,13–18]. In this scenario, we consider an external agent
who performs the external operation as the classical time
evolution f of the internal system I (which usually consists
of the system S and the heat bath B). In this scenario, the
loss of energy of the internal system can be regarded as the
amount of extracted work due to the energy-conservation law.
That is, when the initial state of the internal system x and the
Hamiltonian is given as a function h, the amount of extracted
work is h(x) − h(f (x)).

Note that the dynamics of the internal system does not
depend on the state of the external system in the classical
standard formulation. To discuss its quantum extension, we
introduce a classification of Hamiltonians. A Hamiltonian ĤI

is called a lattice when there is a real positive number d such
that any difference hi − hj is an integer multiple of d, where
{hi} is the set of eigenvalues of ĤI . When ĤI is a lattice,
the maximum d is called the lattice span of ĤI . Otherwise,
it is called a nonlattice. In this section we assume that our
Hamiltonian ĤI is a lattice and denote the lattice span by hE .
In the lattice case, using the external system E1 with a doubly
infinite Hamiltonian, Åberg (see Sec. II of the Supplemental
Material in [45]) proposed a model in which the behavior of
the heat engine depends less on the initial state of the external
system. The external system E1 looks unphysical, because
it does not have a ground state. When the dimension of the
internal system is finite, he also reconstructed the property
of E1 in a pair of harmonic oscillators (see Sec. IV-D in the
Supplemental Material in [45]). So we employ this definition
for the simplicity of mathematical use.

Although he discussed the catalytic property and the role of
coherence based on this model, he did not discuss the relation
with the CP work-extraction model. In particular, he did not
deal with the trade-off relation between the coherence and the
measurability of the amount of extracted work in this model

because he discussed the average extracted work, but not the
amount of the extracted work as measurement outcome. In this
section we construct essentially the same model as Åberg [45]
in a slightly different logical step in the lattice case and call it a
shift-invariant model, while he did not give a clear name. Then
we investigate the relation with the CP work-extraction model.
In the next section we extend the model to the nonlattice case,
while he did not discuss the nonlattice case. Later we discuss
a trade-off relation.

Consider a nondegenerate external system E1. Let HE1

be L2(Z) and the Hamiltonian ĤE1 be
∑

j hEj |j 〉EE〈j |. We
define the displacement operator VE1 := ∑

j |j + 1〉E E〈j |.
Definition 8 (shift-invariant unitary). A unitary U on HI ⊗

HE1 is called shift-invariant when

UVE1 = VE1U. (26)

Indeed, there is a one-to-one correspondence between a
shift-invariant unitary on HI ⊗ HE1 and a unitary on HI . To
give the correspondence, we define an isometry W from HI to
HI ⊗ HE1:

W :=
∑

x

∣∣∣∣− hx

hE

〉
E

⊗ �x. (27)

Lemma 6. A shift-invariant unitary U is energy conserving
if and only if W †UW is unitary. Conversely, for a given unitary
UI on HI , the operator

F [UI ] :=
∑

j

V
j

E1WUIW
†V −j

E1 (28)

on HI ⊗ HE1 is a shift-invariant and energy-conserving
unitary. Then we have

W †F [UI ]W = UI . (29)

Notice that the right-hand side of (28) is the same as the
model given by Åberg [see (S9) of the Supplemental Material
in [45]].

Proof. The image of W is the eigenspace of the Hamilto-
nian ĤI + ĤE1 associated with the eigenvalue 0. Then we
denote the projection on the above space by P0. Hence,
the spectral decomposition of the Hamiltonian ĤI + ĤE1

is
∑

j hEjV
j

E1P0V
−j

E1 . Since the unitary satisfies the shift-
invariant condition, the condition (18) is equivalent to the
condition P0U = P0U . The latter condition holds if and only
if W †UW is unitary.

When UI is a unitary on HI , WUIW
† is a unitary on

the image of W . So the operator
∑

j V
j

E1WUIW
†V −j

E1 on
HI ⊗ HE1 is a shift-invariant and energy-conserving unitary.
Equation (29) follows from the constructions. �

Due to (29) in Lemma 6, we find the one-to-one corre-
spondence between a shift-invariant unitary on HI ⊗ HE1

and a unitary on HI . When the unitary UI is written as∑
x,x ′ ux,x ′ |x〉〈x ′|, the unitary F [UI ] has another expression

F [UI ] =
∑
j,x,x ′

ux,x ′ |x〉〈x ′| ⊗
∣∣∣∣j + hx ′

hE

− hx

hE

〉
E

E〈j |. (30)

To consider such a case, we impose the following condition.
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Definition 9 (shift-invariant FQ work extraction). We call
an FQ work extraction (HE,ĤE,U,ρE) shift invariant when
the following conditions hold.

Condition 1. The external system E is the nondegenerate
system E1, or the composite system of the nondegenerate
system E1 and a fully degenerate system E2. That is, the
Hamiltonian on the additional external system E2 is a constant.

Condition 2. The unitary U on (HI ⊗ HE2) ⊗ HE1 is shift
invariant and

wj = hEj − TrĤEρE. (31)

We can interpret the shift-invariant FQ- work extraction as
the work extraction without memory effect when the external
system is in the nondegenerate external system HE1. Let us
consider the situation that we perform CP work extractions
n times. In these applications, the state reduction of the
external system HE1 is based on the projection postulate.
Let ρ

(1)
E be the initial state on the external system HE1,

which is assumed to be a pure state. We assume that the
initial state ρ

(k)
E on HE1 of the kth CP work extraction is

the final state of the external system of the (k − 1)th work

extraction. Other parts of the kth CP work extraction are the
same as those of the first CP work extraction. Hence, the kth
CP work extraction is (HE,ĤE,ρ

(k)
E ,U ). Generally, the FQ

work extraction (HE,ĤE,ρ
(k)
E ,U ) depends on the state ρ

(k)
E .

Namely, there exists a memory effect. However, when U is
shift invariant, the FQ work extraction does not depend on the
state ρ

(k)
E . Then the memory effect does not exist. So we do

not have to initialize the external system after the projective
measurement on the external system.

Then the shift-invariant FQ work extraction can simulate
the semiclassical scenario in the following limited sense.

Lemma 7. Given an internal unitary UI and a state ρI of
the internal system I , in the shift-invariant FQ work extraction
F = (HE,ĤE,F [UI ],ρE) and the average amount of extracted
work is TrρI ĤI − TrUIρU

†
I ĤI .

Further, the shift-invariant FQ work extraction yields a
special class of CP work extraction.

Lemma 8. For an energy-conserving and shift-invariant FQ
work extraction F = (HE,ĤE,U,ρE), the CP work extraction
CP(F) satisfies the level-3 energy-conservation law.

Proof. First, we consider the case whenHE = HE1. Similar
to the proof of Lemma 3, we have

PKY |X(k,y|x) =
∑

j :hx−hy−wj =k

TrU (�x ⊗ ρE)U †(�y ⊗ |j 〉〈j |)

=
∑

j :hx−hy−wj =k

TrU (�x ⊗ ρE)U †(�y ⊗ |j 〉〈j |2)

(a)=
∑

j ′:hEj ′=−k+TrĤEρE

Tr[U (�x ⊗ |j ′〉〈j ′|ρE|j ′〉〈j ′|)U †(�y ⊗ 1̂E)]

=|〈y|UI |x〉|2
∑

j ′:hEj ′=−k+TrĤEρE

〈j ′|ρE|j ′〉, (32)

where (a) can be shown by using relations similar to (21) and (22). Hence,

PK|Y,X(k|y,x) =
∑

j ′:hEj ′=−k+TrĤEρE

〈j ′|ρE|j ′〉, (33)

which does not depend on x or y.
Next we proceed to the general case. Similarly, we can show that

PKY |X(k,y|x) =
∑

j :hx−hy−wj =k

TrU (�x ⊗ ρE2 ⊗ ρE1)U †(�y ⊗ 1̂E2 ⊗ |j 〉〈j |)

= (TrUI�x ⊗ ρE2U
†
I �y ⊗ 1̂E2)

∑
j ′:hEj ′=−k+TrĤEρE

〈j ′|ρE|j ′〉. (34)

Hence, we obtain (33). �
As a special case of Theorem 1, we have the following

lemma.
Lemma 9. Let F = (HE,ĤE,U,ρE) be an energy-

conserving and shift-invariant FQ work extraction. Then the
support of the initial state ρE belongs to an eigenspace of the
Hamiltonian ĤE if and only if the CP work extraction CP(F)
satisfies the level-4 energy-conservation law.

Lemma 10. For a level-4 CP work extraction {Ej ,wj }j∈J ,
there exists an energy-conserving and shift-invariant FQ work

extraction F such that the support of the initial state ρE

belongs to an eigenspace of the Hamiltonian ĤE and CP(F) =
{Ej ,wj }j∈J .

Proof. We make a Stinespring extension (HE2,UIE2,ρE2)
with a projection-valued measure {Ej } on HE2 of {Ej ,wj }j∈J
as follows:

Ej (ρI ) = TrE2UIE2(ρI ⊗ ρE2)U †
IE2(1̂I ⊗ Ej ), (35)

where {Ej } is a projection-valued measure on HE2 and ρE

is a pure state. This extension is often called the indirect
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measurement model, which was introduced by Ozawa [52].
Here the Hamiltonian of HE2 is chosen to be 0. Next we
define the unitary U on HI ⊗ HE2 ⊗ HE1 as U = F [UIE2].
Here HE1 is defined as in the above discussion.

We define an energy-conserving and shift-invariant FQ
work extraction F = (HE,ĤE,U,ρE) with the above given U

as HE := HE1 ⊗ HE2, ĤE := ĤE1, and ρE := |0〉〈0| ⊗ ρE2.
Hence, the level-4 condition implies

Ej (ρ) = TrEU (ρI ⊗ |0〉〈0| ⊗ ρE2)U †(1̂IE2 ⊗ �j ). (36)

�
It is natural to consider that the state on the additional

external system E2 does not change due to the work extraction.
Hence, we impose the following restriction for the state on the
additional external system E2.

Definition 10 (stationary condition). A shift-invariant FQ
work extraction (HE,ĤE,U,ρE) is said to satisfy the stationary
condition when the relations ρE = ρE1 ⊗ ρE2 and

TrIE1U (ρI ⊗ ρE)U † = ρE2 (37)

hold for any initial state ρI on HI .
Now we have the following theorem.
Theorem 2. Let F = (HE,ĤE,U,ρE) be a stationary FQ

work extraction. Then the CP work extraction CP (F) satisfies
the unital condition (13).

Proof. First, we consider the case when HE = HE1. To
show the unital condition (13), it is enough to show that

TrI |ψI 〉〈ψI |TrEU (I ⊗ ρE)U † = 1 (38)

for any pure state |ψI 〉 on HI . The shift-invariant property
(C1) implies that

〈y,j ′|U |x,j 〉 = 〈y,j ′|UV
j+j ′
E1 |x,−j ′〉

= 〈y,j ′|V j+j ′
E1 U |x,−j ′〉

= 〈y,−j |U |x,−j ′〉. (39)

When ρE = |ψE〉〈ψE |, |ψE〉 = ∑
j bj |j 〉, and |ψI 〉 =∑

x ax |x〉, we have [55]

TrI |ψI 〉〈ψI |TrEU (I ⊗ ρE)U

=
∑
x,j

|〈ψI ,j |U |x,ψE〉|2

=
∑
x,j ′

∣∣∣∣∣∣
∑

y

āy

∑
j

bj 〈y,j ′|U |x,j 〉
∣∣∣∣∣∣
2

=
∑
x,j ′

∣∣∣∣∣∣
∑

y

āy

∑
j

bj 〈y,−j |U |x,−j ′〉
∣∣∣∣∣∣
2

=
∑

y

āy

∑
j

bj

∑
ỹ

¯aỹ
∑

j̃

bj̃ 〈y,−j |y,−j̃〉

=
∑

y

|āy |2
∑

j

|bj |2 = 1. (40)

Hence, when ρE = ∑
l pl|ψE,l〉〈ψE,l |, we also have

TrI |ψI 〉〈ψI |TrEU (I ⊗ ρE)U = 1. (41)

Next we proceed to the proof of the general case. The above
discussion implies that

TrE1U

(
1̂I

dI

⊗ 1̂E2

dE2
⊗ ρE1

)
U † = 1̂I

dI

⊗ 1̂E2

dE2
. (42)

The information processing inequality yields that

D

(
1̂I

dI

⊗ ρE2

∥∥∥∥ 1̂I

dI

⊗ 1̂E2

dE2

)

� D

(
TrE1U

(
1̂I

dI

⊗ ρE2 ⊗ ρE1

)
U †

∥∥∥∥
× TrE1U

(
1̂I

dI

⊗ 1̂E2

dE2
⊗ ρE1

)
U †

)

� D

(
TrE1U

(
1̂I

dI

⊗ ρE2 ⊗ ρE1

)
U †

∥∥∥∥ 1̂I

dI

⊗ 1̂E2

dE2

)
, (43)

which implies that

S

(
TrE1U

(
1̂I

dI

⊗ ρE2 ⊗ ρE1

)
U †

)
� log dI + S(ρE2). (44)

Due to the condition (37), the reduced density operator
TrE1U ( 1̂I

dI
⊗ ρE2 ⊗ ρE1)U † on E2 is ρE2. Under this condition,

we have the inequality (44). The equality in (44) holds only
when TrE1U ( 1̂I

dI
⊗ ρE2 ⊗ ρE1)U † = 1̂I

dI
⊗ ρE2, which implies

the unital condition (13). �
Overall, as a realizable heat engine, we impose the energy-

conserving, shift-invariant, and stationary conditions to our FQ
work extractions. Also, it is natural to assume that the initial
state on E1 is an eigenstate of the Hamiltonian ĤE1 because
it is not easy to prepare a noneigenstate of the Hamiltonian
ĤE1. Namely, we define the standard FQ work extraction as
follows.

Definition 11. When an FQ work extraction satisfies the
energy-conserving, shift-invariant, stationary conditions and
the condition that the initial state on E1 is an eigenstate of
the Hamiltonian ĤE1, we refer to it as a standard FQ work
extraction.

So for a standard FQ work extractionF , the CP work extrac-
tion CP(F) is a standard CP work extraction. In the following
we consider the set of standard FQ work extractions as the set
of preferable work extractions. Hence, our optimization will
be done among the set of standard FQ work extractions.

However, we can consider restricted classes of standard FQ
work extractions by considering additional properties. For a
standard FQ work extractionF = (HE,ĤE,U,ρE), we assume
that the external system HE consists only of a nondegenerate
external system HE1. In this case, the corresponding standard
CP work extraction CP(F) depends only on the internal unitary
UI = WUW †.

Definition 12. For the above given standard FQ work extrac-
tion F = (HE,ĤE,U,ρE), the standard CP work extraction
CP(F) is called the standard CP work extraction associated
with the internal unitary UI and is denoted by ĈP(UI ).

Further, an internal unitary UI is called deterministic when
〈x|UI |x ′〉 is zero or eiθ for any x and x ′. In the latter, a standard
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FQ-standard

Shift-invariantenergy conservation law:

[U,HI + HE ] = 0

Stationary condition

ρE is an energy pure eigenstate

FIG. 6. Venn diagram of the FQ work extractions.

CP work extraction associated with the deterministic internal
unitary plays an important role.

We illustrate a Venn diagram of the FQ work extractions
in Fig. 6 and classify the relationships among the classes of
the CP work extraction and that of the FQ work extraction in
Table I.

Finally, we consider the relation with the classical standard
formulation. In the shift-invariant unitary, if we focus on
the eigenstates, the state |i,j 〉 can be regarded as being
probabilistically changed to |i ′,j ′〉 with the energy-conserving
law

hi + hEj = hi ′ + hEj ′, (45)

which is the same as in the classical standard formulation.
When we focus on the internal system, |i〉 is changed to
|i ′〉. So in the semiclassical scenario, they make a unitary
time evolution based on the states on the internal system.
However, the time evolution occurs between the internal and
external systems as |i,j 〉 
→ |i ′,j ′〉 in the classical standard
formulation under the condition (45). So to consider its natural
quantum extension, we need to make a unitary evolution on the
composite system. That is, it is natural to add proper complex
amplitudes to the time evolution |i,j 〉 
→ |i ′,j ′〉 so that it
forms a unitary evolution on the composite system. Hence, our
shift-invariant unitary can be regarded as a natural quantum
extension of the classical standard formulation because it is
constructed in this way.

One might consider that there is a cost for initialization
of the measurement. However, if we adopt the projection
postulate, this problem can be resolved when we employ a
shift-invariant model. The classical standard formulation does
not describe the dynamics of the external system, explicitly

because the dynamics of the internal system does not depend
on the state of the external system. Similarly, under our
shift-invariant model, the dynamics of the internal system does
not depend on the state of the external system as long as the
initial state of the external system is an energy eigenstate.
When the projection postulate holds for our measurement, the
final state of the external system is an energy eigenstate, which
can be used as the initial state for the next work extraction.
In real systems, decoherence occurs during unitary evolution
such that the state of the external system becomes inevitably
an energy eigenstate.

Further, we should notice that the initialization of the
measurement is different from the initialization of the thermal
bath. In the finite-size setting, the final state in the thermal bath
is different from the thermal state in general. Hence, we need
to consider the initialization of the thermal bath. However, the
thermal bath is considered as a part of the internal system in
our model. So this problem is different from the initialization
of the measurement and will be discussed in [56].

Although we consider only the lattice case, in real systems,
there are so many cases with a nonlattice Hamiltonian. Our
discussion can be extended to the nonlattice case with a small
modification. Details are given in Appendix C.

V. TRADE-OFF BETWEEN INFORMATION
LOSS AND COHERENCE

A. Approximation and coherence

In this section we investigate the validity of the semi-
classical scenario [21–34] based on an FQ work-extraction
model. To discuss this issue, we first recall the semiclassical
scenario as follows. We consider that to extract work, an
external agent performs the external operation as the unitary
time evolution UI := T {exp[

∫ −iĤI (t)dt]} [T (· · · ) denotes
the time-ordered product] on I by time-dependently varying
the control parameter of the Hamiltonian ĤI (t) of the internal
system I , which usually consists of the system S and the heat
bath B. During the time evolution, the loss of energy of the
internal system is transmitted to the external controller through
the backreaction of the control parameter. So the energy loss
is regarded as the extracted work (see Sec. 2 in [21]). This
scenario is considered as a natural quantum extension of the
classical standard formulation [7].

In the semiclassical scenario, it is expected that the unitary
can be realized via the control of the Hamiltonian of the internal
system. Since the control is realized by the external system,
we consider that the work can be transferred to the external

TABLE I. Correspondence between FQ work extraction and CP work extraction, describing the type of CP work extraction that can be
generated by respective classes of FQ work extraction.

FQ energy FQ energy
conservation, FQ energy conservation,
ρE is not an conservation, Stationary ρE is an

CP(F) energy eigenstate shift invariant condition energy eigenstate

CP level 2 yes (Lemma 3) yes yes
CP level 3 yes (Lemma 4) yes
CP level 4 no (Theorem 1) yes (Theorem 1)
CP unital yes (Theorem 2)
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FIG. 7. Concepts of the detectability of work.

system via the control. In this scenario, we expect that the time
evolution 
 of the internal system HI can be approximated
to an ideal unitary UI . That is, when we employ an FQ work
extraction F = (HE,ĤE,U,ρE), the time evolution 
 of the
internal system HI is given as 
(ρI ) = TrEU (ρI ⊗ ρE)U †.
To qualify the approximation to the unitary UI , we need to
focus on two aspects. One is the time evolution of basis states
in a basis {|x〉}x diagonalizing the Hamiltonian ĤI . The other
is the time evolution of superpositions of states in this basis.
Usually, it is not difficult to realize the same evolution as that
of UI only for the former states. However, it is not easy to keep
the quality of the latter time evolution, which is often called
the coherence. Hence, we fix a unitary UI and we assume that
the CPTP map 
 satisfies the condition

〈y|
(|x〉〈x|)|y〉 = 〈y|UI |x〉〈x|U †
I |y〉 for any x,y. (46)

That is, we choose our time evolution among CPTP maps
satisfying the above condition. Under the condition, the quality
of the approximation to the unitary UI can be measured by the
coherence of the CPTP map 
. For a measure of coherence,
we employ the entropy exchange [57]

Se(
,ρI ) := S(
(|�〉〈�|)), (47)

where |�〉 is the purification of the state ρI with the reference
system R. When a CPTP map 
 satisfies (46) and Se(
,ρI ) �
1, we say that 
 ≈ UI .

B. Expression of detectability of work in terms of correlation

On the other hand, we need to focus on another feature
of thermodynamics, i.e., the detectability of work (Fig. 7).
In standard thermodynamics, we can measure the amount of
extracted work by measuring only the work storage system,
e.g., the weight. In order that the heat engine works properly as
energy transfer from a collection of microscopic systems to a
macroscopic system, the amount of extracted work needs to be
reflected to the outer system that consists of the macroscopic
devices. Hence, the amount of energy loss in the internal
system is required to be correlated to the outer system. So
we can measure the detectability of work by the correlation
between the external system E after energy extraction and the
energy loss in the internal system I . In Fig. 8 the former is
expressed as A and the latter as B. Our purpose in this section is
to show a trade-off relation, which indicates the impossibility
of the detection of work under the condition 
 ≈ UI . Namely,
when 
 ≈ UI , the correlation between A and B in Fig. 8 is
close to zero.

FIG. 8. Concept of our trade-off relation. Here σ
ρI

E :=
TrI [U (ρI ⊗ |φ〉〈φ|E)U †].

In order to show the trade-off relation, we employ the
purification |�〉 of the state ρI with the reference system
R, which satisfies TrI [|�〉〈�|] = TrE[|�〉〈�|] = ρI . Then we
can interpret R as a kind of memory and translate the energy
loss of I during the time evolution 
 into the energy difference
between I and R after the time evolution (Fig. 9). We also
employ the initial state ρE on the external system E. Here we
take the external system to be large so that the time evolution
on the joint system of I and E can be regarded as a unitary U

on IE and the state ρE is a pure state |φE〉. In the following,
we denote the initial state |�,φE〉〈�,φE| of the total system
HI ⊗ HR ⊗ HE by ρIRE . Then we denote the resultant state
U |�,φE〉〈�,φE|U † by ρ ′

IRE .
To determine the amount of energy lost from the internal

system, we consider a measurement of the observable ĤI −
ĤR on the joint system I and R after the time evolution 


(Fig. 10). That is, by using the spectral decomposition ĤI −
ĤR = ∑

z zFz, we define the final state ρ ′′
ZE on HZ ⊗ HE by

ρ ′′
ZE :=

∑
z

|z〉ZZ〈z| ⊗ TrIRFzρ
′
IRE. (48)

Here the random variable Z takes the value z with probability
PZ(z) := Trρ ′

IREFz = Tr
(|�〉〈�|)Fz. When the outcome Z

is z, the resultant state on E is ρ ′′
E|Z=z := 1

PZ(z) TrIRρ ′
IREFz.

So the correlation between the external system E and the
amount of energy loss can be measured by the correlation
on the state ρZ,E . Although this scenario is based on a
virtual measurement, this interpretation will be justified by
considering the situation without the purification in the
following lemma.

FIG. 9. We can translate the energy loss of I during the time
evolution 
 into the energy difference between I and R.
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FIG. 10. Schematic diagram of the formulation.

Lemma 11. We consider the case when the eigenstate |ψI,a〉
is generated with probability PA(a). Measuring the Hamilto-
nian ĤI = ∑

h hPh after the time evolution 
, we obtain the
conditional distribution PH |A(h|a) := TrPh
(|ψI,a〉〈ψI,a|).
Then we choose the state ρI to be

ρI =
∑

a

PA(a)|ψI,a〉〈ψI,a|. (49)

Under the joint distribution PHA(h,a) := PH |A(h|a)PA(a), the
amount 〈ψI,a|ĤI |ψI,a〉 − h of energy lost takes values z with
the probability PZ(z). That is,∑

h,a:〈ψI,a |ĤI |ψI,a〉−h=z

PHA(h,a) = PZ(z). (50)

Since the proof of Lemma 11 is trivial, we skip its proof.
Lemma 11 guarantees that the probability distribution PZ(z)
is the same as the work distribution defined in [33] under
its assumption. When ρI commutes with ĤI , we can take
the above eigenstate |ψI,a〉 and a probability distribution PA

satisfying the above condition (49). Also, when the state ρI is
a Gibbs state or a mixture of Gibbs states, the state ρI satisfies
the condition in Lemma 11. Hence, it is suitable to consider
the distribution PZ of the amount of energy lost in this case.

Here we employ two measures of the correlation. One of
the measures is the mutual information

Iρ ′′
ZE

(Z; E) := D(ρ ′′
ZE‖ρ ′′

Z ⊗ ρ ′′
E)

= S(ρ ′′
E) −

∑
z

PZ(z)S(ρ ′′
E|Z=z)

(a)
� S(ρ ′′

E)

= S(
(|�〉〈�|)), (51)

where D(τ‖σ ) := Trτ (log τ − log σ ). Here the equality in (a)
holds if and only if the state ρ ′′

E|Z=z is pure for any value z

with nonzero probability PZ(z). The information processing
inequality for the map |z〉〈z| 
→ ρ ′′

E|Z=z yields

Iρ ′′
ZE

(Z; E) � S(PZ). (52)

In particular, the equality in (52) holds in the ideal case,
i.e., in the case when the states {ρ ′′

E|Z=z}z are distinguishable,
i.e., Trρ ′′

E|Z=zρ
′′
E|Z=z′ = 0 for z �= z′ with nonzero probabilities

PZ(z) and PZ(z′). For example, when U satisfies the energy-
conservation law (18), the initial state of the internal system
commutes with the internal Hamiltonian ĤI , and the initial
state of the external system is an energy eigenstate, this
conditions holds because the energy of the final state of the

external system precisely reflects the loss of energy of the
internal system. So the imperfectness of the correlation for the
decrease of the energy can be measured by the difference

�Iρ ′′
ZE

(Z; E) := S(PZ) − Iρ ′′
ZE

(Z; E). (53)

C. Trade-off with imperfection of correlation

Many papers studied trade-off relations between the ap-
proximation of a pure state on the bipartite system and the
correlation with the third party E. In particular, since this kind
of relation plays an important role in the security analysis
in a quantum key distribution (QKD), it has been studied
mainly by several researchers in a QKD and related areas
with various formulations [see, e.g., Sec. V C in [57], (21) in
[58], Theorem 1 in [59], Lemma 2 in [60], Theorem 2 in [61],
and [62,63]].

However, these trade-off relations are not suitable for our
situation. So we derive two kinds of trade-off relations with
the imperfectness of correlation, which are more suitable for
our purpose.

Theorem 3. The amount of decoherence Se(
,ρI ) and the
amount of imperfectness of correlation �Iρ ′′

ZE
(Z; E) satisfy

the following trade-off relation:

Se(
,ρI ) + �Iρ ′′
ZE

(Z; E) � S(PZ). (54)

The equality holds if and only if the state ρ ′′
E|Z=z is a pure state

|ψE|Z=z〉 for any value z with nonzero probability PZ(z). In
this case, we have

Se(
,ρI ) = Iρ ′′
ZE

(Z; E) = S

(∑
z

PZ(z)|ψE|Z=z〉〈ψE|Z=z|
)

.

(55)

Proof. Since (51), (47), and (53) imply

Se(
,ρI ) + �Iρ ′′
ZE

(Z; E) = S(PZ) − Iρ ′′
ZE

(Z; E) + S(ρ ′′
E)

= S(PZ) +
∑

z

PZ(z)S(ρ ′′
E|Z=z)

� S(PZ), (56)

the equality holds if and only if the state ρ ′′
E|Z=z is pure for any

value z with nonzero probability PZ(z). In this case, we have
ρ ′′

E = ∑
z PZ(z)|ψE|Z=z〉〈ψE|Z=z|, which implies (55). �

Due to the relation (54), when the imperfectness
�Iρ ′′

ZE
(Z; E) of the correlation is close to zero, the amount

of decoherence Se(
,ρI ) is far from zero. So the coherence
cannot be kept in this work-extraction process. That is, the
unitary UI cannot be approximated by the actual time evolution

. On the other hand, when the amount of decoherence
Se(
,ρI ) is close to zero, the imperfectness �Iρ ′′

ZE
(Z; E)

of the correlation is far from zero. In this case, the perfect
approximation is realized although the external system has
almost no correlation.

In the current discussion, we deal with a general framework
for the ensemble of initial states of the internal system. In
practice, it is quite difficult to realize an arbitrary distribution
of the initial state. However, without requiring the realization
of an arbitrary distribution, we have a realistic example to
derive a contradiction for the semiclassical model. That is, in
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such a desired example, if the coherence is kept, which is the
requirement of the semiclassical model, we cannot detect the
amount of extracted work precisely. To give such an example,
it is sufficient to consider an ensemble whose entropy is greater
than log 2. For example, a useful internal state (in which work
extraction is possible) occurs with probability 1

2 and a useless
internal state (in which work extraction is impossible) occurs
with probability 1

2 , i.e., with probability 1
2 , we cannot extract

work from the initial state. In this example, when the amount
of decoherence Se(
,ρI ) is close to zero, the imperfectness
�Iρ ′′

ZE
(Z; E) of the detection of the amount of extracted work

is close to log 2, which is far from zero. Since such an ensemble
is possible in the real world, this example shows that the
semiclassical model is not suitable for the model of a heat
engine because we cannot detect the amount of extracted work
precisely.

D. Shift-invariant model

Next we consider how to realize the case when the amount
of decoherence Se(
,ρI ) is close to zero. The following
theorem is the solution to this problem, which will be shown
in Appendix B 4.

Theorem 4. We assume the shift-invariant model without
an additional external system. When

|ψE〉 =
∑

j

√
PJ (j )|j 〉, (57)

PJ (j ) =
{

1
2m+1 if |j | � m

0 otherwise,
(58)

PZ(hEj ) = 0 if |j | � l, (59)

we have

Se(
,ρI ) � h

[
2

l

2m + 1
−

(
l

2m + 1

)2]

+
[

2
l

2m + 1
−

(
l

2m + 1

)2]
log

(
d2

I − 1
)
. (60)

So when m is sufficiently large, the quality of approximation
is very small under the shift-invariant model without an
additional external system. That is, a large superposition
enables us to keep coherence. This consequence is qualitatively
consistent with the conclusion in [45] (see Proposition 2 of the
Supplemental Material therein), which assesses the quality of
the approximation with the trace norm unlike Theorem 4.

E. Trade-off under CP work extraction

In Sec. V C we discussed the trade-off relation between the
imperfectness of correlation and the quality of approximation
under an FQ work extraction. In this section we discuss the
trade-off relation under a CP work extraction G := {Ej ,wj }j
on the internal system HI with the Hamiltonian ĤI . To discuss
the trade-off relation, in the internal system HI , we consider
the internal unitary UI to be approximated and the initial
mixed state ρI is assumed to commute with ĤI . To quantify
the approximation, we employ the measure Se(

∑
j Ej ,ρI ).

To evaluate the imperfectness of correlation, we consider the

purification |�〉 of ρI and introduce the joint distribution PZW

as

PZW (z,w) :=
∑

j :wj =w

TrRIEj (|�〉〈�|)Fz, (61)

where the projection Fz is defined in the same way as in
Sec. V B. Then we employ the measure �IPZW

(Z; W ) :=
S(PZ) − IPZW

(Z; W ). Since the measurement outcome
precisely reflects the decrease in energy of the internal system
in a level-4 energy CP work extraction {Ej ,wj }j , we have the
following lemma.

Lemma 12. For a level-4 energy CP work extraction
{Ej ,wj }j , the relation �IPZE

(Z; E) = 0 holds for any internal
state ρI that commutes with ĤI .

This lemma shows that a level-4 energy CP work extraction
satisfies our requirement explained in the Introduction. As a
corollary of Theorem 3 we have the following, by virtually
considering the indirect measurement.

Corollary 1. Given a CP work extraction {Ej ,wj }j , the
amount of decoherence Se(

∑
j Ej ,ρI ) and the amount of

imperfectness of correlation �IPZE
(Z; E) satisfy the following

trade-off relation:

Se

⎛
⎝∑

j

Ej ,ρI

⎞
⎠ + �IPZW

(Z; W ) � S(PZ). (62)

Proof. Notice that Theorem 3 does not assume any energy-
conservation law. Then we take a Stinespring representation
(HE,U,ρE) with a pure state ρE of {Ej ,wj }j∈J as follows:

Ej (ρI ) = TrEUIE(ρI ⊗ ρE)U †
IE(1̂I ⊗ Ej ), (63)

where {Ej } is a projection-valued measure on HE . Notice
that (HE,U,ρE) is an FQ work extraction. Here we do not
care whether the FQ work extraction satisfies any energy-
conservation law. Then we apply Theorem 3. Since the
information processing inequality for the relative entropy
yields Iρ ′′

ZE
(Z; E) � IPZE

(Z; E), the relation (54) implies
(62). �

Further, we have the following corollary.
Corollary 2. When �IPZE

(Z; E) = 0, we have

Se

⎛
⎝∑

j

Ej ,ρI

⎞
⎠ � S(PZ). (64)

The combination of this corollary and Lemma 12 shows that
the dynamics of a level-4 CP work extraction is far from any
internal unitary.

VI. OTHER CONSEQUENCES OF OUR FORMULATION
AND RELATION TO OTHER FORMULATION

Finally, we discuss the relation to other formulations. While
we have introduced four kinds of energy-conservation laws
for measurement-based work extraction, a level-1 CP work
extraction can be mathematically regarded as an average work
extraction [35] as follows. In Sec. II A 2 in [64] we formulated
the average work extraction by using the CPTP map on the
internal system in an implicit treatment of the external work
storage. For a given level-1 CP work extraction {Ej ,wj }j∈J ,
we define a CPTP map

∑
j Ej , which gives an average
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work extraction with implicit treatment of the external work
storage. Hence, any level-1 CP work extraction can be treated
as an average work extraction. Thus, any model in our paper is
mathematically a part of average work extraction with implicit
treatment of the external work storage. Since the optimal
efficiency of an average work extraction asymptotically equals
the Carnot efficiency [36,43,64], the efficiency of any our
model does not exceed the Carnot efficiency.

Now we discuss the detailed relation with existing models.
While our measurement-based model for work extraction
treats energy transfer from a collection of microscopic systems
to a macroscopic system, our model can treat energy transfer
in the microscopic scale as follows. As shown in Lemma
10, a level-4 CP work extraction can be extended to an
energy-conserving and shift-invariant FQ work extraction,
which is the same as in [45]. Conversely, as shown in Lemma 3,
an energy-conserving FQ work extraction can be converted to
a level-2 CP work extraction. In particular, the combination of
Theorem 1 and Lemma 10 shows that a shift-invariant model
up to the second order with an initial energy eigenstate ρE

on the external system is equivalent to a level-4 CP work
extraction.

Another paper by the present authors [64] derives the
higher-order expansion of the optimal efficiency under average
work extraction with implicit treatment of the external work
storage while its first order equals the Carnot efficiency.
Furthermore, it was shown that the optimal efficiency can
be attained by a shift-invariant model with an initial energy
eigenstate ρE on the external system up to second order.
In summary, even in any of our four models, the optimal
efficiency asymptotically has the same value up to higher order,
whereas the first-order coefficient is the Carnot efficiency. This
fact shows the adequacy of our models.

As another problem one might consider a serious increase
of the entropy due to the measurement. However, the increase
is not so serious as follows. In Sec. 4 of Ref. [64] it is shown
that we can give a concrete protocol that extracts energy with a
negligibly small increase of entropy, while the protocol attains
the optimal efficiency. In Sec. 4 of Ref. [64] we translate the
implicit formulation of an average work extraction into the
explicit formulation with an external work storage by using
the translation between the direct measurement and the indirect
measurement. Then we calculate the ratio of the energy gain
to the entropy gain in the external work storage and show that
the entropy-energy ratio of the work storage goes to 0 in the
macroscopic limit.

VII. CONCLUSION

In the present article, to expand the area of quantum
thermodynamics, we have discussed quantum heat engines as
work-extraction processes in terms of quantum measurement.
That is, we have formulated work extraction as a CP instrument
when discernible energy is transferred from a collection of
quantum systems to a macroscopic system. Our formulation is
so general as to include any work extraction that has equipment
to assess the amount of the extracted work when we extract
energy to a macroscopic system. We also have clarified the
relationships between the fully quantum work extraction and
the CP work extraction in our context.

Moreover, to clarify the problem in the semiclassical
scenario, we have given a trade-off relation for the coherence
and information acquisition for the amount of extracted work.
The trade-off relation means that we have to demolish the
coherence of the thermodynamic system in order to know the
amount of extracted energy. Further, we have pointed out that
our shift-invariant unitary is a natural quantum extension of
the classical standard formulation rather than the semiclassical
scenario at the end of Sec. IV. In summary, these results imply
the incompatibility of the coherence of the internal system and
information acquisition for the amount of extracted work. That
is, when the time evolution of the internal system is close to
unitary, we cannot know the amount of extracted work.

In the Appendixes we also show the reduction to the
classical model. When the initial state of the internal system
commutes with the Hamiltonian, any CP work extraction
can be simulated by a classical work extraction in the
nonasymptotic sense, whose detailed definition is shown in
the Appendixes. This conversion is helpful for analyzing the
performance of the work-extraction process. This property
is employed for derivation of optimal efficiency with the
asymptotic setting in another paper [64].

A reader might raise the following question for our
formulation as follows. Although this paper requires the dis-
tinguishability of the amount of extracted work, it is sufficient
to recover this property only within the thermodynamic limit
because the identification of the amount of extracted work is a
classical task. Hence, we do not need to employ measurement
to formulate the quantum heat engine. However, this idea is not
correct for the following two reasons when we extract energy
from a collection of microscopic system to a macroscopic
system.

First, our trade-off relation between the coherence and
the distinguishability holds independently of the size of the
system. So even though we take the thermodynamic limit, we
cannot resolve this trade-off. So to keep the distinguishability
of the amount of extracted work even with the thermodynamic
limit, we need to give up the description by the internal
unitary. Second, to avoid the distinguishability, we can employ
a scenario that the extracted work is autonomously stored in
a quantum storage [35–42,65,66]. (The word “autonomous”
is used in Refs. [65,66], for example.) This scenario works
well when we extract energy from a microscopic system to
another microscopic system. However, when we extract energy
from a collection of microscopic systems to a macroscopic
system, even in this scenario, we ultimately consume the work
stored in the quantum storage. In the consuming stage, we
have to consider the distinguishability of the amount of work
extracted from the quantum storage. Therefore, we cannot
avoid distinguishing the amount of extracted work. That is,
the solution depends on the situation and the measurement is
inevitably essential for a proper formulation of the quantum
heat engine in our situation.
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APPENDIX A: ORGANIZATION OF THE APPENDIXES

Before starting proceeding, we briefly explain the organi-
zation of the Appendixes. In Appendix B we give a discussion
similar to Sec. V based on the fidelity instead of the entropic
quantity. Although the fidelity requires a more complicated
discussion, it provides tighter evaluation for the coherence
of the dynamics. Further, using the discussion based on the
fidelity, we give a proof of Theorem 4. Since this discussion
needs several technical lemmas, they are given in Appendix E.

In Appendix C we extend the discussion for the shift-
invariant model in Sec. IV to the case with a nonlattice
Hamiltonian. In Appendix D we discuss the relation between
classical work extraction and quantum work extraction. In-
deed, the model of quantum work extraction is more compli-
cated than that of classical work extraction. This difficulty is
mainly caused by the effect of coherence. Hence, Refs. [67,68]
proposed how the classical model is close to the quantum
model. Although this problem is not directly related to the main
issue of this paper, it is nevertheless important, Appendix D
gives the answer to this question in the nonasymptotic setting.

APPENDIX B: APPROXIMATION TO
THE INTERNAL UNITARY

1. Approximation and coherence

In this section, as another measure of coherence, we focus
on the entanglement fidelity

Fe(
,UI ,ρI )2 := 〈�|U †
I 
(|�〉〈�|)UI |�〉. (B1)

When the initial state |ψa〉 is generated with the probability
PA(a), namely, when ρI = ∑

a PA(a)|ψI,a〉〈ψI,a| holds, the
entanglement fidelity Fe(
,UI ,ρI ) characterizes any average
fidelity as

Fe(
,UI ,ρI )2 �
∑

a

PA(a)〈ψa|U †
I 
(|ψa〉〈ψa|)UI |ψa〉. (B2)

Since this value is zero in the ideal case, this value can be
regarded as the amount of disturbance by the time evolution

. This quantity satisfies the quantum Fano inequality [see
[57] and (8.51) in [69]]

Se(
,ρI ) = Se(

U

†
I
◦ 
,ρI )

� h(Fe(
,UI ,ρI )2) + [1 − Fe(
,UI ,ρI )2]

× log
(
d2

I − 1
)
, (B3)

where 

U

†
I
(ρ) := U

†
I ρUI . Since this value is also zero in the

ideal case, we consider that this value is another measure of
the disturbance by the time evolution 
.

2. Correlation with external system

Next we discuss the correlation with the external system by
using the fidelity. We notice another expression of Iρ ′′

ZE
(Z; E)

as

Iρ ′′
ZE

(Z; E) = min
σE

D(ρ ′′
ZE‖ρ ′′

Z ⊗ σE). (B4)

Following this expression, we consider the fidelity-type mutual
information as

IF,ρ ′′
ZE

(Z; E) := − log max
σE

F (ρ ′′
ZE,ρ ′′

Z ⊗ σE). (B5)

We can show the following theorem.
Theorem 5. The relations

IF,ρ ′′
ZE

(Z; E) = − log
∑
z,z

PZ(z)PZ(z′)F (ρ ′′
E|Z=z,ρ

′′
E|Z=z′ )

� S2(PZ) (B6)

hold, where S2(PZ) := − log
∑

z PZ(z)2. The equality holds
when the states {ρ ′′

E|Z=z}z are distinguishable.
Theorem 5 follows from a more general argument,

Lemma 21 in Appendix E.
Since the equality in (B6) holds in the ideal case, we intro-

duce another measure of the imperfectness of the correlation
for the decrease of the energy as

�IF,ρ ′′
ZE

(Z; E) := S2(PZ) − IF,ρ ′′
ZE

(Z; E). (B7)

Lemma 13. Let F = (HE,ĤE,U,ρE) be an FQ work
extraction. Assume that ρI is commutative with ĤI . When the
CP work extraction CP (F) is a level-4 CP work extraction,
the states {ρ ′′

E|Z=z}z are distinguishable.
Proof. Let w0 be the eigenvalue of the Hamiltonian

associated with the state ρE . Then

TrPw0+z′ρ ′′
E|Z=z = δz,z′ . (B8)

Hence, the states {ρ ′′
E|Z=z}z are distinguishable. �

Remark 1. We should note the relation between the fidelity-
type mutual information IF,ρ ′′

ZE
(Z; E) and an existing mutual

information measure. A different type of quantum Rényi
relative entropy D̃α(τ‖σ ) was introduced [70,71]. When the
order is 1

2 , it is written as

D̃ 1
2
(τ‖σ ) = −2 log F (τ,σ ). (B9)

Using this relation, Refs. [70,72,73] introduced the quantity
Ĩα,ρ(Z; E) with general order α by

Ĩα,ρ(Z; E) := min
σE

D̃α(ρ‖ρZ ⊗ σE), (B10)

whose operational meaning was clarified by [74]. So our
fidelity-type mutual information IF,ρ(Z; E) is written as

2IF,ρ(Z; E) = Ĩ 1
2 ,ρ(Z; E). (B11)

3. Trade-off with imperfection of correlation

We derive the fidelity version of the trade-off relation with
imperfectness of correlation. To give this kind of trade-off
relation, we prepare the isometry VIRZ fromHI ⊗ HR toHI ⊗
HR ⊗ HZ:

VIRZ :=
∑

z

|z〉 ⊗ Fz. (B12)
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Then we define the distribution

P̃Z(z) := 〈�|U †
I FzUI |�〉 (B13)

and the pure states |ψ ′′
IRE|Z=z〉 and |ψ̃ ′′

IR|Z=z〉 by

VIRZUI |�〉 =
∑

z

√
P̃Z(z)|ψ̃IR|Z=z,z〉, (B14)

VIRZU |�,ψE〉 =
∑

z

√
PZ(z)|ψ ′′

IRE|Z=z,z〉. (B15)

Theorem 6. The quality of the approximation Fe(
,UI ,ρI )
and the amount of imperfectness of the correlation
�IF,ρ ′′

ZE
(Z; E) satisfy the following trade-off relation:

− log Fe(
,UI ,ρI ) + �IF,ρ ′′
ZE

(Z; E) � S2(PZ), (B16)

i.e.,

− log Fe(
,UI ,ρI ) � IF,ρ ′′
ZE

(Z; E). (B17)

The equality holds if and only if P̃Z = PZ and there exist pure
states |ψ ′′

E|Z=z〉 such that |ψ ′′
IRE|Z=z〉 = |ψ̃ ′′

IR|Z=z,ψ
′′
E|Z=z〉 and

〈ψ ′′
E|Z=z′ |ψ ′′

E|Z=z〉 � 0:

− log Fe(
,UI ,ρI ) = IF,ρ ′′
ZE

(Z; E)

= − log
∑
z,z′

PZ(z)PZ(z′)〈ψE|Z=z|ψE|Z=z′ 〉.

(B18)

Proof. Since F (UI |�〉〈�|U †
I ,ρ

′′
IR) = F (VZIRUI |�〉

〈�|U †
I V

†
ZIR,VZIRρ ′′

IRV
†
ZIR), the inequality (B16) is equivalent

to

F (VZIRUI |�〉〈�|U †
I V

†
ZIR,VZIRρ ′′

IRV
†
ZIR)

� max
σE

F (ρ ′′
ZE,ρ ′′

Z ⊗ σE). (B19)

So the desired argument follows from Lemma 22 in
Appendix E. �

Here it is better to explain the difference between
Theorems 6 and 3. Theorem 3 gives the relation between the
decoherence Se(
,ρI ) and the imperfectness of the correlation
�Iρ ′′

ZE
(Z; E); it does not require any relation with the internal

unitary UI . To derive a relation with the approximation, we
employ the quantum Fano inequality (B3). However, Theorem
6 directly gives the relation between the approximation
− log Fe(
,UI ,ρI ) and the imperfectness of the correlation
�IF,ρ ′′

ZE
(Z; E). Hence, it requires the condition (B13).

4. Shift-invariant model

Next we consider how to realize the case when the amount
of decoherence − log Fe(
,UI ,ρI ) is close to zero and show
Theorem 4. For simplicity, we consider this problem under the
shift-invariant model without an additional external system. In
the shift-invariant model, once we fix the energy-conservative
unitary operator F [UI ] on HI ⊗ HE according to (28), the
assumption of Theorem 6 holds and the distribution PZ

depends only on the initial state ρI on the system I . That
is, PZ does not depend on the initial state |ψE〉 on the external
system E. In this case, we have

|ψE|Z=hEj 〉 = V j |ψE〉. (B20)

In particular, when |ψE〉 = ∑
j

√
PJ (j )|j 〉, the equality con-

dition holds in the inequality (B16). Theorem 6 implies that

− log Fe(
,UI ,ρI )

= IF,ρ ′′
ZE

(Z; E)

= − log
∑
z,z′

PZ(z)PZ(z′)
∑

j

√
PJ (j )

√
PJ (j + z − z′).

(B21)

For example, when

PJ (j ) =
{

1
2m+1 if |j | � m

0 otherwise,
(B22)

PZ(hEj ) = 0 if |j | � l, (B23)

we have

− log Fe(
,UI ,ρI ) = IF,ρ ′′
ZE

(Z; E)

� − log

(
1 − l

2m + 1

)
� l

2m + 1
.

(B24)

Hence, applying (B3), we have

Se(
,ρI ) � h

((
1 − l

2m + 1

)2
)

+
[

1 −
(

1 − l

2m + 1

)2
]

log
(
d2

I − 1
)

= h

(
2

l

2m + 1
−

(
l

2m + 1

)2
)

+
[

2
l

2m + 1
−

(
l

2m + 1

)2
]

log
(
d2

I − 1
)
.

(B25)

Hence, we obtain Theorem 4.

5. Trade-off under CP work extraction

In Appendix B3 we discussed the trade-off relation between
the imperfectness of the correlation and the quality of the
approximation under an FQ work extraction. In this section
we discuss the trade-off relation under a CP work extraction
G := {Ej ,wj }j on the internal systemHI with the Hamiltonian
ĤI . To discuss the trade-off relation, in the internal system
HI , we consider the internal unitary UI to be approximated
and the initial mixture state ρI is assumed to be commutative
with ĤI . To qualify the approximation, we employ the
measure Fe(

∑
j Ej ,UI ,ρI ). To evaluate the imperfectness

of correlation, we consider the purification |�〉 of ρI and
introduce the joint distribution PZW as

PZW (z,w) :=
∑

j :wj =w

TrRIEj (|�〉〈�|)Ez, (B26)

where the projection Ez is defined in the same way as in
Sec. V B. Then we employ the measure as �IF,PZW

(Z; W ) =
S2(PZ) − IF,PZW

(Z; W ).
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As a corollary of Theorem 6, we have the following.
Corollary 3. Given a CP work extraction {Ej ,wj }j , the

quality of the approximation Fe(
∑

j Ej ,UI ,ρI ) and the amount
of imperfectness of the correlation �IF,PZE

(Z; E) satisfy the
following trade-off relation:

− log Fe

⎛
⎝∑

j

Ej ,UI ,ρI

⎞
⎠ + �IF,PZE

(Z; E) � S2(PZ).

(B27)

Proof. Notice that Theorem 6 does not assume any energy-
conservation law. Then we take a Stinespring representation
(HE,U,ρE) with a pure state ρE of {Ej ,wj }j∈J as

Ej (ρI ) = TrEUIE(ρI ⊗ ρE)U †
IE(1̂I ⊗ Ej ), (B28)

where {Ej } is a projection-valued measure on HE . No-
tice that (HE,U,ρE) is an FQ work extraction. Here we
do not care whether the FQ work extraction satisfies any
energy-conservation law. Then we apply Theorem 6. Since
information processing inequality for the fidelity yields
that IF,ρ ′′

ZE
(Z; E) � IF,PZE

(Z; E), the relation (B16) derives
(B27). �

Further, we have the following corollary.
Corollary 4. Assume that ρI is commutative with ĤI .

For a level-4 CP work extraction {Ej ,wj }j , �IPZE
(Z; E) =

�IF,PZE
(Z; E) = 0. So we have

− log Fe

⎛
⎝∑

j

Ej ,UI ,ρI

⎞
⎠ � S2(PZ). (B29)

This corollary implies that the dynamics of a level-4 CP work
extraction is far from any internal unitary.

APPENDIX C: SHIFT-INVARIANT MODEL
WITH A NONLATTICE HAMILTONIAN

Now we show that our discussion for the shift-invariant
model in Sec. IV can be extended to the case with nonlattice
Hamiltonians ĤI . In this case, we cannot employ the space
L2(Z) for the nondegenerate external system E1. One idea is
to replace the space L2(Z) by the space L2(R). However, in
this method, to satisfy the condition (7) with the measurement
of the Hamiltonian ĤE1, we need to prepare the state whose
wave function is a δ function. To avoid such a mathematical
difficulty, we employ another construction of the nondegener-
ate external system E1.

Let {hi} be the set of eigenvalues of ĤI . We choose the set
{hE,l}Ll=1 satisfying the following. (i) When rational numbers
t1, . . . ,tL satisfy

∑L
l=1 tlhE,l = 0, the equality tl = 0 holds

for all l. (ii) Here {hi − hj }i,j ⊂ {∑L
l=1 nlhE,l}nl∈Z. Then we

choose HE1 to be L2(Z)⊗L and the Hamiltonian ĤE1 to be∑
j1,...,jL

hE,1j1 + · · · + hE,LjL|j1, . . . ,jL〉〈j1, . . . ,jL|.
As in the lattice case, the external system E1 does not have

a ground state. Because E1 in the present case is composed
of L ladder systems, we can reconstruct the property of
E1 in L pairs of harmonic oscillators (see Sec. IV of the
Supplemental Material in [45]). Then a shift-invariant unitary
is defined as follows. We define L displacement operators
VE1,l := ∑

j |j + 1〉EE〈j | on the lth space L2(Z).

Definition 13 (shift-invariant unitary). A unitary U onHI ⊗
HE1 is called shift invariant when

UVE1,l = VE1,lU (C1)

for l = 1, . . . ,L.
Then the definition of F [UI ] is changed to

F [UI ] :=
∑

j1,...,jL

(⊗L
l=1 V

jl

E1,l

)
WUIW

†(⊗L
l=1 V

jl

E1,l

)†
. (C2)

Under this replacement, we have Lemma 6. Other definitions
and lemmas in Sec. IV work with this replacement.

APPENDIX D: CLASSICAL WORK EXTRACTION

1. Formulation

Here we consider again the relation with work extraction
from a classical system. Since the original Jarzynski formula-
tion [12] considers only the deterministic time evolution, we
need to give a formulation of probabilistic time evolution in
the classical system as an extension of Jarzynski’s formulation.
That is, our formulation can be reduced into the probabilistic
work extraction from the classical systems, which is defined
as follows.

Definition 14 (classical work extraction). We consider a
classical system X and its Hamiltonian, which is given as a
real-valued function hX on X . We also consider a probabilistic
dynamics T (x|x ′) on X , which is a probability transition
matrix, i.e.,

∑
x T (x|x ′) = 1. We refer to the triplet (X ,hX,T )

as a classical work extraction.
This model includes the previous fully classical scenario

[12–18,22], in which we extract work from classical systems.
For example, the setup of the Jarzynski equality [12] is a
special case that T (x|x ′) is invertible and deterministic, i.e.,
T (x|x ′) is given as δx,f (x ′) with an invertible function f . We
call such a transition matrix invertible and deterministic. In
this case, the transition matrix T is simply written as f∗. That
is, for a distribution P , we have

f∗(P )(x) = P (f −1(x)). (D1)

Notice that the relation

(g ◦ f )∗(P ) = g∗(f∗(P )) (D2)

holds. When the transition matrix T is bistochastic, i.e.,∑
x T (x|x ′) = 1, there exist a set of invertible functions fl

and a distribution PL(l) such that T = ∑
l PL(l)fl∗, i.e.,

T (x|x ′) =
∑

l

PL(l)δx,fl (x ′). (D3)

This relation means that a bistochastic transition matrix T can
be realized by a randomized combination of invertible and
deterministic dynamics.

Under a classical work extraction (X ,hX,T ), because of
the energy conservation, the amount of the extracted work is
given as

wx,x ′ = hX(x) − hX(x ′) (D4)

when the initial and final states are x and x ′. More generally,
the initial state is given as a probability distribution PX on X .
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In this case, the amount of the extracted work is w with the
probability ∑

x ′,x:w=hX(x)−hX(x ′)

P (x)T (x ′|x). (D5)

For the entropy of the amount of extracted work, we can
show the following lemma in the same way as Lemma 2.

Lemma 14. We denote the random variable describing the
amount of extracted work by W . The entropy of W is evaluated
as

S[W ] � 2 log N, (D6)

where N is the number of elements of the set {hX(x)}x∈X .
Indeed, our CP work extraction determines the amount of

extracted work probabilistically dependently on the initial state
on the internal system. So our CP work extraction can be
regarded as a natural quantum extension of a probabilistic
classical work extraction.

2. Relation to CP work extraction

Next we discuss the relation between CP work extractions
and classical work extractions. A CP work extraction can
be converted to a classical work extraction under a suitable
condition as follows.

Definition 15 (classical description). For a level-4 CP work
extraction {Ej ,wj }, we define the probability transition matrix
T{Ej ,wj } as

T{Ej ,wj }(y|x) :=
∑

j

〈y|Ej (�x)|y〉 (D7)

and the function hX(x) is given as the eigenvalue of the
Hamiltonian ĤI associated with the eigenstate |x〉. Then we
refer to the triplet (X ,h,T{Ej ,wj }) as the classical description
of the level-4 CP work extraction {Ej ,wj } and denote it by
T ({Ej ,wj }).

Hence, when the support of the initial state ρI of an FQ work
extraction F = (HE,ĤE,U,ρE) belongs to an eigenspace of
the Hamiltonian ĤE , its classical description is given as
T (CP (F)). The above classical description gives the behavior
of a given level-4 CP work extraction {Ej ,wj }. When the initial
state of the internal system I is the eigenstate |x〉, due to the
condition (2), the amount of the extracted work is w with the
probability∑
j :w=wj

∑
y:wj =hx−hy

〈y|Ej (�x)|y〉 =
∑

y:w=hx−hy

T{Ej ,wj }(y|x). (D8)

Hence, the classical description T ({Ej ,wj }) gives the stochas-
tic behavior in this case. More generally, we have the following
theorem.

Theorem 15. Assume that PĤI
(ρI ) is written as∑

x PX(x)�x . [For the definition of PĤI
(ρI ), see (8)]. When

we apply a level-4 CP work extraction {Ej ,wj } to the system
I with the initial state ρI , the amount of the extracted work is
w with the probability∑

x,y:w=hx−hy

T{Ej ,wj }(y|x)PX(x). (D9)

Proof. Due to Lemma 1, the probability of the amount of
the extracted work w is∑
j :wj =w

TrEj (ρ) =
∑

j

TrPĤI
(Ej (ρ))δw,wj

=
∑

j

TrEj (PĤI
(ρ))δw,wj

=
∑

j

∑
x,y

PX(x)〈y|Ej (�x)|y〉δw,wj

(a)=
∑

j

∑
x,y

PX(x)〈y|Ej (�x)|y〉δw,wj
δwj ,hx−hy

=
∑

j

∑
x,y

PX(x)〈y|Ej (�x)|y〉δw,hx−hy
δwj ,hx−hy

(b)=
∑

j

∑
x,y

PX(x)〈y|Ej (�x)|y〉δw,hx−hy

(c)=
∑

x,y:wj =hx−hy

T{Ej ,wj }(y|x)PX(x), (D10)

where (a) and (b) follow from (2) and (c) follows from
(D7). �

Due to this theorem, in order to discuss the amount of
extracted work in the level-4 CP work extraction, it is sufficient
to handle the classical description. Theorem 14 is written as a
general form and contains the case when the initial state ρI is
commutative with the Hamiltonian. In this commutative case,
the amount of extracted work can be simulated by the classical
model.

Lemma 16. Given a level-4 CP work extraction {Ej ,wj },
when the CP work extraction {Ej ,wj } is unital, the transition
matrix T{Ej ,wj } is bistochastic.

Proof. Since

∑
j

〈y|Ej

(
1̂

|X |
)

|y〉 = T{Ej ,wj }(y|x)
1

|X | , (D11)

when the CP work extraction {Ej ,wj } is unital, the transition
matrix T{Ej ,wj } is bistochastic. �

Lemma 17. Given a classical work extraction (X ,hX,T ),
the transition matrix T is bistochastic if and only if there
exists a standard FQ work extraction F such that (X ,hX,T ) =
T (CP (F)).

Lemma 17 will be shown after Lemma 18. Since the set
of standard FQ work extractions is considered as the set of
preferable work extraction, it is sufficient to optimize the
performance under the set of classical work extractions with
a bistochastic transition matrix. That is, both models yield the
same distribution of the amount of extracted work. So our
model can be applied in the discussion for the tail probability
and the variance for the amount of work extraction as well as
the expectation.

As a subclass of bistochastic matrices, we consider the set
of unistochastic matrices. A bistochastic matrix T is called
unistochastic when there exists a unitary matrix U such that
T (x|x ′) = |Ux,x ′ |2. According to the discussion in Sec. IV and
Appendix C, we can consider an FQ work extraction F =
(HE1,ĤE,F [UI ],ρE), where ρE is a pure eigenstate of ĤE . As
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mentioned at the end of Sec. IV, since the corresponding CP
work extraction CP(F) depends only on the internal unitary
UI , the CP work extraction is denoted by ĈP(UI ). Then we
have the following lemma.

Lemma 18. Given a classical work extraction (X ,hX,T ),
when the transition matrix T is a unistochastic matrix
satisfying T (x|x ′) = |UI ;x,x ′ |2 with an internal unitary UI then

(X ,hX,T ) = T ( ˆCP (UI )). (D12)

In the corresponding FQ work extraction F =
(HE1,ĤE,F [UI ],ρE), the entropy of the final state of
external system is given as

S[W ] � S(TrIF [UI ](ρI ⊗ ρE)F [UI ]†) (D13)

for any pure eigenstate ρE of ĤE .
Proof. The relation (D12) can be shown from the definition

of ĈP(UI ). The relation (D13) can be shown in the same way
as (6). �

Proof of Lemma 17. Given a bistochastic matrix T , there
exist a probability distribution PA(a) and a unitary matrix UI ;a

such that

T (y|x) =
∑

u

PA(a)|UI ;a;x,y |2. (D14)

Then we choose the fully degenerate system HE2 spanned by
{|a〉E2} and the initial state ρE2 := ∑

a PA(a)|a〉E2E2〈a|. We
define the unitary U := ∑

a F [UI ;a] ⊗ |a〉E2E2〈a|. So we have
(X ,hX,T ) = T (HE,ĤE,U,ρE1 ⊗ ρE2) for any pure state ρE1

on HE1. �
As a special case of Lemma 18, we have the following

lemma.
Lemma 19. Given a classical work extraction (X ,hX,f∗)

with an invertible function f , the unitary

Uf : |x〉 
→ |f (x)〉 (D15)

satisfies (X ,hX,T ) = T (HE1,ĤE,F [Uf ],ρE).
Therefore, any invertible and deterministic transition matrix

T can be simulated by a shift-invariant FQ work extraction
only with the nondegenerate external system. So the reduction
to classical work extraction will be helpful in analyzing the
heat engine. That is, in several settings, the analysis of the heat
engine can be essentially reduced to the analysis of classical
work extraction.

APPENDIX E: RELATIONS AMONG FIDELITIES
ON THE TRIPARTITE SYSTEM

In this appendix we derive several useful relations among
fidelities on a tripartite system HA,HB,HC . We consider the
state |�〉 := ∑

a

√
P̃A(a)|a,ψB|a〉 on HA ⊗ HB and the state

|�〉 := ∑
a

√
PA(a)|a,φBC|a〉 on HA ⊗ HB ⊗ HC . Then we

define ρ := |�〉〈�|. We also define |φC|a〉 := 〈ψB|a|φBC|a〉. In
this case, we have the following lemma.

Lemma 20. We state the following:

F (|�〉〈�|,ρAB)

=
∑
a,a′

√
P̃A(a)PA(a)

√
P̃A(a′)PA(a′)〈φC|a′ |φC|a〉. (E1)

Proof. We show that

F (|�〉〈�|,ρAB)

= max
|ψC 〉

F (|�〉〈�||ψC〉〈ψC |,|�〉〈�|)2

= max
|ψC 〉

∣∣∣∣∣
∑

z

√
P̃A(a)PA(a)〈ψB|a,ψC |φBC|a〉

∣∣∣∣∣
= max

|ψC 〉

∣∣∣∣∣
∑

z

√
P̃A(a)PA(a)|φC|a〉

∣∣∣∣∣
=

∑
a,a′

√
P̃A(a)PA(a)

√
P̃A(a′)PA(a′)〈φC|a′ |φC|a〉. (E2)

�
Lemma 21. When ρAC is written as

∑
a PA(a)|a〉〈a| ⊗ ρC|a ,

we have

max
σC

F (ρAC,ρA ⊗ σC) =
∑
a,a′

PA(a)PA(a′)F (ρC|a,ρC|a′ ).

(E3)

Proof. We first show the case when the state ρC|a is a
pure state |φC|a〉. We choose the purification |�({eiθa })〉 :=∑

a eiθa

√
P̃A(a)|a,a,φC|a〉 of ρAC on HA ⊗ HB ⊗ HC and

the purification |�({eiθ ′
a })〉 := ∑

a eiθ ′
a

√
P̃A(a)|a,a〉 of ρA on

HA ⊗ HB . Applying Lemma 20, we have

max
σC

F (ρAC,ρA ⊗ σC)

= max
σC

max
{eiθa },{eiθ ′

a }
F (��({eiθ ′

a }) ⊗ σC,��({eiθa }))

= max
{eiθa },{eiθ ′

a }
max
σC

F (��({eiθ ′
a }) ⊗ σC,��({eiθa }))

= max
{eiθa },{eiθ ′

a }
F (��({eiθ ′

a }),TrC��({eiθa }))

= max
{eiθa },{eiθ ′

a }

∑
a,a′

ei(θa−θ ′
a )−i(θ ′

a−θa )PA(a)PA(a′)〈φC|a′ |φC|a〉

=
∑
a,a′

ei(θa−θ ′
a )−i(θ ′

a−θa )PA(a)PA(a′)|〈φC|a′ |φC|a〉|, (E4)

where we use the abbreviations

��({eiθ ′
a }) := |�({eiθ ′

a })〉〈�({eiθ ′
a })|, (E5)

��({eiθa }) := |�({eiθa })〉〈�({eiθa })|. (E6)

The equality (E4) implies (E3).
Now we consider the general case. We fix a purifica-

tion |φCD|a〉 of ρC|a on HC ⊗ HD so that F (ρC|a,ρC|a′ ) =
|〈φC|a′ |φC|a〉|. We choose the purification |�({eiθa })〉 :=∑

a eiθa

√
P̃A(a)|a,a,φCD|a〉 of ρAC onHA ⊗ HB ⊗ HC ⊗ HD

and the purification |�({eiθ ′
a })〉 := ∑

a eiθ ′
a

√
P̃A(a)|a,a〉 of ρA

on HA ⊗ HB . Similarly, we have

max
σC

F (ρAC,ρA ⊗ σC)

= max
σCD

max
{eiθa },{eiθ ′

a }
F (��({eiθ ′

a }) ⊗ σCD,��({eiθa }))
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= max
{eiθa },{eiθ ′

a }
max
σCD

F (��({eiθ ′
a }) ⊗ σCD,��({eiθa }))

=
∑
a,a′

ei(θa−θ ′
a )−i(θ ′

a−θa )PA(a)PA(a′)|〈φC|a′ |φC|a〉|

=
∑
a,a′

ei(θa−θ ′
a )−i(θ ′

a−θa )PA(a)PA(a′)F (ρC|a,ρC|a′ ), (E7)

which implies (E3). �
Lemma 22. When PA = P̃A,

F (|�〉〈�|,ρAB) � max
σC

F (ρAC,ρA ⊗ σC). (E8)

The equality holds if and only if 〈φC|a′ |φC|a〉 � 0 and
〈φC|a|φC|a〉 = 1.

Proof. We use the notation in Lemmas 20 and 21. Then we
have

〈φC|a′ |φC|a〉 + 〈φC|a|φC|a′ 〉 � 2F (ρC|a,ρC|a′ ). (E9)

Combining Lemmas 20 and 21, we have

F (|�〉〈�|,ρAB)

=
∑
a,a′

√
P̃A(a)PA(a)

√
P̃A(a′)PA(a′)〈φC|a′ |φC|a〉

�
∑
a,a′

PA(a)PA(a′)F (ρC|a,ρC|a′ )

= max
σC

F (ρAC,ρA ⊗ σC). (E10)

Hence, we obtain (E8). The equality in (E8) holds if and only
if that in (E9) holds. So we obtain the desired equivalence. �
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