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Necessary condition for incompatibility of observables in general probabilistic theories
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We quantify the intrinsic noise content of an observable in a general probabilistic theory and derive a noise
content inequality for incompatible observables. We apply the derived inequality to standard quantum theory, the
quantum theory of processes, and polytope state spaces. The noise content for positive operator-valued measures
takes a particularly simple form and equals the sum of minimal eigenvalues of all the effects. We illustrate our
findings with a number of examples including the introduced notion of reverse observables.
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I. INTRODUCTION

Quantum theory can be considered a particular instance
within a wide range of probabilistic theories [1,2]. On the
one hand, quantum theory inherits the general properties
of probabilistic theories and, consequently, one may deduce
some features already from a general operational framework.
For instance, the limitations on broadcastable subsets of
states can be derived from this generality [3]. On the other
hand, particular properties of quantum theory, like specific
constraints on nonlocality, partially fix its position with respect
to other probabilistic theories [4]. As a result, specification of
information-theoretic axioms may be sufficient for quantum
theory to be derived [5].

A general probabilistic theory operates with notions of
states and observables. The set of states S is convex since
any probabilistic mixture of states must be a valid state. Ob-
servables are then affine functionals from the set of states S to
the set of probability distributions. In standard quantum theory,
states are associated with density operators, whereas observ-
ables are mathematically described by positive operator-valued
measures (POVMs) [6-8]. However, when we are testing
a quantum process, quantum channels are the examined objects
and they are hence regarded as states, whereas observables can
be described by process POVMs [9—11]. Theories describing
the Popescu-Rohrlich (PR) box [12] and polytope state spaces
serve as other examples of general probabilistic theories
[13,14].

A set of observables in a general probabilistic theory may
possess the property of being incompatible, which means that
those observables cannot be seen as components of a single
observable [15-18]. Incompatibility is a nonclassical feature,
since in a general probabilistic theory with a classical state
space all observables are compatible, while every nonclassical
theory possesses some incompatible observables [19,20]. It
is possible to compare the incompatibility of finite sets of
observables in different probabilistic physical theories in a
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quantitative way [21-23]. Interestingly, quantum theory con-
tains maximally incompatible pairs of observables, but only
when the underlying Hilbert space is infinite dimensional [24].

This work focuses on the incompatibility of observables in
general probabilistic theories. The main goal of the present
investigation is to quantify the noise content for observables
in general probabilistic theories and to exploit it in deriving
a sufficient condition for compatibility, i.e., a necessary
condition for incompatibility for a collection of observables.
To demonstrate that the derived condition is noteworthy, we
use it to formulate a readily verifiable necessary condition for
incompatibility in quantum theory. To anticipate this result, the
condition takes the following form for POVMs: If m POVMs
are incompatible, then the sum of minimal eigenvalues of all
their elements is less than m — 1. We illustrate our findings by
anumber of examples including a class of reverse observables.
Consideration of standard quantum theory is followed by
theories with quantum processes as states, as well as the square
bit state space.

We note that, in the case of POVMs, noise robustness of
incompatibility has been investigated in several recent works
[25-28]. The conditions found in those works are tighter than
the condition presented in this work, but this is due to the fact
that they are applicable only for POVMs with some specific
structure or symmetry. Moreover, in contrast to most of the
earlier studies (see, for example, [15,17,22,29]), we do not
add noise to given observables but rather look for the intrinsic
noise which is already present. We show that a meaningful
nontrivial noise inequality can be derived already at the level
of a general probabilistic theory.

The paper is organized as follows. In Sec. II the incom-
patibility of observables in general probabilistic theories is
reviewed. In Sec. III the noise content in observables is
defined, and a sufficient condition for compatibility of a set of
observables is formulated. The usage of the general condition
is then demonstrated in Sec. I'V.

II. INCOMPATIBILITY OF OBSERVABLES IN GENERAL
PROBABILISTIC THEORIES

A. States, effects, and observables

We begin by recalling the basic elements of the standard
framework of general probabilistic theories (see, e.g., [30,31]
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for more detailed presentations). In a general probabilistic
theory, the set of states S is a convex subset of a finite-
dimensional real vector space V. The convexity is a result of
the probabilistic nature of the theory, meaning that the convex
sum ps; + (1 — p)s; is a state whenever s;,s, are states and
0<p<L

We denote by F(S) the linear space of all affine functionals
from S to R; i.e., a functional e : S — R is in F(S) if it
satisfies

e[psi + (1 = p)s2]l = pe(s)) + (1 — ple(s2)

for all 51,5, € §,0 < p < 1. For two functionals e, f € F(S),
we denote e < f if e(s) < f(s) for all s € S. We further
denote by u € F(S) the unit map satisfying u(s) = 1 for all
s € S. The set of effects on S is defined as

ES)={ee F(S):0< e < uj,

i.e., it is the convex subset of those affine functionals e for
which 0 < e(s) < 1 for all s € S. The set of effects arising
as functionals on states is a particular example of an effect
algebra [30]. In particular, £(S) has a partially defined sum
e+ f, which is simply the functional addition of e¢ and f
defined whenever e + f < u.

An observable with a finite number of outcomes is a
function A : x — A, from a finite outcome set X C Z to E(S).
The number A, (s) is interpreted as the probability of getting
the outcome x in a measurement of the observable A when the
system is in the state s. As we must have erx A,(s) =1 for
alls € S, we have the normalization condition ) | .., A, = u.
We denote the set of observables with an outcome set X by
Oy, and by O the set of all observables with a finite number
of outcomes.

A special type of observable is the trivial observable T,
which is, such that for each outcome x, T,(s) = T,(s") for all
s5,8" € §. We denote the set of trivial observables by 7. Since
the outcome probabilities for a trivial observable are the same
for all states, it does not provide any information on an input
state.

In what follows we recall the two most important instances
of general probabilistic theories: standard quantum theory and
the quantum theory of processes.

Example 1: Quantum theory. Let S, be the convex set of
density operators o on a Hilbert space H. Then the set of effects
&(S,), defined as affine mappings on S,, can be represented
as e(p) = tr[pE] for all states o, where E is a self-adjoint
operator satisfying the operator inequalities 0 < E < 1. This
correspondence is one to one, so effects can be identified with
these effect operators. With this identification, an observable
A : x — A, with a finite outcome set X is a POVM satisfying
Y vex Ac = 1. Atrivial observable T is of the form T, = p, 1,
where p, is a probability distribution on X.

Example 2: Quantum theory of processes. We denote by
L(H) the bounded linear operators on a Hilbert space H. Let
S, be the set of completely positive and trace-preserving maps
@ : L(Ha) = L(Hp), called quantum channels or processes.
Then the set of effects £(S,) can be represented as the set
of operators M on H, ® Hp satisfying 0 < M < o ® 1 for
some density operator ¢ on H 4. This representation is given
as e(®) = tr[QpM], where Qg is the Choi operator of &,
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FIG. 1. (a) Action of the classical copying channel. (b) Example
of the relabeling channel.

e, Qo =(id® O)|Ys) (], where v =Y ¢ ® ¢
and {qbi};l:l is an orthonormal basis of H4. An important
point is that this correspondence between affine maps and
operators is not one to one; two operators M and M’ correspond
to the same effect ¢ exactly when M — M ' =w® 1 for
some traceless operator w [32,33]. In this representation an
observable A : x — A, with afinite outcome set X satisfies the
normalization ) _, A, = ¢ ® 1 for some density operator o
on H 4. This kind of map is called a process POVM, or PPOVM
for short [10]. A trivial PPOVM is of the form T, = p, &, ® 1,
where each &, is a density operator on H, and p, is a
probability distribution. Two trivial PPOVMs T, = p,&, ® 1
and T, = p'&. ® 1 correspond to the same trivial observable
exactly when the probability distributions p, and p; are the
same.

B. Postprocessing of observables

A classical channel v between outcome spaces X and Y
is a right stochastic matrix with elements v,,, x € X, y € Y,
ie,0< vy < land ) yvyy = 1. The number vy, is the
transition probability for an element x to be transformed into
y. Classical channels are often used to describe noise, but we
can also think of a classical channel as an active transformation
that is implemented on outcomes. In the following we recall
two classes of classical channels that are used later.

Example 3: Copying the measurement outcomes. Measure-
ment outcomes are just classical symbols and thus can be
copied. To see copying as a classical channel, let Y = X x X.
The stochastic matrix vy, related to copying is defined as
vi, = 1if y = (x,x) and vy, = 0 otherwise. This transforms
any x to (x,x). Figure 1(a) depicts the action of the copying
channel. Multiple applications of a copying channel allow one
to make an arbitrary number of copies of an outcome x. If
the number of copies equals m, then we call it an m-copying
channel.

Example 4: Relabeling the measurement outcomes. The
copying channels belong to a wider class of classical channels
where measurement outcomes are relabeled deterministically
into some other outcome. Let f: X — Y be a relabeling
function. The derived stochastic matrix v){,, is defined as

v,{ y=11if f(x) =y and v,fy = 0 otherwise. In contrast to
the copying procedure, generally several outcomes can be
relabeled into a single new outcome; see Fig. 1(b).

Let A be an observable with an outcome set X and let v be
a classical channel between X and some other outcome space
Y. We denote by v o A the new observable defined as

WoA), = vyA, (1)

xeX
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FIG. 2. A" is the reverse observable with respect to A. Outcome
y of observable A does not contribute to the outcome y of observable
A", so they are illustrated by complementary colors. RNG stands for a
random number generator which uniformly chooses outcome y # x.

for all outcomes y € Y. Physically, the observable v o A is
implemented by first measuring A and then using the classical
channel v on each obtained measurement outcome. This way
of forming new observables gives rise to a preorder in the set
of observables [34-36]. Namely, for two observables A and B,
we say that B is a postprocessing of A if there exists a classical
channel v such that B = v o A.

Example 5: Reverse observable. A reversing channel is a
classical channel v' : X — X such that v, = 0if x =y and
Vyy = vy, for all x,x" # y. If the outcome set X contains N
elements, then vy, = vy, = Nl_l for all x,x” # y. For each
observable A, the observable A" = v o A is called the reverse
version of A. If A has N outcomes, then the reverse observable
A" takes the form

1
A=y TN
T B

(u—A). 2

The physical meaning of A" is illustrated in Fig. 2. After A has
been measured and outcome x has been obtained, we roll a
fair dice with N — 1 sides and randomly choose any outcome
y different from x. This is taken to be the outcome of the new
observable A", which is hence given by formula (2).

Example 6: Doubly reverse observable. Performing the
reversing postprocessing two times, we get

AT = ———[A, + (N — 2ul, 3)

_ 1

(N — 1)
or, concisely, A" = (1 — A)A + AT, where A = %N 1)22) and T
is the trivial observable with uniform distribution of outcomes.
In the case of two outcomes (N = 2), the doubly reverse
observable coincides with the original one, i.e., A™ = A.

As one would expect, a trivial observable T is a postpro-
cessing of any other observable A. To see this, we define a
classical channel v as v = T, (so) for all x, where s, is any

state. Then
W oA () =D v ALs) =Y Ty(s0)Au(s) = Ty(s0)
xeX xeX
= Ty(s) ’

showing that vT o A = T. The classical channel vT just erases
the outcome obtained in the A measurement and replaces it
with a new outcome according to the measurement outcome
distribution of T, which is the same for all states.

C. Incompatibility of observables

A collection of observables P is compatible if there exists
an observable C, with an outcome set Y, such that each
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FIG. 3. Observables AV, ... A®™ are compatible if each of them
is a postprocessing of some observable C.

observable A € P is a postprocessing of C. A compatible col-
lection of observables can thus be implemented simultaneously
by first measuring C, then copying the classical outcomes,
and finally applying the relevant postprocessings to the copied
outcomes. This definition is depicted in Fig. 3. If a set of
observables is not compatible, then it is called incompatible.
Let {AD, .. At} be a compatible set of m observables,
with outcome sets X, ... X" respectively. Thus, there
exists an observable C and classical channels v, ... v

such that
AV =yDoC, j=1,...,m. 4)

To see this definition of compatibility in an equivalent form,
we denote

)
x“) ..... xm = Z l_[ vyi(n (5)

forallx) e XV, j=1,...
from (4) it follows that

Aij“))= Z Gy xm. (6)

X0 i]

,m. Then G is an observable, and

Thus, the compatibility of observables AL, ... A implies
that there exists a joint observable G with the outcome space
XM x ... x X such that the observables are marginals of
the joint observable. Conversely, starting from G and taking
classical channels corresponding to relabeling functions that
are projections, pry : X" — X, pre(xi, ...,x,) = Xy, We see
that (6) is a special case of (4). As noted in [37] in the case of
quantum observables, we conclude that a subset of observables
is compatible if and only if they have a joint observable.
The latter condition is usually taken as the definition of joint
measurability of quantum observables [38].

III. NECESSARY CONDITION FOR INCOMPATIBILITY
A. Noise content of an observable

In order to formulate a necessary condition for incompati-
bility of observables, we first quantify their intrinsic fuzziness,
or noise content, and then use the extraction of that noise in an
explicit construction of a class of joint observables.

In a general probabilistic theory, one can introduce a
procedure of mixing observables. Suppose A : X — £(S) and
B:Y — £(S) are observables with outcome sets X and Y,
respectively. Then a mixture of A and B, with a mixing
parameter 0 <7 < 1, is an observable C: X UY — £(S)
such that

C.=tA,+(1—-1B;, )
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for all z € X UY, where A and B can be extended to X U Y
by defining A, =0ifz ¢ X and B, =0ifz ¢ Y.

We are interested in a situation where one of the observables
on the right-hand side of mixture (7) is not arbitrary but belongs
to a some specified subset ' € O which describes noise in
the measurement. If the target observable C is not in A/, then
this requirement imposes limitations on possible values of the
mixing parameter .

For the following consideration, we fix a nonempty subset
N C O which describes noisy observables. Then, the physical
meaning of Eq. (7) is to decompose an observable into its noisy
part and the rest. A quantitative description of the noise content
is attained by maximizing ¢. Therefore, for each observable A,
we denote

wAN) =sup{l0 < <1:tN+ (1 -1)B=A
for some N € A/ and B € O} (8)

and call this quantity the noise content of A with respect to N
We note that the observables N and B in (8) can be assumed
to have the same outcome set as A.

Whenever A, > N, for some 0

<
t t
use the notation A > N. Suppose 0 < 7 < 1 and A > N; then
we can write A as a mixture

A =N+ (1-nA, )

t <1forallx € X, we

where A is the observable defined as
A=1-1)""(A=tN). (10)
Conversely, if there exists some observable A such that 9

t
holds, then A > N. Thus, one can reformulate the definition
of noise content of A with respect to A/ as follows:

wA;N) =sup{0 <7 < 1 :A;NforsomeNeN}. (11)

Specific properties of the map A — w(A; N) depend on
the choice of the subset N. There are, however, some general
features valid for any noise set AV. In particular, we observe
the following:

(a) If v is a classical channel and v o N” € N, then w(v o
A;N) = wAN).

(b) If N is convex, then w[sA+ (1 —s)B;N]>
swAN)+ (1 —s)wB;N) forall 0 < s < 1.

The first property follows directly from the definition of
w(A; N), while the latter is seen to be valid by first noticing
that

sA, + (1 — 9B, = swA; NN, + (1 — s)w(B; N)M,
for some observables N,M e A and all outcomes x. We denote
pa = swA;N)/[swA;N) + (1 — s)w(B; N)],
pe = (1 =) wB:N)/[swA;N) + (1 — s)w(B; M)],
and then obtain
sA, + (1 —s)B;
> [swA;N) + (1 = )wB; M)I(paN + pgM),,

where paN + pgM € N as the set \V is convex.
The prototypical choice for N is to take N' = 7T, the set of
all trivial observables. In this case, we simply say that w(A; 7))
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is the noise content of A. The set 7 is convex and vo 7 C 7T
for all classical channels.

Proposition 1. Let A be an observable on a finite outcome
set X. Then w(A;7) = )y infies Ac(s).

Proof. Denote a, = inf,esAi(s) and a =) a,. First
assume that a, =0 for all x € X sothat a =0. Let T € 7
be a trivial observable and take any ¢, 0 < ¢ < 1, such that

t
A > T. By our definitions this is equivalent to A, (s) > ¢ T,(s)
forall x € X and s € S, so that for all x € X we have that

0=a, =inf A,(s) > tinf T, (s) = tp,,
seS seS

where p, = T,(s) is the probability distribution defined by T.
Summing over x we get

O=a=2ax>t2pxzt.
X X

Since also 0 < ¢ < 1, we must have r = 0, and since this holds
forall T € 7, by (11) we get that w(A;7) =a = 0.

Second, assume that a, # 0 at least for some x € X. By
similar arguments as above, we see that for all x € X we have
a, > t'p., where p’. = T’ (s) is a probability distribution de-
fined by some trivial observable T' € 7 for some 0 < ¢’ < 1.
Summing over all x we then get an upper bound for ¢’ as
a=7).a. >1t. We see that the upper bound is attained if
we define T as T'(s) = p). = a,/a. Thus by (11) we have that
wA;7T) =a. [ |

B. Joint measurement scheme

The joint measurement scheme that we next discuss is an
elaboration of the one presented in [28]. The idea is that we
first write the definition of compatibility in a slightly different
way, then limit the defining conditions, and in this way we
obtain a computable sufficient condition for compatibility.

From the definition, two observables A and B are compati-
ble if there exists a third observable C and classical channels v,
and v, such that A = v; o C and B = v, o C. Let us consider a
seemingly more general scheme, where we are asking for the
existence of two observables C and D, classical channels vy,
V2, 41, and [,, and a mixing parameter ¢ such that

A:lV10C+(1—l)[L10D, (12)

B:tvzoC-f-(l—l)[LzOD. (13)

Thus, A and B are now required to be mixtures of postprocess-
ings of C and D; see Fig. 4.

Clearly, conditions (12) and (13) reduce to the usual com-
patibility conditions when ¢ = 1. Therefore, every compatible
pair can be written in this new form. Conversely, if two
observables A and B can be written in the form of conditions
(12) and (13), then they are compatible. In fact, A and B are
postprocessings of the mixed observable ¢tC + (1 — 7)D, but
now the mixture has an extra outcome to keep track of which
observable was measured each time. After measuring either C
or D, we duplicate the outcome and postprocess with either v,
and v, or i and p,, depending on the measured observable.

C. Incompatibility inequality

As a special case of the joint measurement scheme
described previously, we limit the choice of classical channels
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FIG. 4. The considered joint measurement scheme for two
observables A and B consists of a random choice between two
observables C and D, followed by separated postprocessings for both
A and B that aim to approximate these observables.

u1 and v, to those that make observables p; oD and v, 0 C
trivial. Since any trivial observable is a postprocessing of any
other observable, we get all trivial observables, irrespective of
C and D. Hence, conditions (12) and (13) reduce to

A=1v0C+(1—nT, (14)

B:tT2+(1—I)M20D, (15)

where Ty and T, are arbitrary trivial observables. Since we
have added an extra limitation to conditions (12) and (13), we
cannot be sure anymore that a pair of compatible observables
has this kind of representation. However, if w(A;7) > 1 —¢
and w(B;7T) > 1, then by the definition of noise content we
can find suitable observables C and D such that conditions
(14) and (15) hold.

As a conclusion, we obtain the following result and its
equivalent formulation.

Proposition 2. If A and B are two observables such that
w(A; 7))+ w(B;7T) > 1, then they are compatible.

Proposition 3. If A and B are incompatible observables,
then w(A; 7) + w(B;7) < 1.

The joint measurement scheme has a direct generalization
for any finite number of observables. Let us consider m
observables AV, ... A®=D and A _ We can then generalize
conditions (14) and (15) to

AV = pjvj o CYV + (1 - ppTY, (16)

where TY) is an arbitrary trivial observable for each j =
I,...,m and p; is an arbitrary probability distribution. As
above, if wW(AV; T) > 1 — p; forall j we can make (16) hold.
By summing over j we conclude the following generalization
of Proposition 3.

Proposition 4. If AV A® | A are incompatible ob-
servables, then w(AV; 7)) + - - - + w(A™; T) < m — 1.

IV. APPLICATIONS OF THE INCOMPATIBILITY
CONDITION

A. Eigenvalue condition for POVMs

If A is an observable in finite-dimensional quantum theory
described by a POVM, we have that

ingAx(s) = min M 17

vA0 (YY)
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It follows that infycs A, (s) is the smallest eigenvalue of the
effect operator A, . Hence, by Proposition 1 we conclude that
w(A; 7T) is the sum of the minimal eigenvalues of operators
A.. Combining this with Proposition 4, we reach the following
necessary condition for incompatibility.

Corollary 1. If AL, ... A" is a collection of m incompat-
ible POVMs, then the sum of the minimal eigenvalues of all
their effects is smaller than m — 1.

We next illustrate the use of Corollary 1 in the case of
reverse observables. Consider a regular rank-1 POVM A, i.e.,
the effects of A read A, = %Px, where d is the dimension
of the Hilbert space, N is the number of outcomes, and
P, is a one-dimensional projection. Examples of regular
rank-1 POVMs include all nondegenerate sharp POVMs and
symmetric informationally complete POVMs.

As before, we denote by A" = 1" o A the reverse version of
A.If Ais aregular rank-1 POVM, then the smallest eigenvalue
of each operator Al is Nz(va :11)' Applying Corollary 1, we
conclude that the reverse versions of m regular rank-1 POVMs
with N outcomes are compatible if

N>d-1m+1. (18)

It follows from this observation that, for instance, the reverse
versions of two regular rank-1 POVMs ind = 2 are compatible
forall N > 3. One can readily find POVMs with two outcomes
whose reverse versions are incompatible; this is the case
whenever the original ones are incompatible since, in the case
of two outcomes, reversing is a reversible classical channel.
Since the reversing channel is more and more noisy when
the number of outcomes increases, one may wonder if there
are any incompatible collections of reverse POVMs when
the number of outcomes is more than two. In the following
example we present a triplet of regular rank-1 POVMs whose
reverse versions are incompatible; the simple compatibility
condition (18) is hence not trivial.

Example 7: Incompatible reverse POVMs. Consider three
orthonormal bases {¢;}3_,, {¥:}7_,, and {x;}>_, in a three-
dimensional Hilbert space H3 such that a set {¢;,¥;,xk} is
linearly independent for all fixed i,j,k. Let A, B, and C
be the POVMs related to these bases, i.e., A; = |¢;){¢il,
B; = |¥;){(¥;], and C; = |x;){x;|. The fact that the reverse
POVMs A", B, and C' are incompatible can be proven by
a contradiction. Suppose A', B, and C" are compatible, so
that there exists a joint POVM G with elements G;j; such
that Af = ij G,'jk, B; = Zik Gijk, and CZ = Zij Gijk~ As
(@i | Alg; ) = 0and all the operators G; . are positive, we have
(¢i 1 Gjjkpi ) = 0 and this further implies G;jrp; = 0. Simi-
larly, G;jx¥; = 0 and G jx xx = 0. Since the set {¢;, ¥, xx}
spans H3, we conclude that G;jx = 0. This contradicts the
normalization ), Gijx = 1. Hence, the three POVMs A",
B', and C' are incbmpatible.

The sufficient condition (18) for compatibility of the reverse
versions of regular rank-1 POVMs is not necessary. We next
demonstrate that there are compatible observables that do not
satisfy (18).

Example 8: Two mutually unbiased bases. Consider a
d-dimensional Hilbert space H; and an orthonormal basis
{o; }jlz_ol in it. We denote w = ¢/%/? and define another
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orthonormal basis {v; }_‘]1.;(1) by

1 d—1 .
v = ﬁgwm (19)

These two bases are mutually unbiased, meaning that
(@i ;)] = JLJ for all i,j=0,...,d —1. The related
POVMs A; = |¢;){g:| and B; = |/;) (| consist of noncom-
muting projections and are hence incompatible.

The reverse versions A" and B" are incompatible if d = 2,
since then A" and B" are just relabelings of A and B. However,
for any d > 3, A" and B" are compatible even if inequality
(18) does not hold. To see this, we recall that, by Proposition
2 in [39], A" and B" are compatible whenever there exists a
quantum state o € S(H) such that

1—36; 1
7 O and tr[Bjo] =

It is not hard to check that the operator

— 80
d—1"

tr[A,- O’] = (20)

| !
o= ﬁglwi)(wil

1

RCENED) K;ng(lwwjl + o))

is a density operator and satisfies the conditions above.
Therefore, A" and B" are compatible.

As explained in Example 6, the reversing channel V'
can also be applied to an already reverse observable A’ to
obtain a doubly reverse observable A™. It is not hard to see
from Proposition 1 that two doubly reverse observables are
always compatible if their number of outcomes N > 3. More
generally, a sufficient condition for compatibility of m doubly
reverse observables with N outcomes each is m < (N — 1)%.

B. Eigenvalue condition for PPOVMs

Let A be a PPOVM with an outcome set X and the
normalization ) _, A, = ¢ ® 1 for some state 9. We denote
by m, the minimal eigenvalue of the PPOVM element A, for
each x € X. The noise content of A satisfies

wA;T) > me. (1)

xeX

To see this, we define a trivial PPOVM T as

T, = &Q ®1, (22)
m
where m =) _y m,. Since
A, >2ml1®1>2mo®l, (23)
we can define
1
Al=——(A —mo®1) (24)
1—m

and A’ is a valid PPOVM. We can then write
A=mT+ 1 -mA, (25)

which confirms (21). Proposition 4 thus implies the following
result, analogous to Corollary 1.
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FIG. 5. Squit state space.

Corollary 2. 1f AL, ... A" is a collection of m incompat-
ible PPOVMs, then the sum of the minimal eigenvalues of all
their effects is smaller than m — 1.

We note that, in contrast to the case of POVMs, the
eigenvalue formula (21) provides only a lower bound for the
noise content of a PPOVM. For instance, let

Ax = p.x|wx)(¢x| ®1, (26)

where (|, ) =8,y and p, is a probability distribution.
Then m, = 0 for all x and the right-hand side of (21) equals
zero. But the PPOVM A is trivial, so the left-hand side of (21)
equals 1.

C. Polytope state spaces

A compact convex subset P of a finite-dimensional vector
space V is a polytope if it has a finite number of extreme
elements. Let ext(P) = {s1,...,s,} be the set of extreme
elements of a polytope P. Since every state s € P can be
represented as a convex sum of elements in ext(P), we have

that
A(s) = Ax(z)»isz) = Z)»iAx(Si)
> in min Ay (si) = min Ay(s¢)

for every s € P, and thus inf;cs A, (s) = Mingeexyp) Ax(s).
Combining this with Proposition 4, we get an analogous
result to the previous eigenvalue conditions for POVMs and
PPOVMs.

Corollary 3. 1f AL, ... A" is a collection of m incompat-
ible observables on a polytopic state space P, then the sum of
minimal values of all of their effects on ext(P) is smaller than
m — 1.

In the following, we take S to be a state space that is
isomorphic to a square in R2, i.e., to the convex hull of
four points s1,5>,53,5; € R? satisfying s, + 53 = 55 + 54 (see
Fig. 5). This is called the square bit state space, or squit state
space for short.

We consider a class of binary observables A* and B?,
parametrized by «, 8 € [0,1], whose outcomes are labeled by
=+ and defined on the extreme points s1, $3, 53, and s4 as

Al(s1) = Al(s2) =a, Al(s3) =Al(ss) =1,
Bi(s) =B (s5) =B, Bl(s2)=B(s3)=1.
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FIG. 6. Observables A* and B#.

The values of A% and B? are depicted in Fig. 6.
Now we see that

w(A% 7)= min A,(s)+ min A_(s) =a,
seext(S) seext(S)

and similarly that w(B?; T) = B. Hence, by Corollary 3, if
a+B=>1, (27)

then observables A* and B are compatible. It is easy to find
A® and B? as mixtures with maximal noise contents,

AY =T+ (1 —a)A,
Bf = BT + (1 — B)B,

where T is the trivial binary observable with T, (s) = 1 and
T_(s)=0foralls € S,and A = A” and B = B°.
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The observables A and B are themselves incompatible.
More so, they are maximally incompatible in the sense that
the minimum amount of noise one has to mix them with
to make their noisy versions compatible is enough to make
any other pair of observables compatible. More precisely, it
was shown in [21] that the observables AA + (1 — A)T; and
uB 4+ (1 — )T, are incompatible for all choices of trivial
observables Ty and T, if and only if A + p > 1. Therefore,
we conclude that inequality (27) derived from Proposition 2 is
actually both necessary and sufficient for the compatibility of
A% and BF.

V. CONCLUSIONS

We have considered general probabilistic theories on an
equal footing and quantified the noise content of observables
in every such theory via the set of trivial observables. In the
case of standard quantum theory, the noise content is merely
the sum of minimal eigenvalues of the POVM effects. In the
quantum theory of processes, the noise content is bounded
below by the sum of minimal eigenvalues of the corresponding
PPOVM effects. In general, the noise content can be quantified
with respect to any subset of observables.

We have derived the noise content inequality for a pair
of observables, which is a necessary condition for their
incompatibility. Our approach is based on a modification
of the adaptive strategy for building a joint observable. We
have then extended this result to the case of m observables.
By way of examples with reverse regular observables we
have demonstrated nontriviality of the derived noise content
inequality. Moreover, this inequality turned out to be not
only necessary but also sufficient for incompatibility of some
observables in the square bit state space.
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