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Theoretical description and simulation of large quantum coherent systems out of equilibrium remains a daunting
task. Here we are developing an approach to it based on the Pechukas-Yukawa formalism, which is especially
convenient in the case of an adiabatically slow external perturbation, though it is not restricted to adiabatic
systems. In this formalism the dynamics of energy levels in an externally perturbed quantum system as a function
of the perturbation parameter is mapped on that of a fictitious one-dimensional classical gas of particles with
cubic repulsion. Equilibrium statistical mechanics of this Pechukas gas allows us to reproduce the random matrix
theory of energy levels. In the present work, we develop the nonequilibrium statistical mechanics of the Pechukas
gas, starting with the derivation of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) chain of equations
for the appropriate generalized distribution functions. Sets of approximate kinetic equations can be consistently
obtained by breaking this chain at a particular point (i.e., approximating all higher-order distribution functions
by the products of the lower-order ones). When complemented by the equations for the level occupation numbers
and interlevel transition amplitudes, they allow us to describe the nonequilibrium evolution of the quantum state
of the system, which can describe better a large quantum coherent system than the currently used approaches.
In particular, we find that corrections to the factorized approximation of the distribution function scale as 1/N ,
where N is the number of the “Pechukas gas particles” (i.e., energy levels in the system).
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I. INTRODUCTION

The study of quantum many-body systems out of equi-
librium has attracted enormous attention in recent years,
especially in application to artificial quantum coherent struc-
tures. One of the main stimuli for this research is the quest
for a practically useful quantum computer. Assuming the
universal applicability of quantum mechanics, the practical
realization of a universal quantum computer remains a rather
distant possibility due to the large number of physical qubits
necessary for its operation and the extreme fragility of its
quantum states with respect to external and internal sources of
decoherence [1–3]. Moreover, as was shown by Feynman [4],
simulation of a large enough quantum coherent system by
classical means is impossible due to the dimensionality of the
corresponding Hilbert space growing exponentially with the
size of the system (e.g., number of qubits). Unfortunately,
the size of a practically useful universal quantum computer
greatly exceeds the limits of what is tractable by classical
means. This makes the task of determining the degree of
“quantumness” of such a device, its design and optimiza-
tion exceedingly difficult [1–3,5–7]. An attractive alternative
is adiabatic quantum computing (AQC) [3,5] The starting
point is to consider a system governed by the general
Hamiltonian [8–10]

H (λ(t)) = H0 + λ(t)ZHb, (1)

where H0 is a complex unperturbed Hamiltonian with an
easily achievable nondegenerate ground state, λ(t) is a time
evolving parameter generally taken to be adiabatic, and ZHb

is a large bias perturbation term with Z � 1. Significant
progress was achieved in theoretical and experimental research
in this direction [2,8–17]. Nevertheless the development of

adiabatic quantum computers faces the same fundamental
problem of impossibility of their direct simulation by clas-
sical means [1–3]. This stimulates the search for alternative
theoretical methods that could provide some useful figures of
merit describing large quantum systems out of equilibrium.
A common approach to achieving quantum coherence in
nonequilibrium many-body dynamics is the Keldysh Green’s
function theory [18]; however, this approximation is limited
to short time intervals where its errors grow as a power of
time [18]. This paper aims at developing the basic elements of
such an approach, which would seem especially useful for, but
not necessarily restricted to, modeling of adiabatic quantum
computers. It was shown in Ref. [19] that the parametric
evolution of the system described by Eq. (1) can be mapped on
the classical Hamiltonian dynamics of a one-dimensional (1D)
gas model with long-range repulsion: the Pechukas gas. The
equilibrium statistical mechanics of a Pechukas-Yukawa gas
turned out to be a useful tool in justifying the random matrix
theory [10]. In Ref. [19] this approach was successfully used
to describe the operation of a small-scale adiabatic quantum
computer, but its scaling up was restricted for the same reason
as mentioned above, and it was suggested that building the
kinetic theory of the Pechukas-Yukawa gas may provide a
useful solution.

In this work, we develop a consistent description of
a nonequilibrium, nonstationary evolution of a perturbed
quantum system based on the kinetic theory of a Pechukas-
Yukawa gas. The formalism is applicable to an arbitrary system
described by a Hamiltonian of the form of Eq. (1). As in
classical kinetic theory, we expect that the statistical approach
to the level dynamics (as functions of the parameter λ) would
allow a reduced description in terms of correlation functions,
which can be used as a basis for controlled approximations.
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Adding to this scheme the time evolution of the system’s
quantum state, we will be able to build an expansion in terms
of the adiabatic parameter λ̇. This could provide better insight
into what measurable characteristics of a system can be used as
criteria for its quantum performance, and also make possible an
approximate simulation of larger systems than those tractable
by other methods. We test the theory for a small system of
two interacting qubits, simulated by a transverse field Ising
Hamiltonian (TFIH). Furthermore, the relationship between
the level dynamics and that of the occupation numbers as a
function of time is established using the Pechukas model and
we obtain the full wave function that describes the system.

As a result, the application of the BBGKY hierarchy
to the Pechukas model, parametrically driven evolution of
a quantum system, is especially useful in accommodating
adiabatic systems; however, the formalism is applicable to
a general system with parametric evolution in time, exploring
an important direction in contemporary physics and opening
further investigations in order to understand the connection
to the physics of the Pechukas gas. This description is
advantageous as it is expected to have significant developments
in nonequilibrium processes such as decoherence [1,3,18].
We eventually would like to address the question of the
extent to which this approach can describe adiabatic quantum
computing.

The structure of the paper is such that in Sec. II we
give a brief overview of the Pechukas equations and the
mapping to the interacting gas model, while in Sec. III a brief
overview of BBGKY hierarchy is provided. In Sec. IV we
present the BBGKY hierarchy for the Pechukas model and
discuss the factorization approximation. In Sec. V we estimate
the relative error Er from the factorization approximation.
Section VI is devoted to a two-qubit system governed by
TFIH. In Sec. VII we present the equations of the evolution of
occupation numbers and the density matrix and we conclude
in Sec. VIII. For clarity, some long derivations are relegated
to the Appendixes.

II. PECHUKAS EQUATIONS

The Hamiltonian (1) that governs a complex system that
evolves in time parametrically through λ, generally taken to
be adiabatic, is described through the instantaneous eigenstates
|m(λ)〉 and eigenvalues Em(λ) which are related in the
following way:

H (λ)|m〉 = Em(λ). (2)

The contribution from H0 is fully determined at all times
and information of all initial conditions are obtained through
instantaneous matrix elements of the following form:

〈m|H0|n〉 = Em(λ)δmn − λ〈m|ZHb|n〉. (3)

The contribution from the parametrically evolved term
λ(t)ZHb is determined through the Pechukas equations
[8–13,19–22]. Taking the Hamiltonian that describes the
Pechukas gas as H (λ(t)) = 1

2

∑
m v2

m + 1
2

∑
m�=n

|lmn|2
(xm−xn)2 , with

unit mass, one can derive a closed set of first-order ordinary
differential equations that describe the “position” (xm), “veloc-
ity” (vm), and “relative angular momentum” (lmn), as expressed

in Eq. (4). These are obtained by taking the Poisson brackets of
these coordinates with the Hamiltonian to give the source-free
Hamiltonian flow [10,19].

ẋm = vm,

v̇m = 2
∑
m�=n

|lmn|2
(xm − xn)3 , (4)

l̇mn =
∑

k �=m,n

lmklkn

(
1

(xm − xk)2 − 1

(xk − xn)2

)
,

where xm(λ) = Em(λ), vm(λ) = 〈m|ZHb|m〉, and lmn(λ) =
[Em(λ) − En(λ)]〈m|ZHb|n〉 which is an antisymmetric com-
plex quantity as lmn = −l∗nm. The indices m represent the posi-
tions, velocities, and particle-particle repulsion as determined
by the relative angular momenta, for the corresponding mth
particle interaction. Here λ plays the role of time [8–12,19].
This procedure describes the aforementioned mapping of the
level dynamics of a system to that of a one-dimensional
classical gas. It is worth stressing that the mapping of Eq. (1) on
Eq. (4) is an identical operation valid for an arbitrary choice
of H0 and Hb and an arbitrary time dependence of λ, not
necessarily adiabatic. Note that time does not explicitly enter
Eq. (4), rather concerning the evolution in time parametrically
through λ which determines the instantaneous energy levels:
this is a set of equations for the Hamiltonian, and not for
(time- and initial state-dependent) quantum states of a system
described by such a Hamiltonian.

The Pechukas equations (4) govern the evolution of a
system of particles moving in one dimension which interact
through both contact interactions as well as the long-range
coupling described by the relative angular momenta [10,19].
Without loss of generality, phase effects are taken to be zero
where the usual Berry phase relating to adiabatic systems is
not present because the system is not cyclic [10,18]. Using
this model, one can determine the dynamics of microscopic
distribution functions following standard kinetic approaches
involving the BBGKY hierarchy. These are derived in the next
section.

III. BBGKY HIERARCHY

The standard BBGKY hierarchy arises from the continuity
equation in phase space. It is used to describe the time
evolution of classical reduced distribution functions for a
general Hamiltonian. The chain relates the reduced distribution
function for s particles to the distribution function for s + 1
particles, where s ∈ [1,2, . . . N] concerning positions and
velocities [13,18,22–25].

We denote an empirical distribution function
FN (x1 . . . xN ,v1 . . . vN ), averaged over the initial conditions,
of the form

FN (x1 . . . xN ,v1 . . . vN ) =
〈∏

m

δ(xm − ξm)δ(vm − ωm)

〉
.

(5)
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The averaging procedure is described through

〈f (xm,vn)〉 := 1

|I |
∑

x0, v0∈I

f (xt ,vt ; x0,v0), (6)

where |I | denotes the size of I , the set of initial conditions. And
f (xt ,vt ; x0,v0) denotes the function evaluated at (xt ,vt ,t), the
propagated coordinates up to time t , parametrized by (x0, v0).
This is essentially a counting function of where the particles
are present.

The BBGKY hierarchy for this arbitrary distribution func-
tion FN (x1 . . . xN ,v1 . . . vN ) in phase space is defined through
the following set of equations:

∂tFs =
s∑

j=1

L0
jFs +

s∑
j=1

LF
j Fs +

s∑
j=1

j−1∑
n=1

LI
jnFs

+
s∑

j=1

∫
dxs+1L

I
j (s+1)Fs+1. (7)

The reduced distribution function Fs := Fs(x1 . . . xs,v1 . . . vs)
is taken up to the s-particle interactions, hence it takes into
account only the distribution functions of the s particle and the
(s + 1) particle. The first term, L0, corresponds to the free part
of the Hamiltonian; the second term, LF , describes the external
field, e.g., noise in the system. The final two terms associated

with LI correspond to the perturbation contribution of the
Hamiltonian as result of interactions [13,18,22–24,26–28].

Although this hierarchy produces a scheme which deter-
mines the kinetic equations of motion, it does not account for
the nature of quantum systems with parametrically evolving
Hamiltonians [18,29,30]. In the following we derive a gener-
alized BBGKY hierarchy that describes the level dynamics
associated with nonequilibrium systems which extends to
parametrically evolving Hamiltonians, using the Pechukas
model.

IV. BBGKY HIERARCHY FOR THE PECHUKAS MODEL
AND FACTORIZATION APPROXIMATION

We derive the BBGKY hierarchy for the Pechukas model
concerning level dynamics with respect to a full distribution of
fictitious position, velocity, and relative angular momentum,
evolving parametrically with time through λ. Application
of the BBGKY hierarchy to parametrically driven evolution
of a quantum system is particularly useful in describing
nonequilibrium adiabatic systems, taking λ to be an adiabatic
parameter, such that the kinetic equations of the level dynamics
are obtained as given by the following equation. However
the formalism is general, applicable to all parametrically
evolving systems. We relegate the details of the derivation
to Appendix A and present here the final scheme:

∂

∂λ
Fs,s(s−1) =

s∑
m=1

vm

∂

∂xm

Fs,s(s−1) + 2
s∑

m=1

m−1∑
n=1

( |lmn|2
(xm − xn)3 + |lnm|2

(xn − xm)3

)
∂

∂vm

Fs,s(s−1)

+ 2
∫

dxs+1 dvs+1 Dls+1

s∑
m=1

( |lm(s+1)|2
(xm − xs+1)3 + |l(s+1)m|2

(xs+1 − xm)3

)
∂

∂vm

Fs+1,s(s+1)

+
s∑

m=1

m−1∑
k=1

k−1∑
n=1

lmklkn

(
1

(xm − xk)2 − 1

(xk − xn)2

)
∂

∂lmn

Fs,s(s−1)

+
∫

dxs+1 dvs+1 Dl s+1

s∑
k=1

k−1∑
n=1

ls+1klkn

(
1

(xs+1 − xk)2 − 1

(xk − xn)2

)
∂

∂l(s+1)n
Fs+1,s(s+1), (8)

where FN,N(N−1) = FN,N(N−1)(x1, . . . xN ,v1, . . . vN ,l12, . . . lN,N−1) and Fs,s(s−1) = Fs,s(s−1)(x1, . . . xs,v1, . . . vs,l12, . . . ls,s−1)
describing the reduced distribution function up to s-particle interactions and Fs+1,s(s+1) =
Fs+1,s(s+1)(x1, . . . xs+1,v1 . . . vs+1,l12, . . . ls+1,s) is the reduced distribution function up to the (s + 1)-particle interactions. We
denote Dls+1

∏s
i=1 dls+1,i dli,s+1.

The reduced distribution functions of the energy levels reflect the average density of levels so that by deriving the BBGKY
chain, we describe the evolution in parameter λ of the level dynamics [10]. This is useful as there is a direct relationship between
the level dynamics of the Pechukas system and that of its quantum states as seen in Sec. VII. Here, Fs,s(s−1) is defined by the
following (Fs+1,s(s+1) is defined similarly):

Fs,s(s−1) := N !

(N − s)!

(N2 − N )!

[N2 − N − s(s − 1)]!

∫
dxs+1 . . . dxn dvs+1 . . . dvn dls+1,s . . . dln,n(n−1)FN,N(N−1), (9)

with probability distribution FN,N(N−1) and dynamic variables xm, vn, and lmn averaging over ξ, ω, � defined in Appendix A.
To illustrate the scheme more explicitly we write the BBGKY chain up to the second equation. We neglect the s = 0 level as

this merely vanishes on the right-hand side of the chain. Starting from s = 1 we obtain that F1,0(x1, v1) the associated chain is

∂

∂λ
F1,0(x1,v1) = v1

∂

∂x1
F1,0(x1,v1) + 2

∫
dx2 dv2 dl12 dl21

( |l12|2
(x1 − x2)3 + |l21|2

(x2 − x1)3

)
∂

∂v1
F2,2(x1,x2,v1, v2,l12,l21). (10)
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In the same way, the chain has been explicitly constructed for s = 2 with F2,2(x1,x2,v1, v2,l12, l21):

∂

∂λ
F2,2(x1,x2,v1,v2,l12,l21)

= v1
∂

∂x1
F2,2(x1,x2,v1,v2,l12,l21)+v2

∂

∂x2
F2,2(x1,x2,v1,v2,l12,l21)+2

( |l12|2
(x1 − x2)3 + |l21|2

(x2 − x1)3

)
∂

∂v2
F2,2(x1,x2,v1,v2,l12,l21)

+ 2
∫

dx3 dv3 dl13 dl31 dl23 dl32

( |l13|2
(x1 − x3)3 + |l31|2

(x3 − x1)3

)
∂

∂v1
F3,6(x1,x2,x3,v1,v2,v3,l12,l21,l13,l31,l23,l32)

+ 2
∫

dx3 dv3 dl13 dl31 dl23 dl32

( |l23|2
(x2 − x3)3 + |l32|2

(x3 − x2)3

)
∂

∂v2
F3,6(x1,x2,x3,v1,v2,v3,l12,l21,l13,l31,l23,l32). (11)

The above construction demonstrates the relationship be-
tween the distribution functions of the s particles to (s + 1)
interacting particles. These equations concern parametric evo-
lution in time, such that application of the BBGKY hierarchy
to the Pechukas model extends the hierarchy to parametric
driven evolution of a quantum system, well suited for adiabatic
systems. The coupled differential equations determine the
kinetics of the distribution functions associated with the level
dynamics of the Pechukas gas. The next step is to make the
approximation that the distribution functions of the system can
be expressed as a product of F1,0(x1,v1) distributions.

Taking into account the chain for s = 1 we introduce a
factorization approximation based on the independence of the
the set of coordinates xm,vm and the set of relative angular
momenta terms lmn such that we can construct the probability
distribution functions of xm and vm that are independent of the
probability distribution functions of lmn. As a consequence,
the reduced distribution Fs,s(s−1) can be factorized in terms
of the one-particle distribution and the distribution of lmn

separately. Under the approximation, the two-particle reduced
distribution function describing the average density of the
levels of a two-particle system, F2,2(x1,x2,v1, v2,l12,l21),
can be factorized in terms of the one-particle distribu-
tions, F1,0(x1,v1), F1,0(x2,v2), and the reduced distribution
function concerning only the relative angular momentum
terms h(l12, l21) (as defined in Appendix A) with negligible
contributions from the mixed terms. This is expressed as

F2,2(x1,x2,v1,v2,l12,l21) ≈ F1,0(x1,v1)F1,0(x2,v2)h(l12,l21).

(12)

Under this approximation, Eq. (10) can be transformed in
a way that precisely reflects an effective mean-field theory,
where the definitions of F1,0(x1,v1), F1,0(x2,v2), and h(l12, l21)
are expressed in the same way as the generalized Fs,s(s−1) as
defined in Eq. (9).

Substituting Eq. (12) into Eq. (10) and using the product
rule under the integral and taking ( ∂

∂v1
F1,0(x1, v1)) out from

under the integral we obtain the following:

∂

∂λ
F1,0(x1,v1) = v1

∂

∂x1
F1,0(x1,v1) + 2

∂

∂v1
F1,0(x1,v1)

∫
dx2 dv2 dl12 dl21

( |l12|2
(x1 − x2)3 + |l21|2

(x2 − x1)3

)
F1,0(x2,v2)h(l12,l21).

(13)

By using the approximation, we reduce the chain after breaking
it at the first link such that only the F1,0(x1,v1), F1,0(x2,v2),
and h(l12, l21) distributions are kept, hence simplifying it to a
one-body problem.

V. ACCURACY OF THE FACTORIZATION
APPROXIMATION

In this section, we estimate the accuracy of the factorization
approximation because it is important to know the validity of
the effective mean-field approximation. Taking the definition
for FN,N(N−1)(xm,vn,lmn) as in Appendix A and evaluating the
integral in Eq. (9), up to s = 2 we obtain the distribution for
F2,2(x1,x2,v1, v2,l12,l21) expressed as an average of the prod-
uct of δ functions. Similarly, the product of the distributions

F1,0(x1, v1), F1,0(x2, v2), and h(l12, l21), determined from
evaluating Eq. (9) with the definition of FN,N(N−1)(xm,vn,lmn)
given in Appendix A, gives the product of δ functions averaged
separately, with varying normalization constants.

Therefore, the error involved in verifying whether the
factorization approximation holds is bounded by the nor-
malization constants used in Eq. (9). The normalization
constant concerning the reduced distribution for lmn takes the
same form as in its counterpart in the two-particle reduced
distribution. This is a consequence of the fact that the lmn

term from h(l12,l21) comes from a system associated with the
F2,2(x1,x2,v1, v2,l12,l21) distribution function. We determine
the relative error, Er := Er (x1,x2,v1,v2,l12,l21), such that it
is bounded by the normalization constants as given by the
following expression:

Er := F1,0(x1,v1)F1,0(x2,v2)h(l12,l21) − F 2,2(x1,x2,v1,v2,l12,l21)

F2,2(x1,x2,v1,v2,l12,l21)
. (14)
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Substituting the expressions for the reduced distribution
functions, we obtain the following bound on the relative error:

Er ≤ N − (N − 1)

(N − 1)
= O

(
1

N

)
. (15)

For the limit that N → ∞ we find that Er decays asymp-
totically. We extend this further to consider the factorization
approximation for a general s-particle distribution function
Fs,s(s−1) such that it can be factorized as s one-particle
distributions and s(s−1)

2 number of h distributions. Using
the same idea as the case for F2,2(x1,x2,v1,v2,l12,l21) we
consider the way the normalization constants will differ and
the Er between them. We are taking the same approach for
the generalized factorization for an s-particle distribution
function composed as the product of s one-particle distribution
functions. Then Er is bounded by the following:

Er ≤ Ns

N (N − 1) · · · (N − s − 1)

× [(N2−N )(N2−N−1)]
s(s−1)

2

(N2−N )(N2−N−1) · · · [N2−N−s(s−1)−1]
−1

= O

(
1

N

)
. (16)

From these results it can be inferred that to solve the
BBGKY chain for the Pechukas equations at the first link,
only distribution functions for F1,0(x1, v1), F1,0(x2, v2), and
h(l12, l21) are required. The same rationale can be extended for
higher-order interactions in writing these distribution functions
as products of one-particle distribution functions. We further
illustrate this model on a two-qubit system.

VI. TWO-QUBIT SYSTEM

We consider a two-qubit system described by the Ising
model, in order to test the BBGKY hierarchy for the Pechukas
equations. We take the TFIH as the Hamiltonian that governs
the two qubit system:

H(λ(t)) = Jσ z
1 σ z

2 + λZh1σ
x
1 + λZh2σ

x
2 . (17)

For the case that J > 0 the interaction favors antiferromag-
netism, whereas for J < 0 it favors ferromagnetism; we take
random values for J , Gaussian distributed with mean 0 and
standard deviation 1, reflecting the different initial conditions.
When J � λZh1,λZh2 the system is in the ground state. The
perturbation matrix defined by λZHb = λZh1σ

x
1 + λZh2σ

x
2 .

From this we obtain the values for xn from the eigenvalues of
the system given by xn(λ) = En(λ) = 〈n|H|n〉, the variables
for velocity are determined by vn(λ) = 〈n|ZHb|n〉, and rela-
tive angular momentum lmn is found using its definition that
lmn(λ) = [Em(λ) − En(λ)]〈m|ZHb|n〉. σ z

j and σx
j represent

the corresponding Pauli matrices for the j th qubit.

The Hamiltonian reads in matrix form

H(λ(t)) = J

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠ + λZh1

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠

+ λZh2

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠. (18)

Diagonalizing the Hamiltonian and using their respective
definitions, we determine the values for xn, vn, lmn necessary
to construct the distribution functions for f1(ξ,ω), f1(ξ ′,ω′),
f2(ξ,ξ ′,ω,ω′,l,l′), and h(l, l′). Where ξ,ξ ′,ω,ω′,l,l′ are the
running variables of the probability distribution functions
parametrizing the coordinates xn, vn, lmn, respectively.

The coordinates for xn are of the form J + λHn. Given
that the values for J are Gaussian distributed denoted by
J ∼ N (μ,σ ), the values for each xn are also Gaussian
distributed varying only by a translation by Hn; hence, xn ∼
N (μ + λHn,σ ) = N (λHn,1) := Ñn, with the same mean
and standard deviations where Hn = {−h1 − h2,−h1 + h2,

h1 − h2,h1 + h2}. The values for vn are deterministic, we
define them as vn ∼ δHn

. We observe that the terms describing
lmn determined from its definition are described by the
product of the translated Gaussian distributions with the Dirac
distributions for Hn, which we denote by Li,j . Using these
definitions we build the distributions for f1(ξ,ω), f1(ξ ′,ω′),
f2(ξ,ξ ′,ω,ω′,l,l′), and h(l, l′) as given below:

f1(ξ,ω) = 1

4

4∑
n=1

Ñn(ξ )δHn
(ω),

h(l,l′) = 10!

12!

∑
i �=j

Lij (l)
∑

i
′ �=i,j ′

L
′
i ′,j ′ (l′),

f2(ξ,ξ ′,ω,ω′,l,l′) = 10!

4!12!

∑
i �=j

Lij (l)
∑

i
′ �=i,j ′

L
′
i ′,j ′ (l′)

×
4∑

n �= n
′

n,n
′ = 1

Ñn(ξ )δHn
(ω)Ñn

′ (ξ ′)δH
n
′ (ω

′),

(19)

and substituting the definitions in Eq. (14), we analytically
determine Er for this system. We bound Er from above and
below to examine the applicability of the factorization approx-
imation. The bounds have been calculated in Appendix B. We
obtain

1
8e2λξ ′(h1−h2) � Er � 1

2 + 1
2e2λξ ′(h1+h2), (20)

using these bounds, we find that the factorization approxima-
tion does not hold; this is expected because to approximate
well a probability distribution function as a product of one-
particle distribution functions, the system must be essentially
factorizable such that the level dynamics can be treated as
independent of each other. In the specific case of the two-qubit
system the qubits are not independent as they strongly interact,
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FIG. 1. Evolution of eigenvalues: all the eigenvalues of Hamiltonian (18) for 100 simulations with random initial conditions obtained from
the different values of J . These eigenvalues are of the form J + λHn, they are Gaussian distributed as J is Gaussian distributed with mean 0
and standard deviation 1, through their evolution in λ from 0 to 1 in steps of 0.1. When the perturbation is much weaker than the interaction J ,
the system stays close to its ground state. When the perturbation is of the same order as J , the eigenvalues deviate from an initially Gaussian
distribution, evolving into four distinct peaks.

via J terms. In order to explore this error further we test
the system numerically using cloud dynamics and determine
the distribution functions associated with the interactions.
We draw 100 trials of J ∼ N (0,1) terms, diagonalizing the
system to determine its eigenvalues, as demonstrated in Fig. 1.
Choosing a large bias such that Z = 10, we take h1 as 0.01
and h2 as 0.02, keeping these values small so as to reduce
their impact on Er . However, to explore the dynamics of these
values we diagonalize the Hamiltonian for h1 as 0.1 and h2

as 0.2 such that the perturbation is of the same order of the
values of J associated with the unperturbed Hamiltonian as in
Eq. (17). The results are shown in Fig. 1.

Furthermore, we construct the normalized distribution
functions for f2(ξ,ξ ′,ω,ω′,l,l′) and for f1(ξ,ω), f1(ξ ′,ω′), and
h(l, l′) in order to test the factorization approximation for the
first link of the BBGKY hierarchy using the Pechukas model.
To build these distribution functions, we split the evolution
of parameter λ interval in 0.1 from initial time at 0 and final
time at 1, each of these distributions have been normalized.
We compute vn by taking xn+1 − xn and dividing it through by
the λ interval step of 0.1. lmn is computed using its definition.
As a result the distribution for f1(ξ,ω) can be computed and
the results shown in Fig. 2.

From the distribution functions we determine Er using
Eq. (14); it is evident that the factorization approximation
does not hold for a two-qubit system as discussed above.
We use Eq. (14) to determine Er and how it varies through
the evolution of λ, considering nonzero points between the
factorized distributions and that of f2(ξ,ξ ′,ω,ω′,l,l′). The
results are presented in the Table I.

We note that the Er standard deviation remains below
0.005 throughout the evolution of the adiabatic parameter.
We observe anomalous averaged relative errors as in the cases
for λ being 0.2, 0.4, and 0.6, which do not fall in the range
of the analytic bounds determined from Eq. (20). This is a
result of the sample being taken from 100 trials. However, Er

follows the prediction of Eq. (15) with Er expected to be 1

for a two-qubit system as well as Eq. (20), which suggests an
exponential growth in the upper bound for a two-qubit system
with a minimum of 1

2 .
We predict that as N grows, the system settles close to the

mean-field behavior. Though the factorization approximation
has not been numerically tested for large N , we have shown
that Er scales as 1/N , suggesting that it is possible to reduce the
BBGKY chain to a factorization of F1,0(x1, v1) distributions.
We leave the numerical demonstration of this for future work
as it is beyond the scope of the present mainly analytical
study.

VII. EVOLUTION OF OCCUPATION NUMBERS
AND THE DENSITY MATRIX

In this section we establish the relationship between the
occupation numbers and the level dynamics through the
Pechukas model. Details of this section are provided in
Appendix C. The wave function on a Hilbert space can be ex-
pressed as the sum of linear combination of eigenstates [26,27]
such that from the eigenstate coefficients Cn(t) ∈ C deter-
mines the occupation numbers as shown in Appendix C.

The evolution of Cn is given by the following:

iĊm(t) − Cm(t)Em = −i
∑
n�=m

Cn(t)〈m(t)| ∂

∂λ
|n(t)〉 ˙λ(t),

(21)
where Em(t) are the eigenvalues of the system with quantum
states m(t) and n(t). In order to evaluate the dynamics with
respect to the level dynamics, it is necessary to determine∑

n iCn(t)〈m(t)| ∂
∂λ

|n(t)〉λ̇, where the term vanishes for m(t) =
n(t). We adopt the Pechukas model in order to express
the evolution of Cn in terms of variables describing level
dynamics. The evolution of 〈m(t)| ∂

∂λ
|n(t)〉 reads

〈m(t)| ∂

∂λ
|n(t)〉 = lmn

(xm − xn)2 . (22)
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FIG. 2. One-particle distributions: the evolution of F1,0(x1, v1) as λ increases. Initially Gaussian distributed about a single peak, as λ

increases, it settles into four equally distributed peaks due to the large perturbation. The velocities are deterministic so the distribution is
centered around the four velocity points.

032126-7



QURESHI, ZHONG, BETOURAS, AND ZAGOSKIN PHYSICAL REVIEW A 95, 032126 (2017)

TABLE I. Average Er and its standard deviation (SD) are described through time up to three significant figures, to determine the accuracy
of the factorization approximation, using the Pechukas model for a two-qubit system.

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
〈Er〉 0.668 3.203 0.578 1.18 0.335 1.54 0.4803 0.0659 0.366
SD of Er 0.00127 0.00393 0.00119 0.00216 0.00120 0.00312 0.00142 0.00109 0.00153

Substituting the result into Eq. (21), the dynamics of the
occupation numbers are given by

iĊm(t) − Cm(t)xm = −i ˙λ(t)
∑
n�=m

Cn(t)
lmn

(xm − xn)2 , (23)

The wave function can be entirely described as a function of
time.

For the simplified case that λ̇ = 0, we solve this ordinary
differential equation to find that Cm(t) = Cm(0)e−i

∫ t

0 xm(s)dt ,
describing a system where level crossings are not possible.
For the case under consideration, Eq. (23) is inhomogeneous.
If we define the following square matrices and vector

X = diag(x1 . . . xn),

P = pmn, where pmn = lmn

(xm−xn)2 and pmm = 0,

C = [C1(t) · · ·Cn(t)]T ,

we can then obtain a set of coupled differential equations

i
∂

∂t
C = (X − iλ̇P )C. (24)

Iin this case, X is diagonal and P is skew-Hermitian as lmn =
−l∗nm thus diagonalizable. Let M = (X + λ̇P ). This matrix
does not commute with itself for different time instances, thus
using the Peano-Baker series (PBS) described in Ref. [31] we
find that the solution comes in the form

C(t ; t0) = 1+
∞∑

n=1

In(t), (25)

where t0 is the initial time and In is expressed as

In(t) :=
∫ t

t0

M(τ1)
∫ τ1

t0

M(τ2) · · ·
∫ τn−1

t0

M(τn)dτn · · · dτ1.

(26)

The above demonstrates that a solution exists for a general
λ̇(t). For λ being an adiabatic parameter we are interested in a
nonzero constant λ̇ such that the adiabatic parameter evolves
slowly enough that the system is not excited from its eigenstate.
In the case that the matrix M(t) commutes with itself at each
instant in time, we may use classic linear algebra to determine
Cn(t) at each instance through the relation:

C(t) = e−i
∫ t

0 M(s)dsC0, (27)

This expression holds only when M(t) can be approximated
as constant, whereas using PBS an explicit solution can
be evaluated for any λ̇(t), in order to determine Cn(t) at
each instant. We use the relationships established between
occupation numbers and level dynamics in order to determine

the density matrix through the Pechukas equations. Solving
Cn(t), we obtain the density matrix with entries of the form

ρnm(t) = C∗
m(t)Cn(t). (28)

This can be determined by solving for C(t) as in Eq. (23). In
the case that the system collapses to that of an approximated
constant matrix describing M(t), we can substitute the solution
described in Eq. (28) to obtain

ρnm(t) =
N∑

k
′
,k=1

Ck
′ (t)C∗

k (t)Amk
′ (t)A∗

nk(t) ei
∫ t

0 d∗
k (s)−d

k
′ (s)ds,

(29)

then it can be simply expressed as a tensor product in order to
describe the evolution of the density matrix as

ρ(t) = C(t) ⊗ C∗(t). (30)

As a result, we obtain the final relationship between the density
matrix evolution in time and the dynamics of the occupation
numbers. These are expressed in terms of the Pechukas model
and so the entire system can be described through the evolution
of the levels.

VIII. DISCUSSION AND CONCLUSIONS

We used the mapping to the Pechukas model to determine
the kinetic equations of motion given by the BBGKY hierarchy
in order to explore the level dynamics of a system. This
procedure provides a fundamental extension of the previous
study which established the use of the Pechukas model and
the random matrix theory in equilibrium statistical mechanics
of the gas. The application of the BBGKY hierarchy to the
Pechukas model extends the kinetic equations concerning the
level dynamics to parametrically driven evolution of a quantum
system, which is especially convenient for the investigation
of adiabatically evolving systems; however, the formalism
is not strictly adiabatic and is applicable to a general system
of parametric time evolution with arbitrary time dependence
in λ.

We also explored the factorization approximation that the
s-particle reduced probability distribution functions can be
constructed from a product of s one-particle distributions. The
insight to study this is given by the fact that the coordinates
in the Pechukas equations are independent and so may lead
to effectively independent probability distribution functions,
reducing the many-body systems to that of a one-body system.
This is a great simplification as it amounts to solving the
BBGKY hierarchy by solving just the one-body system. All
the information of the level dynamics can be determined from
the one-particle distribution functions. To test the factorization
approximation we have analytically considered the way the
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factorizations vary from the many-particle probability
distribution functions giving an effective mean-field theory
approximation. We find that the relative error Er decays
asymptotically as O( 1

N
) as the number of the interacting

particles tend to infinity. This gives confidence that for systems
with a large number of particle interactions, the approximation
holds.

To illustrate the theory we considered the simplest possible
system of two qubits and compared it with the exact solution
of the Hamiltonian. Using the eigenvalues in accordance with
the Pechukas equations the velocities and relative angular
momenta can be determined. From these, the distribution func-
tions involved in the first chain of the BBGKY hierarchy were
constructed in order to test the factorization approximation.
For the case of two qubits, the factorization approximation is
not accurate and so it is found that the probability distribution
functions do not factorize such that the energy levels for any
given value of the parameter λ are not mutually independent.
A comprehensive comparison of larger systems is impractical
as it is harder to diagonalize the corresponding Hamiltonians
and it is beyond the scope of the present study.

We determined the relation between the level dynamics
and the evolution of occupation numbers, where time appears
explicitly for the first time. From these occupation numbers we
are able to describe the entire wave function using the Pechukas
equations. In order to determine the occupation numbers, we
must solve the corresponding ordinary differential equations.
Here we have found that the matrix describing the coupled
differential equations does not commute with itself at different
time instances and so it is necessary to consider alternative
methods to solve for the occupation numbers. Using the
developed theory, it can be possible to determine the ground
state of large systems efficiently and hence to demonstrate
that adiabatic quantum computing is an alternative to quantum
computing.
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APPENDIX A: DERIVATION OF THE BBGKY HIERARCHY FOR THE PECHUKAS MODEL

The BBGKY chain for the Pechukas equations governs the level dynamics of the system. In turn this determines the way the
particles interact through considering the associated reduced distribution functions relating that of s particles to (s + 1) particles.
The derivation starts with defining the distribution function. Consider the distribution with dynamic variables xm,vn and lmn;
averaging over ξ, ω, � we get

FN,N(N−1)(x1, . . . ,xn,v1, . . . ,vn,l12, . . . ,lmn) =
〈∏

m

δ(xm − ξm)δ(vm − ωm)
∏
m�=n

δ(lmn − �mn)

〉
. (A1)

The averaging procedure is described through

〈FN (xλ,vλ,lλ,λ; x0, v0, l0)〉 := 1

|S|
∑

x0, v0,l0∈S

f (xλ,vλ,lλ,λ; x0, v0, l0), (A2)

where |S| is the size of S, being the set of all initial conditions (x0, v0,l0), and FN (xλ,vλ,lλ,λ; x0, v0, l0) denotes the function
evaluated at (xλ,vλ,lλ,λ), the propagated coordinates obtained through the Pechukas equation up to evolution of λ. We take
FN,N(N−1) := FN,N(N−1)(x1, . . . ,xn,v1, . . . ,vn,l12, . . . ,lmn). All distribution functions are symmetric with respect to permutations
of arguments [8,10,11,22].

Here xm, vn, and lmn are independent coordinates which describe the center frame and ξ, ω, and � are shifted coordinates from
this center frame. Taking a total derivative of this distribution with respect to the adiabatic parameter λ, we obtain the following:

dF

dλ
=

∑
m�=m

′

〈∏
m

′

∂

∂ξm

δ(xm
′ − ξm

′ )ξ̇mδ(vm
′ − ωm

′ )
∏
m

′
n

′
δ(lm′

n
′ − �m

′
n

′ )

〉

+
∑
m�=m

′

〈∏
m

δ(xm
′ − ξm

′ )
∂

∂ωm

δ(vm
′ − ωm

′ )ω̇m

∏
m

′
n

′
δ(lm′

n
′ − �m

′
n

′ )

〉

+
〈∏

m
′
δ(xm

′ − ξm
′ )δ(vm

′ − ωm
′ )

∑
m�=m

′
,n�=n

′

∏
m

′
n

′

∂

∂�mn

δ(lm′
n

′ − �m
′
n

′ )�̇mn

〉
+ ∂F

∂λ
. (A3)

Given that ∂
∂ξ

= − ∂
∂x

, ∂
∂ω

= − ∂
∂v

, and ∂
∂�

= − ∂
∂l

, where the “overdot” describes the differentiation with respect to λ as
described in Eq. (1). We substitute this into the total derivative with the related Pechukas equations through the chain rule with
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respect to time to obtain

dF

dλ
= −

∑
m

vm

∂

∂ξm

FN,N(N−1) −
∑
m

∂

∂vm

2
∑
m�=n

|lmn|2
(xm − xn)3 FN,N(N−1)

−
∑
mn

∂

∂lmn

∑
k �=m,n

lmklkn

(
1

(xm − xk)2 − 1

(xk − xn)2

)
FN,N(N−1) + ∂

∂λ
FN,N(N−1). (A4)

Applying Liouville’s theorem that the number of particles at the start stays constant in the system as time evolves, preserving
the probability along the trajectory in phase space [8,10,11,22], we have

dF

dλ
= 0. (A5)

From this we rearrange the total derivative to express ∂
∂λ

FN,N(N−1)(xm,vm,lmn) by the following:

∂

∂λ
FN,N(N−1) =

∑
m

vm

∂

∂xm

FN,N(N−1) +
∑
m

∂

∂vm

2
∑
m�=n

|lmn|2
(xm − xn)3 FN,N(N−1)

+
∑
mn

∂

∂lmn

∑
k �=m,n

lmklkn

(
1

(xm − xk)2 − 1

(xk − xn)2

)
FN,N(N−1). (A6)

In the scheme of BBGKY, we consider s number of particles where s � N in order to build up the chain. For this we consider
the way each term of the distribution is affected. The s-particle distribution function is thus given by

Fs,s(s−1) := N !

(N − s)!

(N2 − N )!

[N2 − N − s(s − 1)]!

∫
dxs+1 . . . dxn dvs+1 . . . dvn dls+1,s . . . dln,n(n−1)FN,N(N−1). (A7)

The normalization constants in the front of the integral come from the combinatorics of xm and vm for N!
(N−s)! With N ! counts the

total number of combinations in both xm and vm and (N − s)! counts the number of combinations of particles not included in
the distribution. Similarly, for lmn we have the total number of possible values in lmn determined by (N2 − N )!. When dictated
by s there are s(s − 1) possible values in the distribution giving rise to the normalization constant (N2−N)!

[N2−N−s(s−1)]! , included in
the definition for Fs,s(s−1). These come from the symmetry in the distribution functions with respect to permutations in their
arguments.

Considering the s-particle distribution in the above relation for Eq. (A6) we obtain

∂

∂λ
Fs,s(s−1) = N !

(N − s)!

(N2 − N )!

[N2 − N − s(s − 1)]!

∫
dxs+1 . . . dxn dvs+1 . . . dvn dls+1,s . . . dln,n(n−1)

×
⎧⎨
⎩

∑
m

vm

∂

∂xm

FN,N(N−1) +
∑
m

∂

∂vm

2
∑
m�=n

|lmn|2
(xm − xn)3 FN,N(N−1)

+
∑
mn

∂

∂lmn

∑
k �=m,n

lmklkn

(
1

(xm − xk)2 − 1

(xk − xn)2

)
FN,N(N−1)

⎫⎬
⎭. (A8)

Determining the way the first term is affected by the reduced distribution function concerning up to s-particle interactions is
expressed by

N !

(N − s)!

(N2 − N )!

[N2 − N − s(s − 1)]!

∫
dxs+1 . . . dxn dvs+1 . . . dvn dls+1,s . . . dln,n(n−1)

s∑
m=1

vm

∂

∂xm

FN,N(N−1)

+
∫

dxs+1 . . . dxn dvs+1 . . . dvn dls+1,s . . . dln,n(n−1)

N∑
m=s+1

vm

∂

∂xm

FN,N(N−1). (A9)

Using Green’s theorem, the last term vanishes as the system tends to infinity, which reduces the expression to

N !

(N − s)!

(N2 − N )!

[N2 − N − s(s − 1)]!

∫
dxs+1 . . . dxn dvs+1 . . . dvn dls+1,s . . . dln,n(n−1)

s∑
m=1

vm

∂

∂xm

FN,N(N−1). (A10)
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Following this procedure, we determine the way Fs,s(s−1) affects the second term in the relation for ∂
∂λ

FN,N(N−1) such that it
concerns only the s-particle distribution and (s + 1)-particle distribution as determined below:

N !

(N − s)!

(N2 − N )!

[N2 − N − s(s − 1)]!

∫
dxs+1 . . . dxn dvs+1 . . . dvn dls+1,s . . . dln,n(n−1)

× 2
s∑

m=1

m−1∑
n=1

( |lmn|2
(xm − xn)3 + |lnm|2

(xn − xm)3

)
∂

∂vm

FN,N(N−1)

+ 2
∫

dxs+1 . . . dxn dvs+1 . . . dvn dls+1,s . . . dln,n(n−1)

s∑
m=1

( |lm(s+1)|2
(xm − xs+1)3 + |l(s+1)m|2

(xs+1 − xm)3

)
∂

∂vm

FN,N(N−1). (A11)

Finally, we determine the way taking Fs,s(s−1) affects the last term in the relation for ∂
∂λ

FN,N(N−1), where we obtain the
following:

N !

(N − s)!

(N2 − N )!

[N2 − N − s(s − 1)]!

×
∫

dxs+1 . . . dxn dvs+1 . . . dvn dls+1,s . . . dln,n(n−1)

s∑
m=1

m−1∑
k=1

k−1∑
n=1

lmklkn

(
1

(xm − xk)2 − 1

(xk − xn)2

)
∂

∂lmn

FN,N(N−1)

+
∫

dxs+1 . . . dxn dvs+1 . . . dvn dls+1,s . . . dln,n(n−1)

s∑
k=1

k−1∑
n=1

ls+1klkn

(
1

(xs+1 − xk)2 − 1

(xk − xn)2

)
∂

∂l(s+1)n
FN,N(N−1).

(A12)

Combining these expressions and simplifying with the definition for Fs,s(s−1) we derive the BBGKY chain for the Pechukas
equations as given by the following equation, where we denote Dls+1 = ∏s

i=1 dls+1,i dli,s+1,

∂

∂λ
Fs,s(s−1) =

s∑
m=1

vm

∂

∂xm

Fs,s(s−1) + 2
s∑

m=1

m−1∑
n=1

( |lmn|2
(xm − xn)3 + |lnm|2

(xn − xm)3

)
∂

∂vm

Fs,s(s−1)

+ 2
∫

dxs+1 dvs+1 Dls+1

s∑
m=1

( |lm(s+1)|2
(xm − xs+1)3 + |l(s+1)m|2

(xs+1 − xm)3

)
∂

∂vm

Fs+1,s(s+1)

+
s∑

m=1

m−1∑
k=1

k−1∑
n=1

lmklkn

(
1

(xm − xk)2 − 1

(xk − xn)2

)
∂

∂lmn

Fs,s(s−1)

+
∫

dxs+1 dvs+1 Dl s+1

s∑
k=1

k−1∑
n=1

ls+1klkn

(
1

(xs+1 − xk)2 − 1

(xk − xn)2

)
∂

∂l(s+1)n
Fs+1,s(s+1). (A13)

This gives us the BBGKY hierarchy for the Pechukas model with respect to a full distribution concerning position, velocity, and
relative angular momentum.

In constructing the factorization approximation we define the reduced distribution function concerning the relative
angular momentum terms for the level dynamics of l1,2,l2,1 by h(l1,2,l2,1). The distribution function is given by
hN,N(N−1)(l1,2 . . . ln,m . . . lm,n) = 〈∏n�=m δ(lmn − �mn)〉, analogously to that of FN,N(N−1). This takes a reduced distribution
function up to the s particle defined by the following:

hs,s(s−1)(l1,2,...,ls,s(s+1),...,ls(s+1),s) := (N2 − N )!

[N2 − N − s(s − 1)]!

∫
dls+1,s . . . dln,n(n−1)hN,N(N−1). (A14)

Given that this approximation only concerns the dynamics of l1,2, and l2,1 we denote h := h2,2 using the above definitions.

APPENDIX B: DETERMINING THE RELATIVE ERROR Er OF THE TWO-PARTICLE DISTRIBUTION
AND ITS EXTENSION TO THE TWO-QUBIT SYSTEM

We have tested the factorization approximation for a simple case of two qubits. Substituting the definitions given in Eq. (19)
into Eq. (14) we analytically determine Er for this system. We reduce the Er as given in the expression below. Keeping concise,
we omit the arguments of the distributions:

Er = f1(ξ,ω) f1(ξ ′,ω′) h(l,l′) − f2(ξ,ξ ′,ω,ω′,l,l′)
f2(ξ,ξ ′,ω,ω′,l,l′)

, (B1)

032126-11



QURESHI, ZHONG, BETOURAS, AND ZAGOSKIN PHYSICAL REVIEW A 95, 032126 (2017)

where these expressions are given as defined in Eq. (19). Substituting these expressions, we reduce Er to the following:

Er = 3

2

∑4
n=1 Ñn(ξ )δHn

(ω)
∑4

n=1 Ñ ′
n(ξ ′)δH ′

n
(ω′) − ∑4

n �=n
′

n,n
′ =1

Ñn(ξ )δHn
(ω)Ñn

′ (ξ ′)δH
n
′ (ω′)

∑4
n �=n

′
n,n

′ =1

Ñn(ξ )δHn
(ω)Ñn

′ (ξ ′)δH
n
′ (ω′)

. (B2)

Dropping the arguments such that Ñi(ξ )δHi
(ω) := ÑiδHi

and similarly Ñi(ξ ′)δHi
(ω′) := Ñ ′

i δH ′
i
, this expression is simplified

to the following by expanding these sums and canceling common terms.

Er = 3

2

Ñ1δH1Ñ1′ δH
1
′ + Ñ2δH2Ñ2′ δH

2
′ + Ñ3δH3Ñ3′ δH

3
′ + Ñ4δH4Ñ4′ δH

4
′∑4

n �=n
′

n,n
′ =1

ÑnδHn
Ñn

′ δH
n
′

+ 1

2
. (B3)

We bound the error from above by maximizing the numerator with 4[Ñ4(ξ )δH4 (ω)Ñ4′ (ξ ′)δH
4
′ (ω′)], where

Ñ4(ξ )δH4 (ω)Ñ4′ (ξ ′)δH
4
′ (ω′) takes the largest value, and minimizing the denominator with 12[Ñ4(ξ )δH4 (ω)Ñ1′ (ξ ′)δH

1
′ (ω′)] as

this divides by the smallest of these terms in f2(ξ,ξ ′,ω,ω′,l,l′). Using the normal distribution density, we expand these terms to
obtain the following, again omitting the arguments in the distributions:

Er � 1

2
+ 3

2

4

12

(Ñ4δH4Ñ4′ δH
4
′

Ñ4δH4Ñ1′ δH
1
′

)
.

We expand the Gaussian distribution where Ñ4(ξ )δH4 (ω)Ñ4′ (ξ ′)δH
4
′ (ω′) and Ñ4(ξ )δH4 (ω)Ñ1′ (ξ ′)δH

1
′ (ω′) are given by the

following expressions:

Ñ4(ξ )δH4 (ω)Ñ4′ (ξ ′)δH
4
′ (ω

′) = e− ξ − [J − λ(h1 + h2)]2

2
e− ξ ′ − [J − λ(h1 + h2)]2

2
δH4δH ′

4

Ñ4(ξ )δH4 (ω)Ñ1′ (ξ ′)δH
1
′ (ω

′) = e− ξ − [J − λ(h1 + h2)]2

2
e− ξ ′ − [J + λ(h1 + h2)]2

2
δH4δH ′

1
.

Substituting these definitions into the bounds for Er and by canceling common terms, we find an upper bound, given by the
following:

Er � 1
2 + 1

2e2λξ ′(h1+h2). (B4)

Similarly, we bound from below by minimizing the numerator using Ñ3(ξ )δH3 (ω)Ñ3′ (ξ ′)δH
3
′ (ω′) and maximizing the

denominator with 12[Ñ3(ξ )δH3 (ω)Ñ2′ (ξ ′)δH
2
′ (ω′)] where we find the following, omitting the arguments in the distributions:

Er � 3

2

1

12

(
N3δH3N3′ δH

3
′

N3δH3N2′ δH
2
′

)
.

Once again, we expand Gaussian distributions with Ñ3(ξ )δH3 (ω)Ñ3′ (ξ ′)δH
3
′ (ω′) and Ñ3(ξ )δH3 (ω)Ñ2′ (ξ ′)δH

2
′ (ω′) given as

follows:

Ñ3(ξ )δH3 (ω)Ñ3′ (ξ ′)δH
3
′ (ω

′) = e− ξ − [−J + λ(−h1 + h2)]2

2
e− ξ ′ − [−J + λ(−h1 + h2)]2

2
δH3δH ′

3

Ñ3(ξ )δH3 (ω)Ñ2′ (ξ ′)δH
2
′ (ω

′) = e− ξ − [−J + λ(−h1 + h2)]2

2
e− ξ ′ − [−J + λ(h1 − h2)]2

2
δH3δH ′

2
.

Canceling common terms, we determine the lower bound such that we have the following bounds on Er of the system:

1
8e2λξ ′(h1−h2) � Er � 1

2 + 1
2e2λξ ′(h1+h2). (B5)

Using these bounds we find that the factorization approximation does not hold; this is expected because in order to approximate a
probability distribution function as a product of one-particle distribution functions the system must be factorizable. This clearly
does not hold for the two-qubit system since the terms are related via J .

APPENDIX C: DERIVATION OF THE EVOLUTION
OF OCCUPATION NUMBERS

In this Appendix we establish the relationship shared
between the occupation numbers and the level dynamics
through the Pechukas model. Recall that a wave function

on a Hilbert space can be expressed as the sum of linear
combination of eigenstates, that is,

|ψ(t)〉 =
∑

n

Cn(t)|n(t)〉. (C1)
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For eigenstate coefficients for each fixed instant in time Cn(t) ∈
C, related to the occupation numbers Nn by the following:

|Cn(t)|2 = Nn. (C2)

The evolution of Cn associated with the eigenvalues of the
state is obtained by

H(t)|ψ(t)〉 = i
∂

∂t
|ψ〉

= i
∂

∂t

∑
n

Cn(t)|n(t)〉 =
∑

n

En(t)|ψ(t)〉. (C3)

Taking the time derivative . = ∂
∂t

using Leibniz rule, we obtain

i
∂|ψ〉
∂t

= i
∑

n

Ċn(t)|n(t)〉 + Cn(t)|ṅ(t)〉

=
∑

n

Cn(t)En(t)|n(t)〉. (C4)

Applying 〈m(t)| on both sides and through linearity we obtain
the dynamics of these coefficients through time with regards
to the eigenvalues of the state.

i
∑

n

Ċn(t)δmn + 〈m(t)|Cn(t)|ṅ(t)〉 =
∑

n

Cn(t)En(t)δmn.

(C5)

Hence by evaluating the δ distributions and rearranging the
expression we have the following:

iĊm(t) − Cm(t)Em = −i
∑
n�=m

Cn(t)〈m(t)| ∂

∂λ
|n(t)〉λ̇. (C6)

In order to evaluate these dynamics with respect
to the level dynamics, it is necessary to determine∑

n iCn(t)〈m(t)| ∂
∂λ

|n(t)〉λ̇ where the term vanishes for m(t) =
n(t). Taking the derivative with respect to λ where terms
are independent of coordinates other than time, we adopt the
Pechukas model in order to express the evolution of Cn(t) in
terms of variables describing level dynamics. In determining
the evolution of 〈m(t)| ∂

∂λ
|n(t)〉 we consider Eq. (1) such that

we have the following relation:

∂

∂λ
En(t)|n(t)〉 = ∂

∂λ
H(t)|n(t)〉. (C7)

Applying the Leibnitz rule on both sides we obtain

En(t)

(
∂

∂λ
|n(t)〉

)
+ |n(t)〉

(
∂

∂λ
En(t)

)

= V (t)|n(t)〉 + H (t)
∂

∂λ
|n(t)〉. (C8)

Acting on both sides with 〈m(t)| and through linearity such
that m �= n, it reads

En(t)〈m(t)| ∂

∂λ
|n(t)〉 = 〈m(t)|V (t)|n(t)〉

+Em(t)〈m(t)| ∂

∂λ
|n(t)〉. (C9)

Hence

[En(t) − Em(t)]〈m(t)| ∂

∂λ
|n(t)〉 = 〈m(t)|V (t)|n(t)〉. (C10)

By applying the Pechukas equations to determine lmn as
described in Eq. (4), we are able to determine the evolution of
〈m(t)| ∂

∂λ
|n(t)〉 entirely using level dynamics

(xn − xm)〈m(t)| ∂

∂λ
|n(t)〉 = lmn

xm − xn

. (C11)

Thus

〈m(t)| ∂

∂λ
|n(t)〉 = lmn

(xm − xn)2 . (C12)

Substituting this into Eq. (C6) the dynamics of the occupation
numbers are given through the relation

iĊm(t) − Cmxm = −iλ̇
∑
n�=m

Cn

lmn

(xm − xn)2 . (C13)

This is used to describe the wave function in its entirety at any
given time.
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