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A many-body Wannier-Stark system coupled to an effective reservoir is studied within a non-Hermitian
approach in the presence of a periodic driving. We show how the interplay of dissipation and driving dynamically
induces a subspace of states which are very robust against dissipation. We numerically probe the structure of
these asymptotic states and their robustness to imperfections in the initial-state preparation and to the size of the
system. Moreover, the asymptotic states are found to be strongly entangled making them interesting for further
applications.
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I. INTRODUCTION

Experiments with ultracold atoms [1–3] give direct access
to many-body quantum systems that often cannot be described
theoretically due to the enormous computational complexity
[4]. Quite challenging in this respect are many-body models
either in more dimensions [5–7] or with more modes per lattice
site [8,9], extending, e.g., single-band Hubbard models [10].

The coupling of energy bands in tilted Wannier-Stark
systems was demonstrated experimentally [11–13]. The effect
of many-body interactions on the interband coupling was
studied theoretically to great detail, in the weakly interacting
limit [14] as well as in the context of strongly correlated
Bose-Hubbard models [15–17]. The latter many-body models,
however, were restricted to two bands only and neglected the
opening of the system arising from the coupling to higher-lying
energy bands.

In this paper, we discuss an open two-band Bose-Hubbard
model with an additional periodic driving force to control
the coupling between the two bands. While a two-band
model could be realized experimentally with a double-periodic
lattice (see Ref. [16]), similar Floquet engineering of ultracold
quantum gases are discussed, e.g., in Refs. [18,19]. We include
the loss channel to higher bands by using a non-Hermitian
Hamiltonian approach [20]. The corresponding decay channels
are either naturally present due to the coupling to higher
bands or could be possibly engineered by using modern
state-dependent out-coupling into nontrapped states [11,21].
While working with an effective non-Hermitian Hamiltonian
is valid only for small loss, it still allows us the access
to the Floquet spectrum of the periodically driven system.
In particular, we show that the simultaneous presence of
dissipation and quasiresonant driving between the two bands
induces the formation of states with interesting properties. First
these states are extremely robust with respect to dissipation,
and second they correspond to highly entangled superpositions
of Fock states. There has been a great effort on applying
periodic time-dependent potentials to non-Hermitian quantum
systems to especially address the problem of stabilization of
highly entangled states (see, e.g., Refs. [22–25]).

The paper is organized as follows: Section II introduces the
system we investigate as well as the origins of its temporal
dependence. Section II B, in particular, discusses the manifold
of states coupled in our system. The dynamics induced by
the dissipation and its application in the generation of highly
entangles states are reported in Sec. III. Section IV then
concludes the paper.

II. NON-HERMITIAN APPROACH AND
BOSE-HUBBARD HAMILTONIAN

This section introduces our many-body Bose-Hubbard
model with two coupled energy bands, external driving, and
the dissipation process. First we discuss the general properties
of the system before addressing the specific structure of states
participating in the dynamical evolution.

A. Many-body Wannier-Stark system

The Wannier-Stark (WS) problem in its simplest form
consists of a quantum particle trapped in a one-dimensional
periodic potential, V (x + dL) = V (x), subjected to an addi-
tional static force of magnitude F . The Hamiltonian of this
system, Ĥ0 = p̂2/2m + V (x) + Fx, is analytically diagonal-
ized within the tight-binding approach. The eigenenergies,
El = ldLF , form the so-called WS ladder responsible for
the occurrence, for instance, of Bloch oscillations [26];
see, e.g., Refs. [27,28] for many-body studies of them and
Refs. [13,29,30] for related resonant tunneling phenomena.
Here, dL is the lattice constant and l is an integer indexing a
single well or lattice site of the periodic potential V (x). The WS
eigenstates are embedded resonances within the continuous
unbounded quantum spectrum of Ĥ0. Therefore, the WS
eigenstates are metastable states with lifetimes τl ∼ 1/�l .
These lifetimes are associated with the imaginary part of the
corrected single-particle eigenenergies εl = El − i�l/2; see,
e.g., Ref. [26] for details on the single-body case.

Our system of interest is a many-body version of the WS
Hamiltonian ultimately constrained to the two-lowest WS
ladders; see the sketch in Fig. 1. The respective Hamiltonian
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FIG. 1. Scheme of single-particle Wannier-Stark ladder. The bold
lines correspond to the two-lowest (quasi) bound states (marked by
a and b) considered in this paper. The structure can be understood as
the remainders of the Bloch bands after turning on the external field.
The wave packet (red) represents a Wannier-Stark state that leaks to
the continuum of higher bands. This process is marked by the arrow
going to the left in the upper panel.

in second quantization can be built following the standard
procedure,

Ĥ =
∫

dx[φ̂†(x)Ĥ0φ̂(x) + gφ̂†(x)φ̂†(x)φ̂(x)φ̂(x)], (1)

with the field operators defined in terms of site-localized
Wannier functions of the flat lattice, i.e., for F = 0: φ̂(x) =∑

α,l χ
α
l (x)α̂l . α is the Bloch band index and l is the

site index. The Hamiltonian might be seen as an infinite
collection of tilted single-band Bose-Hubbard Hamiltonians,
plus additional coupling terms between them. The coupling
is mainly induced by the external force F , but also by the
interparticle interaction characterized by the constant g [16].
Clearly, the force breaks the translational invariance of the flat
lattice, so the Bloch band picture interpretation fails, strictly
speaking. Instead, we have WS ladders (see Fig. 1) and an
entire zoo of single- and many-body processes to be identified
and investigated in detail; see, e.g., Refs. [14–17].

Generally, the total state space is spanned by the following
Fock states {|nα1

1 n
α1
2 · · · ,n

α2
1 n

α2
2 · · · , . . . ,n

αk

1 n
αk

2 · · · 〉}, where
k ∈ N is the number of bands taken into account. The integers
n

αi

l denote the number of atoms in the potential well l and
band i.

In what follows we restrict ourselves to only the two
lowest WS ladders αj=1,2. The remaining ladders αj>2 act
as an effective environment forming a continuum of bands
(Fig. 1). The system dynamics is studied by means of the
reduced density operator ρ̂S = Trαj>2 [ρ̂]. The evolution of ρ̂S

is approximately described by a Markovian quantum master
equation of the form

∂t ρ̂S = −i(Ĥeff ρ̂S − ρ̂SĤ
†
eff) +

∑
α,l

Ĉα
l ρ̂SĈ

α†
l . (2)

Ĥeff = Ĥ − i
∑

α,l Ĉ
α†
l Ĉα

l is an effective non-Hermitian
Hamiltonian defined by the quantum jump operators Ĉα

l

and the isolated-system Hamiltonian Ĥ . The jump operators
Ĉα

l = √
γ α

l α̂l describe the particle loss to the higher bands.
We use an approximate non-Hermitian Hamiltonian ap-

proach to address our problem. This method has the advantage
that we have access to the spectrum of the effective Hamil-
tonian without having to solve the master equation for the
reduced density matrix. The method consists in omitting the
last term on the right-hand side of Eq. (3). The imaginary
parts of the effective Hamiltonian give diagonal contributions
in the Fock basis, which are proportional to the occupation
numbers in the upper-WS ladder. In the end, we obtain a
new effective Hamiltonian which is non-Hermitian, but can
simply be diagonalized in the Fock space of fixed particle
number. This dramatically simplifies the numerical effort. The
non-Hermitian part of the effective Hamiltonian nonetheless
reduces the norm of the evolving states and induces a
dynamical dephasing via the decay rates γ α

l . The approach
is valid for γ α

l are much smaller than the relevant energy
scales of the system. Hence, here we use rates γ α

l � |Jα|.
Following Ref. [16], we can argue that, in a doubly periodic
optical lattice, we obtain situations in which the two lowest
(mini)bands are sufficiently isolated from the upper bands,
such that the assumptions just discussed are indeed fulfilled.
Furthermore, we assume that only the upper band is effectively
coupled to the higher bands.

Then our system Hamiltonian Ĥ for two bands can be
written as [16,17]

Ĥ =
∑

α={a,b}

∑
l

Jα(α̂†
l+1α̂l + H.c.) + Uα

2
α̂
†2
l α̂2

l + εα
l n̂α

l

+
∑

μ={0,±1}

∑
l

cμF (b̂†l+μâl + H.c.)

+
∑

l

Ux

2

(
b̂
†2
l â2

l + H.c.
) + 2Uxn̂

a
l n̂

b
l , (3)

with εα
l = dLF l + �α . �α = (δα,b − δα,a)�/2 is the on-site

energy splitting between the single-site modes. To simplify
the notation, we set a ≡ α1 and b ≡ α2. δi,j is the Kronecker
delta. The system parameters are the hopping matrix elements
Ja,b, the atom-atom interaction constants Ux,a,b, and the dipole
coupling matrix elements cμ=0,±1 between the bands induced
by the force. The lattice constant dL and h̄ are set to one.
The control parameter is the Stark force F (t) which will be
explicitly time dependent. This allows us to study the response
of the system to any specific protocol for the driving. Here, we
restrict ourselves to a periodic driving F (t) = A cos(ωt).

We work within the reduced Fock basis |{n}〉 ≡
|na

1n
a
2 · · · na

L,nb
1n

b
2 · · · nb

L〉, with dimension Nf = (N + 2L −
1)/N !(2L − 1)! given N bosonic atoms in a system with L

lattice sites. In the rest of this work, we consider unitary filling
with N = L. The time evolution is numerically performed
by using a vector-optimized fourth-order Runge-Kutta routine
presented and benchmarked in Ref. [17].

The aim of this paper is to study the interplay between
dissipation and the periodic driving. It will be shown that
the combination of these two processes reveals surprising
dynamical features of our system. For simplicity, we set
γb ≡ γ b

l and therefore the system-environment coupling term
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is −iγb

∑
l b̂

†
l b̂l = −iγb

∑
l n̂

b
l . This latter condition is not

really relevant since our results do not strongly depend on how
the single-site decay rates are distributed. Our figure of merit
is the expected value of inter-WS ladder population inversion
operator

W (t) = 〈ψt |
∑

l

(
n̂b

l − n̂a
l

)|ψt 〉/〈ψt |ψt 〉. (4)

We restrict ourselves to initial states of the type |ψ1
0 〉 =∑

{n} D0
{n}|na

1n
a
2 · · · ,000 · · · 〉, for which all particles are

in the lowest WS ladder at t = 0. An example of this
kind of state is the Mott-insulator state represented by
|ψ1

0 〉 = |111 · · · ,000 · · · 〉, which is routinely prepared in
many experiments, such as those Refs. [1,2]. Other types
of initial conditions can be prepared by taking as a
starting point the Mott state. Examples of such differ-
ent states are so-called doublon states [6,29] |ψ2,3

0 〉 =
{|2020 · · · ,000 · · · 〉,|0202 · · · ,000 · · · 〉}, which can be used
to simulate quantum magnetism with ultracold atoms [3]. As
will be shown later in this work, the precise choice of the
initial state is not crucial, since the structure of the dynamically
generated states, if they exist, will turn out to be robust with
respect to imperfections in the initial conditions.

B. Resonant manifolds

Following Ref. [6], we transform the Hamiltonian in
Eq. (3) into the rotating frame with respect to the operator
Â = ∑

α,l(�α − 1
2Uα + lF )n̂α

l . The single-site annihilation
(creation) operators transform as

α̂l → α̂l exp
[−i

(
�α − 1

2Uα

)
t − ilθ (t)

]
,

with θ (t) = ∫ t

0 F (t ′)dt ′, then after plugging it into the Hamil-
tonian, we obtain

Ĥ ′ =
∑

α={a,b}

∑
l

Jαα̂
†
l+1α̂le

−iθ(t)

+
∑
μ,l

c̃μ[e−i[(ω+�)t−μθ(t)] + e−i[(�−ω)t−μθ(t)]]b̂†l+μâl

+
∑

l

Ux

2
b̂
†2
l â2

l e
−i2�t + Eλ

ν [{n}] + H.c., (5)

where we have defined c̃μ ≡ cμA/2 and the unperturbed
energies as Eλ

ν [{n}] = U (ν + λ), with ν = 1
2

∑
l(n

b
l − na

l )2,
λ = 3

∑
l n

a
l n

b
l .

To simplify the discussion, we assume equal interaction
strengths U = Ua ≈ Ub ≈ Ux . This approach is valid under
the condition Jα � Ua,b,x , as shown in Ref. [16]. The defini-
tion of Eλ

ν [{n}] permits us to split the Fock basis into sets of
states with the same energy that can be exploited to enhance the
inter-WS ladder coupling via resonant tunneling. The lowest-
energy manifold is that for ν = L/2 and λ = 0 corresponding
to Fock states with na

l + nb
l = 1. In Fig. 2, we show the energy

diagram for the case N/L = 2/2 with the respective inter and
intra-WS ladders coupling between the different states. Note
that the pairs of states {|10,01〉,|01,10〉}, {|20,00〉,|00,02〉},
and {|01,01〉,|10,10〉} are not directly coupled through the
Hamiltonian terms. We will see that the principal effect of
the combination of shaking and the dissipation is to “freeze”

FIG. 2. Energy diagram and allowed couplings in the many-body
system for N/L = 2/2, i.e., for two particles in two lattice sites. The
color of the arrow defines the process, i.e., induced by hopping (blue),
by the force (red and yellow), or by the interactions (green).

the system into a certain linear combination of the first pair of
states, which satisfies the condition

∑
l(n̂

b − n̂a
l ) = 0.

The transformed Hamiltonian Ĥ ′ has three different
timescales related to every time-dependent term in Eq. (5).
These scales are defined by the periods Tω = 2π/ω, T� =
π/�, and T ±

μ �=0 ≈ 2A|μ|/ω(� ± ω). For typical experimental
parameters [16], � is the largest energy scale. Therefore we
consider frequencies with � > ω, and then Tω > T� � T ±

μ �=0.
This implies that the dynamical effects of the fast oscillating
processes with frequencies ω�, ω±

μ �=0 happen within one period
of the driving F (t), and that they do not dominate the long-time
evolution.

III. DISSIPATION-INDUCED ASYMPTOTIC DYNAMICS
AND ENTANGLEMENT GENERATION

We compute the long-time average W (t) =
limT →∞ T −1

∫ T

0 W (t)dt in order to analyze the dependence
of the inter-WS ladder dynamics on the driving and the
dissipation. The results are shown in the density plot
in Fig. 3(a) for γb/Jα = 0.08 and t � 2000Tω. This
figure reveals the existence of resonance structures, i.e.,
finite-size areas in the parameter space at which the
interband coupling saturates to W (t) ≈ 0, see the white
areas in Fig. 3(a). The regions are around discrete values
for the frequency ωn ∝ ω0/n, with n ∈ N with amplitude
An ∝ 1/

√
ω0/ω ∝ √

n in the strong-driving regime, i.e.,
for c̃μ � Jα [see yellow-dashed lines in Fig. 3(a)]. For
weak driving, i.e., c̃μ ∼ Jα , the equidistance resonance
structure no longer appears. Instead, only one area is found
in the high-frequency regime around ω0/ω ≈ 1/3. In the
low-frequency regime, there is a large region in the vicinity
of A = 1. We learn from Fig. 3(a) that the probability of
hitting a resonant structure is rather large. Moreover, the
only difference between them is the timescale along which
W (t) → 0 for t � Tω. W (t) = 0 means that the asymptotic
state corresponds to an equal-population state, for which the
particle exchange between the two WS ladders is frozen.

To understand the origin of the asymptotic state, we study
the quasienergy spectrum of Ĥ ′. We diagonalize the Floquet
operator, i.e., the one-cycle evolution operator Û (Tω), and
plot the imaginary parts of the quasienergies εi = Ei − i�i/2.
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FIG. 3. (a) Long-time average of the population inversion W (t)
as a function of the amplitude A and frequency ω of the drive F (t).
The initial condition is the Mott state |11,00〉. Here ω0 = � − U and
γb = 0.08Jα , with Jα ≡ |Ja,b|. (b) Decay rates computed from the
quasienergy spectrum of Ĥ ′ for different system sizes N/L vs the
dissipation strengths (see legends). The inset shows the projections of
the Fock states onto the Floquet eigenstates for N/L = 2/2. The most
stable state corresponds to a linear combination of only two Fock
states belonging to the lowest resonant manifold. The parameters
taken from Ref. [16] are � = 0.1, Ja = −0.006, Jb = 0.006, Ua =
Ub = Ux = 0.034, c0 = −0.098, and c± = 0.035.

Figure 3(b) presents the decay rates �i as a function of the
ratio γb/Jα . Only if N is even, highly stable states exist
with small decay rates �i . For N odd, we do not observe
equilibration since no stable states are found. For N/L = 2/2,
the stable state is always found and can be expressed as
a linear combination of the states {|10,01〉,|01,10〉}. Here,
the individual weights become equal when increasing the
dissipation strength. In the case N/L = 4/4, the stable state
only appears when increasing the dissipation strength up to a
critical value, which must be sufficiently strong to influence
the long-time dynamics.

Given an initial state |ψi
0〉, the asymptotic dynamics is

driven by the non-Hermitian part of Ĥeff . To characterize the
system’s steady state, if it exists, we write it in Fock basis
representation as∣∣ψt≫Tω

〉 =
∑
{n}

Dt
{n}

∣∣na
1n

a
2 · · · na

L,nb
1n

b
2 · · · nb

L

〉
. (6)

This permits us to study the asymptotic normalized probability
distribution p({|Dt

{n}|2}) for different system sizes.

Let us start with the minimal system N/L = 2/2. The
|ψt�Tω

〉 results in the expected equally weighted linear
combination of the Fock states {|10,01〉,|01,10〉} predicted
in Fig. 3(b) for γb/Jα ≈ 0.08. Then we end up in the state

∣∣ψt�Tω

〉 ≈ 1√
2

(|01,10〉 + eiφ|10,01〉), (7)

which resembles a Bell state. The connection to the Bell basis
is straightforward if we use instead the single-site popula-
tion inversion number wl ≡ nb

l − na
l such that we map the

configuration |na
1n

a
2 · · · na

L,nb
1n

b
2 · · · nb

L〉 onto |w1w2 · · · wL〉.
This mapping is only one-to-one for those Fock states
obeying the condition na

l + nb
l = 1. Note that, for |ψt�Tω

〉
in Eq. (7), wl can only take the values ±1 and satisfies
〈ψt≫Tω

| ∑l ŵl|ψt≫Tω
〉 → 0. We introduce the pseudospin

representation wl = −1l ≡ ↓l and wl = 1l ≡ ↑l , with which
the state renders the Bell state 1√

2
(|↑↓〉 − |↓↑〉) ≡ |�−〉. The

phase factor φ ≈ π is extracted from the numerics.
Remarkably, the results for N/L = 2/2 can be extended to

larger systems. The probability distributions p({|Dt
{n}|2}) for

N/L = {4/4; 6/6} are shown in Figs. 4(c) and 4(d). Again,
pairs of equally weighted states have the largest contributions.
For N/L = 4/4 the pseudospin representation for |ψt�Tω

〉 is
given by∣∣ψt�Tω

〉 ≈ ∣∣Dt
1

∣∣(|↑↑↓↓〉 + eiφ1 |↓↓↑↑〉)
+ ∣∣Dt

2

∣∣eiθ2
1 (|↑↓↑↓〉 + eiφ2 |↓↑↓↑〉)

+ ∣∣Dt
3

∣∣eiθ3
1 (|↓↑↑↓〉 + eiφ3 |↑↓↓↑〉). (8)

It satisfies wl ≈ ±1 and W (t � Tω) ≈ 0. From the numer-
ics, the phase differences are found this time to be φi ≈ 0. A
Bell-like-state structure is recovered after rewriting |ψt�Tω

〉 by
using a set of new labels based on the spatial lattice bipartition
with respect to the center of the lattice:

|{w}〉 = |w1w2 · · · wL/2︸ ︷︷ ︸
Left

〉 ⊗ | wL/2+1 · · · wL︸ ︷︷ ︸
Right

〉. (9)

A careful analysis of the structure of the asymptotic
state in the pseudospin representation suggests the following
definitions:

d ≡ ↓1↓2, d̄ ≡ ↑3↑4, o ≡ ↓1↑2, ō ≡ ↑3↓4,

with which the state gets the form
∣∣ψt≫Tω

〉 ≈ ∣∣Dt
1

∣∣(|dd̄〉 + |d̄d〉) + ∣∣Dt
2

∣∣eiθ2
1 (|oō〉 + |ōo〉)

+ ∣∣Dt
3

∣∣eiθ3
1 (|oo〉 + |ōō〉)

≈ ∣∣Dt
1

∣∣|�+
d 〉 + ∣∣Dt

2

∣∣eiθ2
1 |�+

o 〉 + ∣∣Dt
3

∣∣eiθ3
1 |�+

o 〉.
(10)

Hence, |ψt�Tω
〉 can be mapped onto a linear combination of the

Bell states |�+
x 〉 ≡ 1√

2
(|xx̄〉 + |x̄x〉) and |�+

x 〉 ≡ 1√
2
(|xx〉 +

|x̄x̄〉), taking into account the new set of labels x ∈ {d,d̄,o,ō}.
Therefore, spatial entanglement between the two lattice sub-
systems persists when increasing the system size.

As anticipated, the structure of the asymptotic state does not
depend much on the initial state; see Fig. 4(c). We observe a
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FIG. 4. Panels (a) and (b) show W (t) for N/L = 2/2 and the
final-time normalized distribution p({|Dt

{n}|2}) for the asymptotic
state vs the dissipation strength. The initial condition is the Mott-
insulator state defined in the main text. Panels (c) and (d) show
p({|Dt

{n}|2}) for N/L = 4/4 and N/L = 6/6. Initial conditions:
(black-filled circles) |ψ1

0 〉, (blue-squares) 1√
2
(|ψ2

0 〉 + |ψ3
0 〉) and (red-

filled triangles) 1√
2
|ψ1

0 〉 + 1
2 (|ψ2

0 〉 + |ψ3
0 〉) defined in the main text.

The green asterisks in panel (c) correspond to an average over
100 initial random states of the type

∑
D{n}|na

1n
a
2 · · · ,00 · · · 〉. Note

that the states of interest satisfy
∑

l(n̂
b
l − n̂a

l ) = 0 and na
l + nb

l = 1.
These conditions imply a band-exchange symmetry of the populations
discussed at the end of Sec. III. The parameters are the same as for
Fig. 3 with |cμA/Ja| � 10 and ω = ω0.

dependence of the weights of the relevant states on the initial
state choice, although the symmetry is preserved. This is
verified after averaging over randomized linear combina-

tion of lower band Fock states: the asymptotic distribution
p({|Dt

{n}|2}) preserves the above Bell-state-like structure. The
timescale for the formation of the asymptotic state depends
on the system-environment coupling strength and the system
size;1 see discussion at the beginning of this section. This
timescale depends on the norm weight of the basin of attraction
of the asymptotic states of interest here. Therefore, the
asymptotic state structure is found to be very robust with
respect to imperfections in the initial state preparation.

In Fig. 4(d) we show the probability distribution for N/L =
6/6 given the initial states |ψi

0〉. Despite the large dimension
of the associated Fock space, we immediately notice that the
relevant contributions in the asymptotic state come, again, by
pairs, as in the previous cases. Following transformations as
described above, we have∣∣ψt�Tω

〉 = ∣∣Dt
1

∣∣(|dd̄〉 + |d̄d〉) + ∣∣Dt
2

∣∣eiθ2
1 (|sp〉 + |ps〉)

+ ∣∣Dt
3

∣∣eiθ3
1 (|ōp〉 + |pō〉)

+ ∣∣Dt
4

∣∣eiθ4
1 (|p̄p〉 + |pp̄〉)

...

+ ∣∣Dt
10

∣∣eiθ10
1 (|ss̄〉 + |s̄s〉), (11)

with

d ≡ ↓1↓2↓3, d̄ ≡ ↑4↑5↑6, o ≡ ↓1↑2↓3, ō ≡ ↑4↓5↑6,

s ≡ ↓1↓2↑3, s̄ ≡ ↑4↑5↓6, p ≡ ↑1↓2↓3, p̄ ≡ ↓4↑5↑6.

We see that again a sort of superposition of Bell states is
recovered.

To confirm that the states for larger systems are indeed
spatially entangled we compute the entanglement negativity
EN (ρ̂t ) = (‖ρ�R‖1 − 1)/2 [31,32]. It is defined via the partial
transpose of the density operator ρ̂�R taken over right-side
subsystem partition R, whose matrix elements in the wl

representation are

〈{s}|ρ̂�R
t |{v}〉

=
∑

{w},{w′}
Dt

{w}D
t∗
{w′}

L/2∏
l=1

δsl ,wl
δw′

l ,vl

L∏
l=L/2+1

δsl ,w
′
l
δwl,vl

. (12)

It is known that EN (ρ̂t ) is an entanglement witness,
i.e., it only detects entanglement rather than quantifying
it. The matrix is numerically diagonalized using LAPACK

subroutines to obtain the eigenvalues. We evaluate the trace
norm as ‖ρ̂�R‖1 = ∑

i |λi |. In Fig. 5, we show the onset of
entanglement between the subsystem partitionsLeft andRight
of the lattice; see also Ref. [31] where a similar partition
was chosen. The figure confirms that, for larger systems,
the evolving state gets entangled in time. Moreover, it also
shows a saturation exactly at the interband equilibrium, i.e.,
when the system steady-state regime is reached. For the case
N/L = 2/2, this is seen in comparison with Fig. 4(a).

1For the systems N/L = 4/4 and N/L = 6/6 the asymptotic
states occurs for t ∼ 2000Tω and t ∼ 8000Tω, respectively, given
γb = (0.08 − 0.1)Jα .
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FIG. 5. Entanglement negativity for N/L = 2/2 and N/L = 4/4
for increasing dissipation γb/Jα . The initial state is a nonentangled
Mott-insulator state. The parameters are the same as in Figs. 3 and 4.

The previous analysis of the asymptotic dynamics reveals
that the system is driven into a quasi-loss-free subspace set
by the following conditions: (i) na

l + nb
l = 1 (or equivalently

wl = {−1,1}), and (ii)
∑

l wl = 0. These conditions are satis-
fied only for a small subset of states from the low-energy man-
ifold E

L/2
0 which are not directly coupled via the Hamiltonian

terms in Eq. (5) (see Fig. 2). The structure of the asymptotic
state implies the existence of a subspace of states S formed by
pairs of Fock states, the linear combination of which is invari-
ant under the exchange of the on-site populations between the
two bands; for example, ∼|↑↓↑↓ · · · 〉 ± |↓↑↓↑ · · · 〉. Whether
the state is symmetric or antisymmetric the condition (ii) is
always satisfied [see inset in Fig. 4(b)].

In addition, the asymptotic state never has more than one
atom per lattice site. Therefore, it is “free” of interaction
effects, and we might operate on it via the dipole c0 term
without destroying its symmetry (i), (ii), with an appropriate
choice of the drive F (t).

The symmetry above exposed is broken if N is an odd
number since the internal subspace S can be split into two
subspaces with

∑
wl = ±1. Yet if the evolving state can be

written as a linear combination of pairs of states with the mirror
symmetry we have 〈ψt≫Tω

| ∑l ŵl|ψt≫Tω
〉 ≈ 0,±2, i.e., there

is no privileged value for the inter-WS ladder exchange and the
system will not equilibrate. This is the reason why we observe
no stable state in the quasi-spectrum analysis in Fig. 3(b).
N odd also affects the definition of the spatial bipartition that
generates entanglement and the Bell-like structures since there

is no geometrical center which allows for the introduction of
the labels x. Therefore the spatial entanglement, if possible,
is far more complicated to study. For instance, if we set
periodic boundary conditions there is no geometrical center
and we cannot straightforwardly define spatial bipartitions as
in Eq. (9).

IV. CONCLUSIONS

We investigated a two-band many-body Wannier-Stark
model with an interplay between periodic driving and an
effective dissipative coupling to higher bands. This is a first
study combining previous work on closed two-band Bose-
Hubbard models [16,17] with open single-band many-body
problems [33]. As suggested in Ref. [16] in detail, our two-
band model with small loss to higher bands could be realized
experimentally with a double-periodic lattice, controllable in
time and phase.

The driven many-body system shows remarkable features
such as the dynamical generation of entanglement and
the evolution into dynamically decoupled asymptotically
stable states. These states obey a band-population exchange
symmetry that is responsible for the creation of maximally
entangled Bell-like states that appear after a convenient
reorganization of their Fock representation. The spatial
“left-right” entanglement is detected by means of the
negativity as an entanglement witness. Our findings turn out
to be sensitive only with respect to the precise geometry of
the system, i.e., they occur for a lattice with an even number
of sites and hard-wall boundary conditions.

Our results are, as shown, robust to imperfections in the
preparation of the initial state, which gives good perspectives
for future applications in experiments with ultracold atoms
[34–36] and particularly in quantum information processing
[37].

ACKNOWLEDGMENTS

We acknowledge the financial support of the University del
Valle (Project No. CI 7996). C.A.P.-M. gratefully acknowl-
edges the financial support of COLCIENCIAS (Colombia)
programa “Es tiempo de volver” and S.W. support by the
FIL2014 program of Parma University. We warmly thank J.
H. Reina and C. Susa for lively discussions. Moreover, we are
very grateful to Elmar Bittner for computational and logistic
support at the ITP in Heidelberg.

[1] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008); M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski,
A. Sen De, and U. Sen, Adv. Phys. 56, 243 (2007); D. Jaksch
and P. Zoller, Ann. Phys. (NY) 315, 52 (2005).

[2] M. Greiner, O. Mandel, T. Esslinger, Th. W. Hänsch, and
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