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Testing quantum theory on macroscopic scales is a longstanding challenge whose solution could have a
significant impact on physics. For example, laboratory tests (such as those anticipated in nanomechanical or
biological systems) may look to rule out macroscopic realism: the idea that the properties of macroscopic objects
exist objectively and can be noninvasively measured. Such investigations are likely to suffer from (i) stringent
experimental requirements, (ii) marginal statistical significance, and (iii) logical loopholes. We address all of
these problems by refining two tests of macroscopic realism, or “quantum witnesses”, and implementing them in a
microscopic test on a photonic qubit and qutrit. The first witness heralds the invasiveness of a blind measurement;
its maximum violation has been shown to grow with the dimensionality of the system under study. The second
witness heralds the invasiveness of a generic quantum channel and can achieve its maximum violation in any
dimension; it therefore allows for the highest quantum signal-to-noise ratio and most significant refutation of the

classical point of view.
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I. INTRODUCTION

Since the birth of quantum mechanics, it has been difficult
to reconcile the principle of quantum superposition with the
intuitive experience of macroscopic objects, which appear
to always inhabit explicit states independent of observation.
Leggett and Garg [1-3] formulated a possible solution by
defining macroscopic realism (MR), a world view combining
two assumptions: macroscopic realism per se (MRps; a macro-
scopic object will inhabit exactly one of its possible states
at all times) and noninvasive measurability (NIM; the object
is not influenced by appropriately careful measurements).
From these assumptions, they derived Leggett-Garg (LG)
inequalities, which are used to test for the quantum behavior
of a system undergoing coherent evolution [1,4-11]. The LG
inequalities have been tested for a wide range of quantum-
mechanical systems, such as defect centers in diamond [12,13],
superconducting circuits [14—16], photons [17-21], atoms in
optical lattices [22], nuclear magnetic resonance [23-25], and
phosphorus impurities in silicon [26], and violations have been
observed as quantum theory predicts. Alongside the major
experimental challenge of applying the test to macroscopic
systems (which could then, in principle, have a bearing on
dynamical collapse theories [27]), proof-of-principle studies
have so far concentrated on the implementation of noninva-
sive measurements. Approaches include using weak [14,28]
null-result [16,21,29] and quantum nondemolition measure-
ments [30], but recently, efforts have focused on determining
and accounting for measurement clumsiness with control
experiments [13,16,25,31,32]. Furthermore, improvements to
the protocol have been sought: for example, an alternative test
of MR described variously as a quantum witness, no signaling
in time [33-35], and nondisturbance condition [9,13,26].
Compared to the original LG test, which needs to involve at
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least three possible measurement times and the measurement
of two-time correlations, the quantum witness test enjoys many
advantages: because only instantaneous expectation values
are required, it can usually be violated for a much wider
parameter regime [35-37] and is more robust to imperfec-
tions [16]. Furthermore, it was recently shown that Fine’s
theorem (derived initially for local realism) does not apply for
MR [35]. Notwithstanding the argument of Ref. [34], which
offers a different perspective involving quasiprobabilities,
LG inequalities do not form an optimal tight boundary for
MR. In contrast, the quantum witness condition [38] is both
necessary and sufficient for MR [35]. There are, however,
additional improvements that may be made: as we show, a
larger “quantum signal-to-noise ratio” may be had, and logical
loopholes may be narrowed by altering the experimental
protocol. Here we continue the pursuit of rigorous and
amenable protocols for testing MR, reporting a microscopic
experimental demonstration with a view to spurring on tests
which will nontrivially constrain future theories of physics.

Maroney and Timpson classified MRps into three types [9].
Two out of these three, termed operational eigenstate support
and supra eigenstate support, involve hidden variables in a
nontrivial way and cannot be ruled out by any experimental
test on a two-level system [39]. However, a third type, termed
operational eigenstate mixture macrorealism—in which all
superpositions are, in fact, statistical mixtures in a preferred
basis—can be ruled out by violating the LG inequality or a
quantum witness condition. It is therefore this notion of MRps
that we adopt for the remainder of this paper.

II. FIRST WITNESS

Consider two observables, A and B, measured at times
t=0 and t =T > 0, respectively. The measurement of
observable A is a blind measurement (the measurement is
performed, but the result is not recorded) shown in Fig. 1(a).
The outcomes of the first measurement (of A) are written
{a;}fori =1, ...,M, with corresponding probabilities P(a;);
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FIG. 1. (a) Generic procedure for testing our two quantum witnesses. We need four processes, including state preparation, state evolution

[e.g., P(p) =

U, pU ]]L ], and projective measurement (PM) of B. We also require the optional application of either (i) blind measurement (BM) of

A (for testing witness W) or (ii) some generic channel £(p), here chosen as a phase modulation U, ,oUJ (for testing witness V). (b) Experimental
setup. The heralded single photons are created via type-I SPDC in a BBO crystal and are injected into the optical network. Qubit states are
prepared via a polarizing beam splitter (PBS) and half-wave plates (HWPs). The phase channel UZ” can be implemented by a set of wave plates
(not shown), while a quartz crystal (QC) is used to realize a blind measurement of A. For the quitrit, the polarizing beam splitter, half-wave
plate, and beam displacer are used for state preparation. U3 is implemented with half-wave plates and quarter-wave plates (QWPs), the blind
measurement is again implemented with the quartz crystal (not shown), and U can be implemented with a cascaded interferometer network.
The projective measurement of B is realized via a beam displacer which maps the basis states of the qubit or qutrit to distinct spatial modes.

b is a particular outcome of the later measurement (of B).
Based on the joint measurement of these two observables,
the probability of obtaining result b in the later measurement
is P'(b) = Z,Ai1 P(bla;)P(a;), with P(bla;) being the condi-
tional probability of the outcome b given the earlier result a;.
The probability of outcome b without the prior measurement
of A is written P(b). The first of our two quantum witnesses
(derived in Refs. [38,40] and elsewhere) is defined as [41]

W := P(b) — P'(b). (1)

Based on the tenets of MR, the presence of the blind
measurement of A should not affect the subsequent evolution
of the system. One then has

W =0, )

our first quantum witness condition. It can be derived
under the same assumptions as the LG inequalities [2,16].
Equation (2) can be violated by a quantum-mechanical system;
the theoretical upper bound on the violation is given by [41]

! 3
M’ ()

where the number of blind-measurement outcomes M < N,
the dimension of the system under study. The maximum
violation can be found in the von Neumann measurement limit
when M = N and Wy =1 — 1/N.

Wmax =1~

III. SECOND WITNESS

We propose a further improvement to LG’s approach. Our
second quantum witness V consists of replacing the blind
measurement (above) with a generic quantum channel:

V := P(b) — P"(b). 4

P’ (b) denotes the probability of getting outcome b in the later
measurement of B att = T when a generic quantum channel
has been applied at + = 0. Since the generic channel could
be, but need not be, a blind measurement, we see that P’(b)
is a special case of P”(b) when that channel is chosen [see

Fig. 1(a)]. To obtain a classical condition on V, consider the
measurably zero (or near-zero) effect of a general channel
on certain “fixed-point” preparation states. Quantum theory
predicts that a modulation of the global quantum phase of a
state, for example, should have such a null effect. Attempting
to interpret a superposition of such fixed-point states (where,
according to quantum mechanics, the various states now pick
up definite relative phases) as a mere classical or incoherent
mixture (i.e., our assumption of MRps) leads to the condition

vV =0. ®)

According to quantum theory, once the channel is relaxed
from a blind measurement to some general map £, we have
= Tr{I1°[®(p) — ®(E(p))]}, with T1® being the projector
corresponding to outcome b of the later measurement and
describing the time evolution of density operator p from t = 0
to t = T. It is easy to see that for pure state p = | ) (],

Elp) = UOpUg, and choosing I1? = ®(p) = UlpUlT Uy, U,
are unitary operators), we can achieve
Vo = 1= [(y1Uol¥) . (©)

Therefore, if Uj orthogonalizes |1), the V witness can reach its
algebraic maximum (V,x = 1) in any dimension. To achieve
this maximum in general [as can be seen by inspecting Eq. (6)],
the channel must apply a pure phase to each fixed-point state,
such that when a superposition of these states is injected, the
phases combine to form an orthogonal superposition. A blind
measurement is equivalent to a random-phase channel: this is
at the root of the more modest maximum violations shown
in (3).

The reader may object that the assumption of NIM has
become noninvasive operability (NIO), namely, that a suitably
careful operation (that need not be interpreted as a “measure-
ment”) can be made without affecting the future evolution of
the system. By empirically testing for invasiveness, however,
we shall see that in the end such auxiliary assumptions will
play no role in the conditions that we test, so it is not
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necessary to consider the subtleties associated with replacing
“measurement” with “operation”.

IV. ERROR TOLERANCE

The conditions W =0 and V =0 are not suitable for
experimental test: since almost any real experiment will find
a violation (because of finite statistical or technical errors),
one may question the meaning of inferences made from data
recorded in such an experiment. It is better to construct the
compound conditions

min;(W;) < W, < max;(W)), 7
min; (V;) < Vo < max;(V;), (®)

where W; (V;) correspond to the witness measured in the
fixed point states |¢;) (which constitute a preferred basis)
and W, (V,) is a witness measured in the state |V,) =
> i [¥:), where Y, |o;|* = 1. That W; (V;) can be nonzero
constitutes an important quality of error tolerance not present
in conditions (2) or (5): one now requires the signature of
quantumness to be significant with respect to the control
quantities W; and V;. Recalling our interpretation of MRps as
operational eigenstate mixture macrorealism, the use of min
and max functions to bound W, and V, allows for the most
general MRps explanation interpreting the superposition o as
an arbitrarily weighted incoherent mixture of the fixed-point
states [16]. We therefore used only MRps (without using NIM
or NIO) to derive (7) and (8), and it is this assumption alone
that is being tested.

Interestingly, once these conditions are adopted as neces-
sary and sufficient conditions for MRps, the focus shifts from
the intrinsic properties of W, or V,; to their relation to W; or
V;. Testing MRps is then merely asking the question, does a
certain measured quantity for preparation o lie in the convex
hull of the same quantities measured for the classical states ¥r;?
Furthermore, it is not even required that W;(V;) are small in
magnitude, although this may be expedient for large violations.
In that case, it may be tempting to assume them to be zero when
quantum theory predicts, but measuring the control quantities
experimentally instead has the advantage of forming a more
logically watertight argument contra macrorealism since the
degree of “clumsiness” [32] is determined and need not be
assumed. Otherwise, the idea that the object under study is
not quantum at all, but merely a classical system subjected to
clumsy operations, remains a substantial loophole.

Assuming ancillary tests have been performed to determine
W; (V;) and found each to be (for example) close to zero,
all that remains is the testing of W, (V,). By judiciously
choosing Uy and |v¥,), the maximum violation of (8) is
generally greater than the maximum violation of (7) and
furthermore independent of the dimension of the system. This
is clearly more experimentally favorable; there is a greater
robustness to imperfection, and violations will emerge sooner
from statistical noise, i.e., with fewer experimental trials.
Note that with the introduction of the control quantities V;,
it might seem that a violation of (7) or (8) with magnitude
greater than 1 is possible, e.g., by arranging all V; = —1 and
Vs = +1. Such violations are, however, not permitted by any
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deterministic operation allowed in quantum mechanics (as we
show in Appendix A). Next, we will give details and results of
an experimental demonstration of violation of these witness
conditions.

V. OPTIMAL VIOLATIONS

It is simple to find preparations, channels, and measure-
ments which saturate the maximum violations of our two
witnesses. In our experimental demonstration, we choose the
fixed-point states to be an orthonormal basis {|v),|¥)} for
the qubit and {|¢y),|¢1),|¢2)} for the qutrit, which all satisfy
W; = V; = 0 because they form the eigenvectors of (i) the
blind measurement observable A and (ii) of the unitary channel
Uy. These basis states will be encoded in a combination of
polarization and path degrees of freedom of single photons
[see Fig. 1(b)]. Writing matrices in these bases, we choose

I 0 1 1
ugD:<0 _1)» Uf":(l _1) ©)

for the qubit and

1 0 0
u=|o &5 o |, (10)
0 0 €7
2 V6 W6
3 6 6
ub=o0o L2 £ (11)

\ﬁ _ \ﬁ \ﬁ

3 3 3

for the qutrit. The measurement operator is chosen as I1” =
[Y¥1) (1| or |¢a) (|, respectively. The superposition states
are |y) = (IYo) — [¥1))/~2 and |s) = (Ido) — |¢1) +
|$2))//3, which achieve W2P =1/2,W3P =2/3,v?P =
VP =1.

VI. EXPERIMENTAL RESULTS

The state of the qubit can be represented by two orthogonal
polarization states of single photons, which are generated via
a type-I spontaneous parametric down-conversion [SPDC; see
Fig. 1(b)] [42]. The polarization-degenerate photon pairs at a
wavelength of 801.6 nm are produced using a 0.5-mm-thick
B-barium borate (BBO) crystal pumped by a 90-mW diode
laser, which is filtered out by a 3-nm bandpass filter. The
signal photon is heralded for evolution and measurement by
detection of a trigger photon: coincidences are registered
by avalanche photodiodes with a 7-ns time window. A
polarizing beam splitter (PBS) and a half-wave plate (H}) set at
certain angles are used to prepare the input states. U12D is
realized by a half-wave plate (H|) at 22.5°. A birefringent
calcite beam displacer is used to map the basis states of the
qubit to two spatial modes and to accomplish the projective
measurement of B. The probability of the photons being
measured in |v) is estimated by normalizing photon counts
in each spatial mode to total photon counts. The count rates
are corrected for differences in detector efficiencies and losses
before the detectors. We assume that the ensemble of prepared
photons is fairly represented by the sample of detected photons
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FIG. 2. (a) Experimentally determined values for our two quantum witnesses W and V for the fixed-point preparations 0 and 1 (also 2) and
for the superposition preparation o of a photonic qubit (and qutrit). Theoretical predictions are represented by dashed and dotted lines. Error
bars indicate the statistical uncertainty which is obtained based on assuming Poissonian statistics. (b) Experimental results showing maximum
violations of both quantum witness conditions for two-level and three-level photonic systems. The blue (red) dashed (dashed-dotted) line
represents the theoretical predictions of the maximum violations of the first (second) quantum witness condition.

(fair sampling assumption). Total coincidence counts are about
13 000 over a collection time of 6 s.

For a qutrit, the basis states |¢y), |¢1), and |¢,) are encoded
by the horizontal polarization of the photon in the upper mode,
and the horizontal and vertical polarization of the photon in the
lower mode. After passing through a polarizing beam-splitter
and half-wave plate (H)), the heralded single photons pass a
beam displacer (BD;) followed by two half-wave plates (H;
and H,) [43], one in each spatial mode [44]. By tuning their
angles, the photons are prepared in one of the input states. The
unitary channel U 13D [belonging to SU(3)] can be decomposed
into three unitary channels, each of which applies a rotation to
just two of the basis states, leaving the other unchanged. Each
of them can be realized by two half-wave plates and a beam
displacer [45]. One of the half-wave plates is used to apply a
rotation on two modes of the qutrit state, and the other is used
to compensate the optical delay. The beam displacers are used
to translate between polarization encoding and spatial-mode
encoding. In this way, wave plates acting on the two polariza-
tion modes propagating in the same spatial mode can be used
to effect two-(spatial)-mode transformations. See Appendix B
for further details. In Appendix C, we present a scheme that
generalizes this approach to any desired dimension N.

To implement the blind measurement, note that after it is
applied, the system is a mixture with diagonal density operator
Potind = T(P) = 32, (Y| 01¥m) [¥m) (Y. Note that I'(p) is
a completely dephasing channel. Thus, the blind measurement
can be realized by a quartz crystal, inserted into the lower
spatial mode so as to destroy the spatial coherence of the
photons. The coherence length of the photons is L. ~ A2/ AAX,
where A is the central wavelength of the source and AA is the
spectral width of the source [46]. Hence, the thickness of the
quartz crystal should be at least 23.97 mm: in our experiment, it
is about 28.77 mm. To test the violation of our second quantum
witness condition (8), we replace the quartz crystal by wave
plates with certain setting angles which are used to realize the
unitary evolution UZ? or U3P.

In Fig. 2(a), the experimentally determined values of our
witnesses are shown. Due to the high-precision nature of our
laboratory setup, we found all quantities to be close to their pre-
dicted values. In particular the fixed-point preparations gave

witness values close to zero, and we found W§D = 0.4980 +
0.0060 (35 SD), V2P =0.9998 + 0.0004 (80 SD), W3P =
0.6700 = 0.0080 (44 SD), V3P = 0.9820 + 0.0020 (72 SD).
The number of standard deviations (SD) of violation, given
by (E, — max; E;)/+/Var(E,) + Var(max; ;) (E = W,V),
is shown parenthetically. Note how using the second witness
leads to violations of MRps with higher statistical significance.
In Fig. 2(b), these data are shown alongside theoretical
predictions for the maximum violations of both witnesses.

VII. CONCLUSION

Although violation of the LG inequality has become the
standard laboratory proof of “quantumness”, ruling out MR in
the same way that violation of Bell’s inequality rules out local
realism, the LG inequality is only necessary (but not sufficient)
for MR. In this paper, we employed the necessary and
sufficient quantum witness condition, which allows for greater
statistical significance given fewer experimental resources. We
significantly increased the statistical significance even further
by changing from a blind measurement to a unitary channel. In
both cases, we measured the classical disturbance introduced
by our operations, which tightens the logical loopholes in
the demonstration, as well as removing the need to assume
any kind of noninvasiveness. We have recorded experimental
violations in both photonic qubits and qutrits. Our results agree
well with the theoretical maximum violations and showcase
perhaps the final, fine-tuned protocol for testing macroscopic
realism per se, which gives the greatest possible chance for
finding convincing violations in truly macroscopic systems
while remaining error tolerant and evading the clumsiness
loophole.
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APPENDIX A: MAXIMUM VIOLATION
OF THE WITNESSES
Our second witness is defined as
V, = {T1"[ps — E(ps)1},

where I1% = ®f(I1%) is related to a measurement in the
preferred basis 1 by the channel ®. Clearly,

(AL)

-1<V, <1 (A2)

because it is the difference of two probabilities. Now, by using
the completeness relation ), |¥;)(v;| = I for an orthonormal
set of basis vectors, one can see that

,Z v, = Tf{“b'[lz ) (Wil — 5(2 |w,-><wi|>“

= Tr{I[I1* — E1(1*)]} = 0. (A3)

Above we used the trace-preserving property of £. Therefore,
we have that max; V; > 0 and min; V; < 0, and thus,

Vo —max V; < +1, (A4)

Ve —minV; > —1, (AS)
and the maximum violation of our condition has a magnitude
of unity. Since £ is any quantum channel, it could be the
completely dephasing channel. So this proof also establishes

Wy —max W; < +1, (A6)

Wo —minW; > —1, (A7)
L

although tighter bounds were proved by Schild and
Emary [41]. We have made the assumption that £ is a quantum
channel; that is, it belongs to the subset of quantum operations
that preserve the trace of the density operator. Trace-decreasing
operations are indeterministic and are possible only via
postselection. We leave the discussion of maximum violations
for that complementary subset, and their interpretation, for
future work.

APPENDIX B: EXPERIMENTAL REALIZATION OF THE
UNITARY EVOLUTIONS AND PROJECTIVE
MEASUREMENTS FOR TWO- AND
THREE-LEVEL SYSTEMS

To test the violation of the first quantum witness condition,
we insert a quartz crystal to destroy spatial coherence.
However, to test the violation of the second quantum witness
condition, we replace the quartz crystal with a set of wave
plates which are used to realize the unitary channels UZ? and
U;P. For implementation of UZP, we use a half-wave plate
to realize the Pauli operator o, on the qubit state. For a qutrit
case, the evolution USD is a channel that adds a phase et4r/3
on the state |¢,) and e/>"/* on |¢;) and keeps |¢o) unchanged
and can be realized by wave plates with certain setting angles
inserted into the proper spatial modes (upper and lower
modes).

PHYSICAL REVIEW A 95, 032122 (2017)

In the projective measurement stage, a beam displacer
is used to map the basis states of a qutrit to three spa-
tial modes and to accomplish the projective measurement
I1° = |¢,) (¢2|. For photon detection, we record pairwise
coincidences between the heralding detector and any one of
the three detectors in the measurement apparatus (heralded
single clicks). Simultaneous registrations in the heralding
detector and two of the three detectors for measurement give
the three-body coincidences. Such coincidences might occur
when the source generates more than one photon per pulse,
but we find the frequency of these to be negligible in our
experiment.

We estimate the relative detection efficiency of each
detector D; assuming that the sum of the photon counts at
the detectors does not depend on the configuration of optical
components before the detector. We then use these efficiencies
to correct each count rate N; = N;/D;. For the probability
of detection we then have P; = N; / Z?:O.l ) N;, where N; is
the corrected number of heralded clicks at detector i. The
corrections are made to eliminate the effects of different
efficiencies of the detectors.

APPENDIX C: GENERALIZATION TO ARBITRARY N

Just as shown in Fig. 1(a) of the main text, there are
four processes in this experiment, including state preparation,
operation of Uy (or blind measurement), state evolution U, , and
projective measurement of B. In order to extend the dimension
of the system to N dimensions, the primary problem is to find
a setup to implement arbitrary unitary channels since these can
be combined to enable full-state preparation and measurement
(as well as Uy and U,). For the blind measurement, it can be
realized by inserting quartz crystals with different thicknesses
in different optical modes.

It has been proven that any N x N unitary array can be
decomposed as a sequence of U(2) transformations on two-
dimensional subspaces of the N-dimensional Hilbert space,
with the complementary subspace unchanged [47]:

UN)=(Eyn-1-Eyn-a2-Ey1-S)".  (Cl)

Here E; ; is an N-dimensional identity array with the elements
of El’; JE;'1,E]’;, and E]/ replaced by the corresponding U(2)
array elements. S is used to adjust the phase of the output.

Figure 3 shows the experiment setup to achieve N-
dimensional unitary evolution. If N is an even number, the
basis states are encoded by polarization—either horizontal (H)
or vertical (V)—in n = N /2 spatial modes, i.e.,

(11),12)),(13),14)), ... ,(IN — 1),|N}))
~ (H\,V1),(Hy,V2), ... ,(H,,V},).

Otherwise, if N is odd, basis state |1) is encoded by the
horizontal polarization in the first spatial mode, and the
remaining basis states are encoded by the horizontal and
vertical polarization in (N — 1)/2 spatial modes, i.e.,

11),(12),13), ... .(IN = 1),IN)) ~ Hy,(H2,V2), ... .(H,, V2,

with n = NT“ According to Eq. (Cl1), if we can combine

the different spatial modes into one spatial mode and apply
arbitrary U(2) in this mode in sequence, we can implement
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FIG. 3. Experimental setup with cascaded interferometers which is able to implement any unitary operator. In this diagram, N is assumed

to be an even number.

an arbitrary unitary operator across many spatial modes. An
arbitrary transformation of the polarization of a photon can be
realized by a set of wave plates which contain two half-wave
plates (blue rectangle in Fig. 3) and one quarter-wave plate
(orange rectangle). As shown in Fig. 3, the first Ey y_; can
be achieved by inserting a set of wave plates in the last optical
mode. Then by applying a half-wave plate at 45° in all of
the other modes, after passing through the first beam displacer
(BDy), we can combine the levels of N and N — 2 together. By
inserting another wave-plate set, we can implement Ey y_».
We can use the same procedure to realize the following
E; ;. After this setup, the output labeling is reversed. So we
have, e.g., (H,,V,),...,(H},V,),(H{,V]), corresponding to
the basis states of (|N — 1),|N)), ...,(|3),14)),(]1),]2)). The
maximum number of beam displacers needed to build this

N-dimensional unitary operator is 2N — 4 when N is an even
number and 2N — 3 for an odd number. This number grows
only polynomially with the number of dimensions.

In order to extract the maximum violation of our witnesses,
it suffices to prepare the maximally coherent state [48]
o) = i)/ /N and make the final measurement include

IT, such that Ul'rl'IbUl = |, ){(¥s| is a projector onto this
state [41]. For the W witness, the blind measurement, of
course, projects onto the |y;) states; for the V witness, one
may use Up = Y oo € ©/N |y ) (W |. Tn this way, a phase
from each basis state contributes to the violation. It may be
possible to design other schemes where only phases from, e.g.,
macroscopically distinct basis states contribute: see Ref. [49]
for a similar analysis of measurement schemes for the LG
inequality.
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