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First-order strong-field QED processes in a tightly focused laser beam
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In a previous article [Phys. Rev. Lett. 117, 213201 (2016)] we have determined the angular resolved and
the total energy spectrum of a positron produced via nonlinear Breit-Wheeler pair production by a high-energy
photon counterpropagating with respect to a tightly focused laser beam. Here, we first generalize the results in
that article by including the possibility that the incoming photon is not exactly counterpropagating with respect
to the laser field. As main focus of the present paper, we determine the photon angular resolved and total
energy spectrum for the related process of nonlinear Compton scattering by an electron impinging into a tightly
focused laser beam. Analytical integral expressions are obtained under the realistic assumption that the energy
of the incoming electron is the largest dynamical energy of the problem and that the electron is initially almost
counterpropagating with respect to the laser field. The crossing symmetry relation between the two processes in
a tightly focused laser beam is also elucidated.
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I. INTRODUCTION

The emission of radiation by accelerated electric charges
is one of the most fundamental processes in physics. While
classically the emission of radiation is a continuous process [1],
quantum mechanically it has a discrete nature meaning that the
radiation is emitted as quanta, called photons [2]. The process
of photon emission by a massive charged particle, an electron
for definiteness, cannot occur in vacuum due to energy-
momentum conservation. However, if the electron interacts
with a background electromagnetic field, the latter can provide
the missing energy and momentum and the emission of
photons can occur. If the background electromagnetic field
is sufficiently strong that during the emission process, (a) it
is not altered by the emission process itself and (b) many of
its photons interact with the electron, then the so-called Furry
picture can be efficiently employed to calculate the emission
process probability for a relatively large class of background
fields by taking into account exactly the background field itself
in the calculations [2–5]. In the Furry picture the electron
states and propagator are determined exactly in the external
electromagnetic field, meaning that they are obtained by
solving the Dirac equation and the corresponding equation
for the propagator including the background field. After
that, the obtained dressed states and dressed propagator can
be employed within the conventional Feynman approach to
determine the probabilities of QED processes by accounting
perturbatively for the interaction between the electron-positron
field and the photon field (apart from this, depending on the
structure of the background field, the theory of QED in the
presence of a strong background field may have qualitatively
additional different features like, for example, the instability
of the vacuum under electron-positron pair production [4]).

Below we are interested in the case where the background
electromagnetic field is a laser field, typically with an optical
frequency, corresponding to a wavelength of the order of
one micrometer. In fact, present high-power optical laser
facilities have reached very high intensities of the order of
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I0 ∼ 1022 W/cm2 [6] and upcoming 10-PW facilities aim
at I0 ∼ 1023 W/cm2 [7]. The requirement of high intensity
is related to the importance of so-called nonlinear quantum
effects like, for example, the recoil undergone by the electron
in the emission of photons. This is a pure quantum effect and, as
other QED effects in a strong laser field (approximated here as
a plane wave), it is controlled by the so-called quantum non-
linearity parameter χ0 = |e|

√
|(pμF

μν

0 )2|/m3 [8–13]. Here,
e < 0 and m are the electron charge and mass, respectively,
pμ = (ε, p) is the initial four-momentum of the electron,
and F

μν

0 = (E0,B0) is a measure of the amplitude of the
laser field, with E0 = B0 = F0 (units with 4πε0 = h̄ = c = 1
are employed throughout). If one denotes with nμ = (1,n)
(n2 = 0) the four-momentum of a laser photon in units of its
energy and with A

μ

0 = (0,A0) = (0, − E0/ω0) the amplitude
of the four-vector potential, where ω0 is the central angular
frequency of the laser, the parameter χ0 can be written as χ0 =
[(np)/m]F0/Fcr , where Fcr = m2/|e| = 1.3 × 1016 V/cm =
4.4 × 1013 G is the so-called critical field of QED [8–13].
The above expression of the parameter χ0 sets the field scale
Fcr as the typical scale where nonlinear QED effects, like the
importance of the recoil undergone by the electron when it
emits a photon, are significant. The same expression, however,
also indicates that even for laser field amplitudes much below
the critical value, nonlinear QED effects can be important
(χ0 � 1) if, for example, one employs ultrarelativistic elec-
trons which initially counterpropagate with respect to the
laser field. In fact, from a physical point of view the relevant
quantity here is the external field amplitude in the initial rest
frame of the electron [(np)/m]F0 and for an ultrarelativistic
electron initially counterpropagating with the laser field it
is (np)/m ≈ 2ε/m � 1. Since the critical amplitude Fcr

corresponds to a laser intensity Icr = 4.6 × 1029 W/cm2, it
is clear that the strong-field QED regime, where nonlinear
QED effects become essential, can be entered nowadays and
in the near future only by employing ultrarelativistic electron
beams. It is worth pointing out that conventional accelerators
have provided electron beams with energies of the order of
50 GeV [14,15] whereas modern accelerators based on the
laser-wakefield acceleration technique have already reached
energies of the order of 1–5 GeV [16]. Thus, having in mind
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the mentioned experimentally achieved laser intensities we can
conclude that present technology allows in principle entering
the strong-field QED regime. For the sake of completeness, we
have to remind readers that another requirement for entering
the strong-field regime is the importance of nonlinear effects
in the amplitude of the external field. In fact, if the field
is so weak that during the process under consideration an
electron effectively interacts only with a single external-field
photon, then even the use of the Furry picture is redundant and
essentially the amplitudes of vacuum QED can be employed
to calculate transition probabilities. In the case of a laser
field, the importance of nonlinear effects with respect to
the laser amplitude is related to the energy that the laser
field can transfer to an electron in the typical QED length
λC = 1/m = 3.9 × 10−11 cm (Compton wavelength) and it is
controlled by the parameter ξ0 = |e|E0/mω0 [8–13]. If this
parameter is larger than unity, in fact, the laser field can
transfer an energy corresponding to multiple laser photons
to an electron on a Compton wavelength. Since the threshold
ξ0 = 1 corresponds to an optical (ω0 ∼ 1 eV) laser intensity
of the order of 1018 W/cm2, it is customary to consider the
highly nonlinear regime where ξ0 � 1 (see Ref. [17] for a
recent study where other interesting features in the regime
ξ0 ∼ 1 also are investigated).

The process of the emission of a single photon by an
electron in the field of a plane wave (nonlinear single Compton
scattering) has been studied since the 1960s [18,19] and, due
to the fast development of laser technology, has received again
much attention in recent years [20–36], with emphasis on
effects related to the laser duration, laser polarization, spin
of the participating electron, and so on (see also the reviews
[8–12]). Moreover, the process of double photon emission
in the field of a plane wave (nonlinear double Compton
scattering) has also been investigated recently [37–39].

In all the abovementioned studies in the full quantum
regime, the laser field has been approximated as a plane wave,
which allows one to solve analytically the Dirac equation and
obtain the exact electron states and propagators (Volkov states
and propagator, respectively) [2,40] and to use them within the
Furry picture. However, present and upcoming laser facilities
may realistically reach the high intensities required to enter
the strong-field QED regime only by tightly focusing the laser
energy both in space and time. Although arbitrary laser pulse
shapes in time can be accounted for within the plane-wave
approximation of the laser field, space focusing goes beyond
this approximation. Recently, effects of the laser spatial fo-
cusing in Compton and Thomson scattering (the latter process
corresponds to the classical emission of radiation, where quan-
tum effects like recoil can be neglected) have been recently
investigated numerically in Refs. [41] and [42], respectively.
Also, analytical expressions of scalar wave functions based on
the Wentzel-Kramers-Brillouin (WKB) approximation have
been determined in Ref. [43] for a specific class of background
fields depending on the space-time coordinates via the quantity
(nx) like a plane wave but generalizing from lightlike nμ to
arbitrary nμ. Moreover, the dynamics of a scalar particle in a
background formed by two counterpropagating plane waves
both in the classical and in the quantum regime has been
recently studied in Ref. [44]. In Refs. [45,46] we have started
to investigate a regime of laser-electron interaction which is

relevant for present and forthcoming experiments in strong-
field QED, where it was possible to determine analytically
the wave functions [45,46] and the propagator [46] for an
electron in the presence of a background electromagnetic field
of virtually arbitrary space-time structure, having in mind the
case of a tightly focused laser beam. In this regime the involved
charged particles (electrons and positrons) are assumed to be
(almost) counterpropagating with respect to the laser field (the
meaning of “almost” is clarified in the next section). Although
other geometries can be easily implemented (see Ref. [45]),
the counterpropagating setup, as we have indicated above, is
the one featuring the largest value of the quantum nonlinearity
parameter χ0 at a given field amplitude and incoming electron
energy. Moreover, the longitudinal momentum of the involved
charged particles is much larger than the typical transverse
momentum scale mξ0 in the laser field such that the charged
particles are barely deflected by the laser field and their
energy scale is determined by the longitudinal momentum.
This has allowed us to solve the Dirac equation within the
WKB approximation but by keeping next-to-leading-order
terms, which are essential already to reproduce the results
in the plane-wave limit. It is important to stress that the
approximation ε � mξ0 is automatically satisfied for present
and upcoming experimental conditions. In fact, let us assume
for the sake of definiteness that an ultrarelativistic electron
initially counterpropagates with respect to the laser beam. In
order to enter the strong-field QED regime (say at χ0 > 1), by
assuming the laser to be a Ti:Sapphire laser (ω0 = 1.55 eV)
and to have a feasible intensity of I0 ∼ 1023 W/cm2 [7]
(corresponding to ξ0 = 150), it is necessary that ε � 500 MeV
such that it is ε/m ≈ 103. In Ref. [47] we have shown that the
wave functions found in Refs. [45,46] can indeed be employed
to obtain relatively compact integral analytical expressions
for the angular resolved and the total energy spectrum of
positrons produced in the head-on collision of a high-energy
photon with a strong and tightly focused laser beam. The
spectra in Ref. [47] are conveniently expressed as functions
of the external background field and have been shown to be in
agreement with the corresponding results obtained by means of
the operator technique in the quasiclassical approximation [48]
(see also Ref. [49]), although, in general, in the latter approach
the angular resolved and the total energy spectra are expressed
in terms of the electron trajectory, which has to be determined
separately. Here, we first generalize the findings in Ref. [47] to
include the possibility that the incoming photon is not exactly
counterpropagating with respect to the laser beam. Then, we
focus on the analogous study of nonlinear single Compton
scattering in a tightly focused laser beam. In addition, we will
elucidate how these two first-order strong-field QED processes
are related by the crossing symmetry [2].

II. NONLINEAR BREIT-WHEELER PAIR PRODUCTION

In this section we generalize the results obtained in
Ref. [47], including the possibility that the incoming photon
is not exactly counterpropagating with respect to the laser
beam. As in Ref. [47], we assume that the laser field is
described by the four-vector potential Aμ(x) in the Lorentz
gauge ∂μAμ(x) = 0. For the sake of definiteness, we consider
a laser beam whose focal plane corresponds to the x-y plane
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and whose wave vector at the center of the focal area points
along the negative z direction (below we summarize these
properties by saying that the laser beam propagates along
the negative z direction). A concrete realistic form of the
background electromagnetic field which can be studied with
the present formalism and its main features are presented in the
Appendix. The chosen setup described above suggests intro-
ducing the light-cone coordinates T = (t + z)/2, x⊥ = (x,y),
and φ = t − z for a generic four-position xμ = (t,x,y,z).
Analogously, it is convenient to introduce the light-cone
components v± = (v0 ± vz)/2(1±1)/2 and v⊥ = (vx,vy) for an
arbitrary four-vector vμ = (v0,vx,vy,vz). The four-momentum
and the polarization four-vector of the incoming photon
are indicated as kμ = (ω,k) (k2 = 0) and e

μ

k,l (l = 1,2),
respectively (the four-vectors e

μ

k,l are considered real, implying
that the incoming photon is assumed to be linearly polarized).
The incoming photon is almost propagating along the positive
z direction, meaning that |k⊥| � mξ0 � kz ≈ ω (see, in
particular, Ref. [46]). Concerning the final electron-positron
pair, it is convenient here to indicate as pμ = (ε, p) (p2 = m2)
and s = 1,2 the four-momentum and the spin quantum number
of the positron and as p′μ = (ε′, p′) (p′2 = m2) and s ′ = 1,2
the corresponding quantities for the electron. Although this is
the opposite notation as that we have employed in Ref. [47],
it will simplify the comparison with the results in nonlinear
single Compton scattering and the discussion on the crossing
symmetry. Thus, for the sake of clarity, we will report here
also some formulas, which differ from the corresponding ones
in Ref. [47] by the exchange of pμ with p′μ and of s with s ′.
The amplitude of nonlinear Breit-Wheeler pair production at
the leading order within the Furry picture is given by

SBW,f i = −ie
√

4π

∫
d4x ψ̄

(out)
p′,s ′ (x)

êk,l√
2ω

e−i(kx)ψ
(out)
−p,−s(x),

(1)

where the hat indicates the contraction of a four-vector with
the Dirac matrices γ μ, and where ψ̄ = ψ†γ 0 for an arbitrary
bispinor ψ (a unit quantization volume is assumed). The out-
states employed to evaluate the transition amplitude in Eq. (1)

are those given in Eqs. (2) and (3) in Ref. [47], i.e.,

ψ
(out)
±p,±s(x) = eiS

(out)
±p (x)

[
1 ± e

4p+
n̂Â(out)(x)

]
u±p,±s√

2ε
, (2)

where

S
(out)
±p (x) = ∓(p+φ + p−T − p⊥ · x⊥) + e

∫ ∞

T

dT̃ A−(x̃)

+ 1

p+

∫ ∞

T

dT̃

{
e(pA(out)(x̃)) ∓ 1

2
e2A(out) 2(x̃)

}
,

(3)

where A(out),μ(x) = (0,A(out)
⊥ (x),0), with

A(out)
⊥ (x) = A⊥(x) − ∇⊥

∫ ∞

T

dT̃ A−(x̃)

=
∫ ∞

T

dT̃ [E⊥(x̃) + z × B⊥(x̃)], (4)

and where up,s (u−p,−s) are the positive-(negative-)energy
constant free bispinors [2] (the symbol x denotes the three
coordinates (T ,x⊥) and, correspondingly, x̃ = (T̃ ,x⊥)). We
recall that under our approximations one can neglect the
dependence of the background field on the variable φ and,
for an appropriate choice of the initial conditions, evaluate
the background field itself at φ ≈ 0 [45]. The reason is that,
as can be also ascertained from the classical motion of an
ultrarelativistic charged particle along the positive z direction,
the quantity φ = t − z effectively scales as the square of
the inverse of the energy of the particle in the relevant
integration region (see also Ref. [45]). Thus, having in mind,
for example, the expression of the background electromagnetic
field discussed in the appendix, in order to perform concrete
calculations, one has to replace t ≈ z ≈ T in the expression
of the background field, whereas the transverse coordinates x

and y correspond to the two-dimensional vector x⊥.
Since the only difference with respect to the results in

Ref. [47], apart from the mentioned notational one, is the
four-momentum of the incoming photon, we can already write
that Eqs. (7) and (8) in Ref. [47] become

dNBW

dεd�p

= iρ�,γ

αε

16π3ω

∫
d3xd3x′

T−
ei��BW(x,x′)

〈
m2

(
ε′

ε
+ ε

ε′ + 4

)
+ 2iε

T−
+ ε′

ε

{
p⊥ − ε

T−
�x⊥,p

+ e
ω

ε′
1

T−

[∫ ∞

T

dT̃ A⊥(x̃) −
∫ ∞

T ′
dT̃ ′A⊥(x̃′)

]
+ e

ω

ε′ A⊥,+(x,x′)
}2

− e2 (ε − ε′)2

4εε′ A2
⊥,−(x,x′)

〉
(5)

and

��BW(x,x′) = ω

εε′
T−
2

m2 − T−
2ω

(
k⊥ − ω

T−
x⊥,−

)2

+ T−
2ε

(
p⊥ − ε

T−
�x⊥,p

)2

− ω

εε′
e2

2

{
1

T−

[∫ ∞

T

dT̃ A⊥(x̃) −
∫ ∞

T ′
dT̃ ′A⊥(x̃′)

]2

+
∫ ∞

T

dT̃ A2
⊥(x̃) −

∫ ∞

T ′
dT̃ ′A2

⊥(x̃′)

}
. (6)

In these equations we have introduced the differential positron solid angle d�p ≈ d2 p⊥/ε2 (indicated as d� in Ref. [47]),
the number of incoming photons per unit surface ρ�,γ (defined as ρ� in Ref. [47]), the final electron energy ε′ = ω − ε,
and the quantities T± = (T ± T ′)/2(1±1)/2, x⊥,± = (x⊥ ± x′

⊥)/2(1±1)/2, A⊥,±(x,x′) = [A⊥(x) ± A⊥(x′)]/2(1±1)/2, �x⊥,p =
x⊥,− + (e/ε)[

∫∞
T

dT̃ A⊥(x̃) − ∫∞
T ′ dT̃ ′A⊥(x̃′)], whereas the symbol x̃′ denotes the three coordinates (T̃ ,x′

⊥).
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The above Eq. (5) can be easily integrated with respect to the final transverse positron momentum d2 p⊥ ≈ ε2d�p because
the integral is Gaussian as the phase there contains at the highest quadratic terms in p⊥. Since the pre-exponent also contains p⊥
(up to the second power), we need the identities (see, e.g., Ref. [50])

I0(a) =
∫

d2 z
(2π )2

eiaz2 =
∫ ∞

0

ds

4π
eias = i

4πa
, (7)

I2(a) =
∫

d2 z
(2π )2

z2eiaz2 = −i
dI0(a)

da
= − 1

4πa2
(8)

for any two-dimensional real vector z = (z1,z2) and for any constant a with Im(a) > 0. By employing these identities in Eq. (5),
the result for the total positron energy spectrum is

dNBW

dε
= −ρ�,γ

α

8π2ω

∫
d3xd3x′

T 2−
exp

〈
i

{
m2

2

ω

εε′ T− − T−
2ω

(
k⊥ − ω

T−
x⊥,−

)2

− ω

εε′
e2

2

1

T−

[∫ ∞

T

dT̃ A⊥(x̃)−
∫ ∞

T ′
dT̃ ′A⊥(x̃′)

]2

− ω

εε′
e2

2

[∫ ∞

T

dT̃ A2
⊥(x̃) −

∫ ∞

T ′
dT̃ ′A2

⊥(x̃′)
]}〉〈

m2

(
ε′

ε
+ ε

ε′ + 4

)
+ 2iω

T−

+ ω2

εε′ e
2

{
1

T−

[∫ ∞

T

dT̃ A⊥(x̃) −
∫ ∞

T ′
dT̃ ′A⊥(x̃′)

]
+ A⊥,+(x,x′)

}2

− e2 (ε − ε′)2

4εε′ A2
⊥,−(x,x′)

〉
. (9)

As we have already pointed out in Ref. [47], it is convenient at this point to consider the integrals in the transverse coordinates
and to pass to the variables x⊥,± = (x⊥ ± x′

⊥)/2(1±1)/2. In fact, one then realizes that the transverse formation length of the
process is of the order of the Compton wavelength (λC = 3.9 × 10−11 cm ∼ 10−7 μm ∼ 10−4 nm). Now, we have in mind
applications where the tightly focused laser field is either an optical field, which varies in space on scales of the order of one
micrometer, or an x-ray field, which vary on scales of the order of one nanometer. Thus, one can expand the external field
around x⊥,+ and neglect there the difference between x⊥ and x′

⊥, as the corrections will be proportional to the small parameter
λC/λ0 ∼ ω0/m, with λ0 = 2π/ω0 being the central laser wavelength (needless to say the approximation works even better for
lower-frequency lasers like terahertz lasers). As we have noticed in Ref. [47], this is also justified at the leading order in 1/ω

as λC/λ0 ∼ (κ0/ξ0)(m/ω) � m/ω. It is worth adding here to the considerations already discussed in Ref. [47] that the above
conclusion about the transverse formation length is already clear if ξ0 � 1. If ξ0 � 1, however, one can also observe that (1)
according to the findings in Ref. [51], the regions where the pair is most likely produced are those where the transverse dynamical
kinetic momenta of the electron and the positron vanish, and (2) since the longitudinal formation length is typically a small
fraction 1/ξ0 of the laser period, the transverse momentum transfer is again of the order of m. Following the above discussion,
we can approximately evaluate the external field in Eqs. (5) and (9) at x⊥,+ such that the phase ��BW(x,x′) becomes

��BW(x,x′) ≈ ω

εε′
T−
2

m2 − T−
2ω

(
k⊥ − ω

T−
x⊥,−

)2

+ T−
2ε

[
p⊥ − ε

T−
x⊥,− − e

T−

∫ T ′

T

dT̃ A⊥(x̃)

]2

− ω

εε′
e2

2

⎧⎨
⎩ 1

T−

[∫ T ′

T

dT̃ A⊥(x̃)

]2

+
∫ T ′

T

dT̃ A2
⊥(x̃)

⎫⎬
⎭, (10)

where x̃ = (T̃ ,x⊥,+). The phase in Eq. (9) is the same as this expression of ��BW(x,x′) except for the last term in the first
line which has been integrated out with the transverse momentum p⊥. Under these approximations, the phases in both Eqs. (5)
and (9) contain at the highest quadratic terms in x⊥,− and the resulting integrals in x⊥,− are of Gaussian form. With the help of
the identities (7) and (8), these integrals can be taken analytically and Eqs. (5) and (9) become

dNBW

dεd�p

= ρ�,γ

8π2

αε

ωε′

∫
dT dT ′d2x⊥e

i ω

2εε′
〈
T−
{

m2+
[

p⊥− ε
ω

k⊥− e
T−

∫ T ′
T

dT̃ A⊥(x̃)
]2}

−e2
{

1
T−

[ ∫ T ′
T

dT̃ A⊥(x̃)
]2

+∫ T ′
T

dT̃ A2
⊥(x̃)

}〉

×
{
m2

(
ε′

ε
+ ε

ε′ + 4

)
+ ω2

εε′
[

p⊥ − ε

ω
k⊥ + eA⊥,+(x,x′)

]2
− e2 (ε − ε′)2

4εε′ A2
⊥,−(x,x′)

}
, (11)

and

dNBW

dε
= i

ρ�,γ

4π

α

ω2

∫
dT dT ′d2x⊥

T−
e
i ω

2εε′
〈
m2T−−e2

{
1

T−

[ ∫ T ′
T

dT̃ A⊥(x̃)
]2

+∫ T ′
T

dT̃ A2
⊥(x̃)

}〉

×
{

m2

(
ε′

ε
+ ε

ε′ + 4

)
+ 2iω

T−
+ ω2

εε′ e
2

[
1

T−

∫ T ′

T

dT̃ A⊥(x̃) + A⊥,+(x,x′)

]
− e2 (ε − ε′)2

4εε′ A2
⊥,−(x,x′)

}
, (12)

respectively. Following the discussion below Eq. (9), we point out that the symbols x̃ and x′ have to be intended here as
x̃ = (T̃ ,x⊥) and x′ = (T ′,x⊥), respectively. It is worth noticing that neglecting the difference between x⊥ and x′

⊥ in the
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external vector potential and evaluating it at the average transverse coordinate x⊥,+ implies that the resulting expressions (11)
and (12) have the same form as in a plane wave with four-vector potential A

μ

PW,⊥(T ) = (0,APW,⊥(T ),0) with the substitution
APW,⊥(T ) → A⊥(x). Thus, under our approximations in which we keep leading-order terms in 1/ω, the transverse conjugated
momentum is approximately conserved, which is consistent with the analysis on the classical dynamics presented in Ref. [45]
(see also the discussion below at the end of the section).

Both Eqs. (11) and (12) can be substantially simplified either by performing suitable integrations by parts [21,25] or equivalently
by enforcing gauge invariance with respect to the incoming photon [52]. In Eq. (11) one can then use the fact that

0 =
∫

dT−
∂

∂T−
e
i ω

2εε′
〈
T−
{

m2+
[

p⊥− ε
ω

k⊥− e
T−

∫ T ′
T

dT̃ A⊥(x̃)
]2}

−e2
{

1
T−

[ ∫ T ′
T

dT̃ A⊥(x̃)
]2

+∫ T ′
T

dT̃ A2
⊥(x̃)

}〉
, (13)

where T = T+ + T−/2 and T ′ = T+ − T−/2, and obtain

dNBW

dεd�p

= ρ�,γ

4π2
αm2ε
ωε′

∫
dT dT ′d2x⊥e−i ω

2εε′
∫ T ′
T

dT̃ {m2+[ p⊥− ε
ω

k⊥+eA⊥(x̃)]2}
[
1 − e2

4
ε2+ε′2

εε′
A2

⊥,−(x,x′)
m2

]
. (14)

From the computational point of view, this expression can be rewritten in a more suitable form by noticing that

e2A2
⊥,−(x,x′) = [π⊥,p(x) − π⊥,p(x′)]2, (15)

where π⊥,p(x) = p⊥ − (ε/ω)k⊥ + eA⊥(x). Now, by integrating by parts the resulting terms proportional to π2
⊥,p(x) and

π2
⊥,p(x′), one can easily show that

dNBW

dεd�p

=ρ�,γ

8π2

αm2ε

ωε′

∫
d2x⊥

[
ω2

εε′ |f0,p(x⊥)|2 + ε2 + ε′ 2

εε′

∣∣∣∣f0,p(x⊥)

m

(
p⊥ − ε

ω
k⊥

)
+ f 1,p(x⊥)

∣∣∣∣
2
]
, (16)

where

f0,p(x⊥) =
∫

dT ei ω

2εε′
∫ T

0 dT̃ [m2+π2
⊥,p(x̃)], (17)

f 1,p(x⊥) = e

m

∫
dT A⊥(x)ei ω

2εε′
∫ T

0 dT̃ [m2+π2
⊥,p(x̃)]. (18)

Finally, the integral f0,p(x⊥) can be regularized as indicated above and one obtains the relation[
m2 +

(
p⊥ − ε

ω
k⊥

)2
]
f0,p(x⊥) + 2m

(
p⊥ − ε

ω
k⊥

)
· f 1,p(x⊥) + m2f2,p(x⊥) = 0, (19)

where

f2,p(x⊥) = e2

m2

∫
dT A2

⊥(x)ei ω

2εε′
∫ T

0 dT̃ [m2+π2
⊥,p(x̃)]. (20)

In this respect, we notice that the choice of the lower integration limit in the phases in the functions f0,p(x⊥), f 1,p(x⊥), and
f2,p(x⊥) is arbitrary and the value T̃ = 0 has been chosen for convenience.

Now, by analogously integrating by parts the term 2iω/T 2
− in Eq. (12) one easily obtains the total energy spectrum in the form

dNBW

dε
= i

ρ�,γ

2π

αm2

ω2

∫
dT dT ′d2x⊥

T−
e
i ω

2εε′
〈
m2T−−e2

{
1

T−

[ ∫ T ′
T

dT̃ A⊥(x̃)
]2

+∫ T ′
T

dT̃ A2
⊥(x̃)

}〉[
1 − e2

4

ε2 + ε′2

εε′
A2

⊥,−(x,x′)
m2

]
, (21)

where we recall that the factor T− in the denominator has to be intended as T− → T− + i0 as it results from the condition on
the imaginary part of the constant a once one applies the results in the integrals in Eqs. (7) and (8). Note that the prescription
T− → T− + i0 ensures that dNBW/dε vanishes for vanishing background field. By comparing Eqs. (11) and (12) with Eqs. (9)
and (10), respectively, in Ref. [47], we see that the expressions of the angular resolved energy spectra only differ because
the transverse momentum of the positron is shifted here by the quantity −(ε/ω)k⊥, whereas the total positron energy spectra
coincide. In this respect, we can already conclude that the results in the quasistatic limit (ξ0 � 1 in the parameter regions where
most of the pairs are produced and for typical quantum photon nonlinearity parameter κ0 = 2(ω/m)F0/Fcr of the order of unity)
are (see Eqs. (11) and (12) in Ref. [47])

dNBW

dεd�p

= ρ�,γ

α

π2
√

3

ε2

ω2

∫
d3x gp(x)b(x)

[
1 + ε2 + ε′ 2

εε′ g2
p(x)

]
K1/3

[
2

3
b(x)g3

p(x)

]
(22)

and

dNBW

dε
= ρ�,γ

α

π
√

3

m2

ω2

∫
d3x

{
ε2 + ε′ 2

εε′ K2/3

[
2

3
b(x)

]
+
∫ ∞

2
3 b(x)

dz K1/3(z)

}
, (23)
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where we have introduced the functions gp(x) =
√

1 + π2
⊥,p(x)/m2 and b(x) = (ω2/εε′)κ−1(x), with κ(x) =

(ω/m)|∂A⊥(x)/∂T |/Fcr being the local value of the quantum photon nonlinearity parameter. Concerning the comparison
with the results in Ref. [48], since now k⊥ �= 0 it is more transparent to first observe that there the differential spectra with respect
to the electron momenta (energy) are reported (see Eqs. (3.28) and (3.30) in Ref. [48]). If we had integrated over the positron
degrees of freedom, we would have obtained the same expression with all primed and unprimed energies and momenta (and
consequently solid angle) exchanged and with A⊥(x) → −A⊥(x). Then, one can easily see that the results are in agreement
by correctly identifying the electron transverse velocity there with the quantity [ p′

⊥ − eA⊥(x)]/ε′ here. Analogously to what
we have mentioned in Ref. [47], the corresponding results for a single incoming photon in a plane wave are formally obtained
by removing the dependence on the transverse coordinates from the external field and by setting ρ�,γ

∫
d2x⊥ = 1. On the other

hand, it should be noticed that by starting, for example, from the positron angular distribution in a plane wave expressed in
terms of the transverse potential APW,⊥(T ), the corresponding result in a focused field is not simply obtained via the substitution
APW,⊥(T ) → A⊥(x) and then by averaging over the transverse coordinates, but the gauge-invariant quantity A⊥(x) has to be
constructed first in terms of the electromagnetic field in the non-plane-wave case [see Eq. (4)].

III. NONLINEAR SINGLE COMPTON SCATTERING

In order to simplify the comparison with the formulas obtained in the previous section, we assume here that the incoming
(outgoing) electron has four-momentum and the spin quantum number pμ = (ε, p) and s (p′μ = (ε′, p′) and s ′), respectively.
Analogously the emitted photon has four-momentum kμ = (ω,k) and (linear) polarization l (polarization four-vector e

μ

k,l). The
leading-order S-matrix element of nonlinear single Compton scattering in the Furry picture reads [2,3]

SC,f i = −ie
√

4π

∫
d4x ψ̄

(out)
p′,s ′ (x)

êk,l√
2ω

ei(kx)ψ (in)
p,s (x). (24)

Under the present conditions the in-state ψ (in)
p,s (x) can be written in the form [45,46]

ψ (in)
p,s (x) = eiS

(in)
p (x)

[
1 + e

4p+
n̂Â(in)(x)

]
up,s√

2ε
, (25)

where

S(in)
p (x) = −(p+φ + p−T − p⊥ · x⊥) − e

∫ T

−∞
dT̃ A−(x̃) − 1

p+

∫ T

−∞
dT̃

{
e(pA(in)(x̃)) − 1

2
e2A(in) 2(x̃)

}
, (26)

where A(in),μ(x) = (0,A(in)
⊥ (x),0), with

A(in)
⊥ (x) = A⊥(x) + ∇⊥

∫ T

−∞
dT̃ A−(x̃) = −

∫ T

−∞
dT̃ [E⊥(x̃) + z × B⊥(x̃)]. (27)

As a first important result, we would like to show that within the matrix element we can consistently approximate A(out)
⊥ (x) ≈

A(in)
⊥ (x) ≡ A⊥(x), such that we can remove the upper index in this quantity for notational simplicity. However, it is more

transparent from a physical point of view to use the “(in)” expression of A⊥(x) here because the final results will be expressed in
terms of the momentum of the incoming electron. In order to prove the above assertion, we observe that �A⊥(x) = A(in)

⊥ (x) −
A(out)

⊥ (x) = ∇⊥
∫∞
−∞ dT̃ A−(x̃) ≡ �A⊥(x⊥), with the last equality being justified as under our approximations �A⊥(x) depends

only on the two transverse coordinates. Since the difference �A⊥(x⊥) is the gradient of a scalar function, it is clear that
∇⊥ × �A⊥(x⊥) = 0. Now, in general, each component Aμ(x) of the four-vector potential field fulfills the wave equation
2∂2Aμ/∂T ∂φ − ∇2

⊥Aμ = 0 (recall that we work in the Lorentz gauge). Thus, by integrating the corresponding equation for A−(x)
and realistically assuming that limT →±∞ A−(x) = 0, we finally obtain that ∇⊥ · �A⊥(x⊥) = 0. By exploiting the Helmholtz
theorem (see, e.g., Ref. [53]), we can conclude that �A⊥(x⊥) = 0 as the fields have to vanish at infinity. Consequently, the
quantity

∫∞
−∞ dT̃ A−(x̃) can also be ignored in the phase of the amplitude in Eq. (24). This conclusion can also be justified

physically in the case of a tightly focused laser beam as being related to the fact that realistic propagating beams do not have dc
components.

Now, the number dNC of photons emitted with momenta between k and k + dk is given by

dNC = NeV
d3k

(2π )3
V

d3 p′

(2π )3

1

2

∑
l,s,s ′

|SC,f i |2, (28)

where Ne is the number of incoming electrons and where for the sake of clarity the quantization volume V = LxLyLz has
been explicitly indicated (recall that the S-matrix element SC,f i contains a factor 1/V 3/2). Now, since the dependence of the
background field on the coordinate φ can be ignored, the corresponding component of the conjugated momentum is conserved and
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the resulting δ function reads δ(p′
+ + k+ − p+) ≈ δ(p′

z + kz − pz). By squaring this δ function we obtain δ(p′
+ + k+ − p+)2 ≈

δ(p′
z + kz − pz)2 ≈ (2π )−1Lzδ(p′

z + kz − pz). Moreover, the sum over the spin variables and over the photon polarization leads
to the evaluation of the trace:

TC = −1

4
Tr

{
(p̂′ + m)

[
1 − e

4p′+
n̂Â(x)

]
γ μ

[
1 + e

4p+
n̂Â(x)

]
(p̂ + m)

[
1 − e

4p+
n̂Â(x′)

]
γμ

[
1 + e

4p′+
n̂Â(x′)

]}
. (29)

The evaluation of TC can be carried out with the standard technique as explained, e.g., in Ref. [2] and the result is

TC = m2

(
ε′

ε
+ ε

ε′ − 4

)
+ ε′

ε
p2

⊥ − 2 p⊥ · p′
⊥ + ε

ε′ p′ 2
⊥ + e

ε − ε′

εε′ (ε′ p⊥ − ε p′
⊥) · [A⊥(x) + A⊥(x′)]

− e2

[
A2

⊥(x) + A2
⊥(x′) −

(
ε′

ε
+ ε

ε′

)
A⊥(x) · A⊥(x′)

]
. (30)

As expected, one can see that this trace can be obtained from the analogous one in nonlinear Breit-Wheeler pair production with
the replacement pμ → −pμ and by changing the overall sign.

By using the above expression of TC , the quantity dNC (after performing the integral over the longitudinal momentum of the
final electron by exploiting the discussed δ function) can be written as

dNC = ρ�,e

πα

ωεε′
d2 p′

⊥
(2π )2

dω

2π

d2k⊥
(2π )2

∫
d3xd3x′ei[�C (x)−�C (x′)]

{
m2

(
ε′

ε
+ ε

ε′ − 4

)
+ ε′

ε
p2

⊥ − 2 p⊥ · p′
⊥ + ε

ε′ p′ 2
⊥

+ e
ω

εε′ (ε
′ p⊥ − ε p′

⊥) · [A⊥(x) + A⊥(x′)] − e2

[
A2

⊥(x) + A2
⊥(x′) −

(
ε′

ε
+ ε

ε′

)
A⊥(x) · A⊥(x′)

]}
, (31)

where ρ�,e = Ne/LxLy is the number of incoming electrons per unit surface, where

�C(x) =
(

m2 + p′2
⊥

2ε′ + k2
⊥

2ω
− m2 + p2

⊥
2ε

)
T − ( p′

⊥ + k⊥ − p⊥) · x⊥ + e
p′

⊥
ε′ ·

∫ ∞

T

dT̃ A⊥(x̃)

+ e
p⊥
ε

·
∫ T

−∞
dT̃ A⊥(x̃) − 1

ε′
e2

2

∫ ∞

T

dT̃ A2
⊥(x̃) − 1

ε

e2

2

∫ T

−∞
dT̃ A2

⊥(x̃), (32)

and where we have exploited the conservation law ε = ε′ + ω. Notice that, unlike in the pre-exponent, the phase �C(x) − �C(x′)
cannot be simply obtained from the corresponding one in nonlinear Breit-Wheeler pair production with the substitution rules on
the photon and the positron four-momentum, but that one also has to take into account the fact that the in and out states become
free states at −∞ and +∞, respectively. From the (at the highest) quadratic dependence of �C(x) on p′

⊥, it is clear that the
resulting integral is Gaussian and it can easily be taken analytically [see Eqs. (7) and (8)]. In this way, the angular resolved
photon energy spectrum dNC/dωd�γ , where d�γ ≈ d2k⊥/ω2, reads

dNC

dωd�γ

= iρ�,γ

αω

16π3ε

∫
d3xd3x′

T−
ei��C (x,x′)

〈
m2

(
ε′

ε
+ ε

ε′ − 4

)
+ 2iε

T−
+ ε′

ε

{
p⊥ − ε

T−
�x⊥,e + e

1

T−

×
[ ∫ T

−∞
dT̃ A⊥(x̃) −

∫ T ′

−∞
dT̃ ′A⊥(x̃′)

]
+ e

ε

ε′
1

T−

[∫ ∞

T

dT̃ A⊥(x̃) −
∫ ∞

T ′
dT̃ ′A⊥(x̃′)

]
+ ω

ε′ eA⊥,+(x,x′)
}2

− e2 (ε + ε′)2

4εε′ A2
⊥,−(x,x′)

〉
, (33)

where

��C(x,x′) = ω

εε′
T−
2

m2 + T−
2ω

(
k⊥ − ω

T−
x⊥,−

)2

− T−
2ε

(
p⊥ − ε

T−
�x⊥,e

)2

+ e2

2ε

{
1

T−

[∫ T

−∞
dT̃ A⊥(x̃) −

∫ T ′

−∞
dT̃ ′A⊥(x̃′)

]2

−
∫ T

−∞
dT̃ A2

⊥(x̃) +
∫ T ′

−∞
dT̃ ′A2

⊥(x̃′)
}

− e2

2ε′

{
1

T−

[∫ ∞

T

dT̃ A⊥(x̃) −
∫ ∞

T ′
dT̃ ′A⊥(x̃′)

]2

+
∫ ∞

T

dT̃ A2
⊥(x̃) −

∫ ∞

T ′
dT̃ ′A2

⊥(x̃′)
}
, (34)

and where �x⊥,e = x⊥,− + (e/ε)[
∫ T

−∞ dT̃ A⊥(x̃) − ∫ T ′

−∞ dT̃ ′A⊥(x̃′)]. Now, Eq. (33) can be easily integrated with respect to
the final transverse photon momentum d2k⊥ ≈ ω2d�γ because the integral is Gaussian and the result for the total photon energy
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spectrum is

dNC

dω
= −ρ�,e

α

8π2ε

∫
d3xd3x′

T 2−
exp

〈
i

{
m2

2

ω

εε′ T− − T−
2ε

(
p⊥ − ε

T−
�x⊥,e

)2

+ e2

2ε

{
1

T−

[∫ T

−∞
dT̃ A⊥(x̃) −

∫ T ′

−∞
dT̃ ′A⊥(x̃′)

]2

−
∫ T

−∞
dT̃ A2

⊥(x̃) +
∫ T ′

−∞
dT̃ ′A2

⊥(x̃′)
}

− e2

2ε′

{
1

T−

[∫ ∞

T

dT̃ A⊥(x̃) −
∫ ∞

T ′
dT̃ ′A⊥(x̃′)

]2

+
∫ ∞

T

dT̃ A2
⊥(x̃) −

∫ ∞

T ′
dT̃ ′A2

⊥(x̃′)
}}〉

×
〈
m2

(
ε′

ε
+ ε

ε′ − 4

)
+ 2iω

T−
+ ε′

ε

{
p⊥ − ε

T−
�x⊥,e + e

1

T−

[ ∫ T

−∞
dT̃ A⊥(x̃) −

∫ T ′

−∞
dT̃ ′A⊥(x̃′)

]

+ e
ε

ε′
1

T−

[∫ ∞

T

dT̃ A⊥(x̃) −
∫ ∞

T ′
dT̃ ′A⊥(x̃′)

]
+ ω

ε′ eA⊥,+(x,x′)
}2

− e2 (ε + ε′)2

4εε′ A2
⊥,−(x,x′)

〉
. (35)

The above expressions significantly simplify once one exploits that the transverse formation length also in the case of nonlinear
single Compton scattering is of the order of the Compton wavelength such that, having in mind realistic applications employing
strong optical or x-ray lasers, we can neglect the difference between x⊥ and x′

⊥ in the external field. By proceeding in a completely
analogous way as in the case of nonlinear Breit-Wheeler pair production, we can approximately evaluate the external field in
Eqs. (33)–(35) at the average transverse coordinate x⊥,+. Thus, the phase ��C(x,x′) becomes

��C(x,x′) ≈ ω

εε′
T−
2

m2 + T−
2ω

(
k⊥ − ω

T−
x⊥,−

)2

− T−
2ε

[
p⊥ − ε

T−
x⊥,− + e

T−

∫ T ′

T

dT̃ A⊥(x̃)

]2

− ω

εε′
e2

2

⎧⎨
⎩ 1

T−

[∫ T ′

T

dT̃ A⊥(x̃)

]2

+
∫ T ′

T

dT̃ A2
⊥(x̃)

⎫⎬
⎭, (36)

where x̃ = (T̃ ,x⊥,+). The phase in Eq. (35) becomes the same as ��C(x,x′) in Eq. (36) except for the term proportional to
[k⊥ − (ω/T−)x⊥,−]2, which is integrated out in Eq. (35). Thus, after passing from the variables x⊥ and x′

⊥ to the variables x⊥,−
and x⊥,+, the integrals in x⊥,− in Eqs. (33) and (35) are Gaussian, the identities (7) and (8) can be exploited, and we obtain

dNC

dωd�γ

= ρ�,e

8π2

αω

εε′

∫
dT dT ′d2x⊥e

i ω

2εε′
〈
T−
{

m2+
[

p⊥− ε
ω

k⊥+ e
T−

∫ T ′
T

dT̃ A⊥(x̃)
]2}

−e2
{

1
T−

[ ∫ T ′
T

dT̃ A⊥(x̃)
]2

+∫ T ′
T

dT̃ A2
⊥(x̃)

}〉

×
{

m2

(
ε′

ε
+ ε

ε′ − 4

)
+ ω2

εε′

[
p⊥ − ε

ω
k⊥ − eA⊥,+(x,x′)

]2

− e2 (ε + ε′)2

4εε′ A2
⊥,−(x,x′)

}
(37)

and
dNC

dω
= i

ρ�,γ

4π

α

ε2

∫
dT dT ′d2x⊥

T−
e
i ω

2εε′
〈
m2T−−e2

{
1

T−

[ ∫ T ′
T

dT̃ A⊥(x̃)
]2

+∫ T ′
T

dT̃ A2
⊥(x̃)

}〉

×
{
m2

(
ε′

ε
+ ε

ε′ − 4

)
+ 2iω

T−
+ ω2

εε′ e
2

[
1

T−

∫ T ′

T

dT̃ A⊥(x̃) + A⊥,+(x,x′)

]2

− e2 (ε + ε′)2

4εε′ A2
⊥,−(x,x′)

}
. (38)

Analogously as in Eqs. (11) and (12), the symbols x̃ and x′ have to be intended here as x̃ = (T̃ ,x⊥) and x′ = (T ′,x⊥),
respectively. In this form both the angular resolved energy spectrum dNC/dωd�γ and the total energy spectrum dNC/dω can
be obtained from the corresponding quantities in nonlinear Breit-Wheeler pair production with the usual substitutions ε → −ε,
p⊥ → − p⊥, ω → −ω, k⊥ → −k⊥, and then by multiplying the whole expression by −ρ�,eω

2/ρ�,γ ε2. Moreover, these results
are in agreement with the corresponding ones in Ref. [48] obtained within the quasiclassical operator approach and expressed
via the incoming electron velocity, whose transverse component is given here by [ p⊥ − eA⊥(x)]/ε. The comparison is easier if
one follows the same procedure leading to Eqs. (14) and (21). The resulting equations for nonlinear single Compton scattering
clearly read

dNC

dωd�γ

= −ρ�,e

4π2

αm2ω

εε′

∫
dT dT ′d2x⊥e−i ω

2εε′
∫ T ′
T

dT̃ {m2+[ p⊥− ε
ω

k⊥−eA⊥(x̃)]2}
[

1 + e2

4

ε2 + ε′2

εε′
A2

⊥,−(x,x′)
m2

]
(39)

and

dNC

dω
= −i

ρ�,e

2π

αm2

ε2

∫
dT dT ′d2x⊥

T−
e
i ω

2εε′
〈
m2T−−e2

{
1

T−

[ ∫ T ′
T

dT̃ A⊥(x̃)
]2

+∫ T ′
T

dT̃ A2
⊥(x̃)

}〉[
1 + e2

4

ε2 + ε′2

εε′
A2

⊥,−(x,x′)
m2

]
, (40)
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where the factor T− in the denominator has to be meant as T− → T− + i0 [see the discussion below Eq. (21)].
Also in the present case, of course, we can transform Eq. (39) in a more suitable form for computation, which is analogous to

Eq. (16):

dNC

dωd�γ

=ρ�,e

8π2

αm2ω

εε′

∫
d2x⊥

[
ω2

εε′ |f0,e(x⊥)|2 + ε2 + ε′ 2

εε′

∣∣∣∣f0,e(x⊥)

m

(
p⊥ − ε

ω
k⊥

)
− f 1,e(x⊥)

∣∣∣∣
2
]
, (41)

where π⊥,e(x) = p⊥ − (ε/ω)k⊥ − eA⊥(x), where

f0,e(x⊥) =
∫

dT ei ω

2εε′
∫ T

0 dT̃ [m2+π2
⊥,e(x̃)], (42)

f 1,e(x⊥) = e

m

∫
dT A⊥(x)ei ω

2εε′
∫ T

0 dT̃ [m2+π2
⊥,e(x̃)], (43)

and where the quantity f0,e(x⊥) has to be computed according to the relation[
m2 +

(
p⊥ − ε

ω
k⊥

)2
]
f0,e(x⊥) − 2m

(
p⊥ − ε

ω
k⊥

)
· f 1,e(x⊥) + m2f2,e(x⊥) = 0, (44)

with

f2,e(x⊥) = e2

m2

∫
dT A2

⊥(x)ei ω

2εε′
∫ T

0 dT̃ [m2+π2
⊥,e(x̃)]. (45)

Also here the choice of the lower integration limit in the phases in the functions f0,e(x⊥), f 1,e(x⊥), and f2,e(x⊥) is arbitrary and
the value T̃ = 0 has been chosen for convenience.

Thanks to the above-mentioned substitution rules on the positron and the photon four-momentum, we finally report, for the
sake of completeness, the corresponding expressions of dNC/dωd�γ and of dNC/dω in the quasistatic limit [see Eqs. (22)
and (23)]:

dNC

dωd�γ

= −ρ�,e

α

π2
√

3

∫
d3x ge(x)b(x)

[
1 − ε2 + ε′ 2

εε′ g2
e (x)

]
K1/3

[
2

3
b(x)g3

e (x)

]
(46)

and

dNC

dω
= ρ�,e

α

π
√

3

m2

ε2

∫
d3x

{
ε2 + ε′ 2

εε′ K2/3

[
2

3
b(x)

]
−
∫ ∞

2
3 b(x)

dz K1/3(z)

}
, (47)

where we recall that ε′ = ε − ω, where ge(x) =
√

1 + π2
⊥,e(x)/m2, and where b(x) = (ω/ε′)χ−1(x), with χ (x) =

(ε/m)|∂A⊥(x)/∂T |/Fcr being the local value of the quantum electron nonlinearity parameter (note that the expression of
b(x) is the same as for nonlinear Breit-Wheeler pair production and this is why we have used the same symbol).

IV. CONCLUSIONS

In conclusion, we have completed the investigation of the experimentally most relevant single-vertex strong-field QED
processes in a tightly focused laser beam: nonlinear Breit-Wheeler pair production and nonlinear single Compton scattering. The
study of the former process was already started in Ref. [47] and we have extended here the results obtained there by including
the possibility that the incoming photon is not exactly counterpropagating with respect to the laser beam. Moreover, we have
determined compact analytical integral expressions of the angular resolved and the total photon energy spectrum in nonlinear
single Compton scattering in a tightly focused laser field. Analogously as in Ref. [47], we have exploited the useful approximation
that the energy of the incoming electron is the largest dynamical energy of the problem such that the electron is only barely
deflected by the laser field, under the assumption that the incoming electron is almost counterpropagating with respect to the
laser field. Finally, we have also elucidated the crossing relation between nonlinear Breit-Wheeler pair production and nonlinear
single Compton scattering in the presence of a tightly focused laser field.

APPENDIX: A POSSIBLE CHOICE FOR THE
BACKGROUND ELECTROMAGNETIC LASER FIELD

Here, we report the concrete expression of a possible form
of the electromagnetic field of the laser, which can be studied
with the present formalism. We recall that we consider a laser
beam whose focal plane corresponds to the x-y plane and

whose wave vector at the center of the focal area points along
the negative z direction. Also, we refer to the Gaussian beam
model of a traveling wave as described in Ref. [54] and whose
four-vector potential Aμ(x) is a solution of Maxwell’s equation
in vacuum ∂μ∂μAν(x) = 0 in the Lorentz gauge ∂μAμ(x) = 0.
By indicating as ω0 the central angular frequency of the laser
and by assuming that the laser is linearly polarized along the
x direction, the four-vector potential Aμ(x) can be written as
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the real part of the complex four-vector potential A
μ
c (x) =

(�c(x),Ac(x)), written in the form

�c(x) = ϕc(r)g(t + z)eiω0(t+z), (A1)

Ac(x) = x̂A0ψc(r)g(t + z)eiω0(t+z), (A2)

where r indicates the space coordinates and A0 = −E0/ω0.
The scalar potential �c(x) can be written as �c(x) =
−(i/ω0)∇ · Ac(x) by exploiting the Lorentz gauge condition,
whereas the function ψc(r) is found to fulfill the equation
∇2ψc(r) + 2iω0∂ψc(r)/∂z = 0 by imposing that Aμ(x) ful-
fills the Maxwell’s equations in vacuum (in the Lorentz gauge)
∂μ∂μAν(x) = 0, and the pulse shape function g(t + z) is
assumed to be an arbitrary function but slowly varying on
a laser central period 2π/ω0 (see also Ref. [55]). A possible
convenient choice of the function g(t + z) is given by g(t +
z) = cos2[ω0(t + z)/2NL] for ω0(t + z) ∈ [−NLπ,NLπ ] and
g(t + z) = 0 elsewhere, where NL corresponds to the number
of laser cycles, which is assumed to be much larger than unity.
As is explained in Ref. [54], having in mind the case of a
focused laser beam with Gaussian transverse spatial profile it
is convenient to express the function ψc(r) as a series ψc(r) =∑∞

n=0 ψc,2n(r)ε2n
d in the diffraction angle εd = w0/zR , where

w0 is the laser waist size and zR = ω0w
2
0/2 is the Rayleigh

length. In fact, even for a tightly focused laser beam w0 ≈ λ0,
it is εd ≈ 1/π ≈ 0.3. In Ref. [54] one can find the expression
of ψc(r) up to terms of the order ε10

d and the corresponding
electromagnetic fields. Here, it is sufficient to report the terms
up to ε4

d [54]:

ψc,0(r) = f e−f �2
, (A3)

ψc,2(r) = 1

2

(
1 − f 2�4

2

)
f 2e−f �2

, (A4)

ψc,4(r) = 1

8

(
3 − 3f 2�4

2
− f 3�6 + f 4�8

4

)
f 3e−f �2

, (A5)

where f = i/(i − ζ ) and where the dimensionless variables
η = x/w0, θ = y/w0, and ζ = z/zR (� =

√
η2 + θ2) are

employed. Analogously, the electric and magnetic field of the
laser can be written as the real parts of the complex fields
Ec(r)g(t + z) exp[iω0(t + z)] and Bc(r)g(t + z) exp[iω0(t +
z)]. The components of the latter fields are obtained via
the equations Ec(r) = −iω0 Ac(r) + (i/ω0)∇[∇ · Ac(r)] and
Bc(r) = ∇ × Ac(r) [54]. Their precise expressions are quite
cumbersome and we refer to the original reference for them
[54]. Here, we summarize the main features of the electric and
magnetic fields and notice that at the lowest order in εd the
electric field is directed along the x direction and the magnetic
field is along the y direction, corresponding to the local
plane-wave approximation. Linear corrections in εd induce the
appearance of longitudinal components of the electric and the
magnetic field, whereas the y component of the electric field
scales as ε2

d . Finally, the x component of the magnetic field
vanishes identically. These considerations together with the
expressions above of the functions ψc,2j (r), with j = 0,1,2,
and g(t + z), show that the spacetime extension of the laser
field is determined by w0 on the transverse x-y plane, and by
τ = NLτ0 in time, with τ0 = 2π/ω0 being the central laser
period. In order to have an intuition of the extension of the
field along the z direction, we notice that the function ψc(r)
decreases only linearly along the z direction (for large values
of |ζ |) and one cannot rigorously characterize the longitudinal
extension of the laser field via the Rayleigh length zR (or twice
its value considering the symmetry of the space structure of the
field when changing z to −z). Intuitively, one can imagine the
laser field as a pulse of length τ which goes from z = ∞ (at
t = −∞) to z = −∞ (at t = +∞) and whose peak increases,
reaches its maximum when the pulse reaches the plane z = 0
(at t = 0), and then again decreases. In order to have a more
specific idea of the spacetime extension of the laser beam, we
refer to the experimental relevant case of a tightly focused
(w0 ≈ λ0) Ti:Sapphire (λ0 ≈ 0.8 μm) laser beam, which is
customarily employed in high-field applications. The focal
area on the transverse plane of such a laser beam is of the
order of a few square micrometers whereas pulses of about
ten cycles, corresponding to ≈ 30 fs, are usually available
experimentally (see, e.g., Ref. [12]).
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