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Ponderomotive dynamics of waves in quasiperiodically modulated media
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Similarly to how charged particles experience time-averaged ponderomotive forces in high-frequency fields,
linear waves also experience time-averaged refraction in modulated media. Here we propose a covariant
variational theory of this ponderomotive effect on waves for a general nondissipative linear medium. Using
the Weyl calculus, our formulation accommodates waves with temporal and spatial period comparable to that of
the modulation (provided that parametric resonances are avoided). Our theory also shows that any wave is, in
fact, a polarizable object that contributes to the linear dielectric tensor of the ambient medium. The dynamics
of quantum particles is subsumed as a special case. As an illustration, ponderomotive Hamiltonians of quantum
particles and photons are calculated within a number of models. We also explain a fundamental connection
between these results and the well-known electrostatic dielectric tensor of quantum plasmas.
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I. INTRODUCTION

It is well known that a nonuniform high-frequency elec-
tromagnetic (EM) field can produce a time-averaged force,
known as the ponderomotive force, on any particle that
is charged or, more generally, has nonzero polarizability
[1–6]. This effect has permitted a number of applications
ranging from atomic cooling to particle acceleration [7,8],
but many other interesting opportunities remain. In particular,
similar manipulations can be practiced on waves too. As
shown recently in Ref. [9], any wave propagating through
a temporally and (or) spatially modulated medium gener-
ally experiences time-averaged refraction determined by the
modulation intensity [10]. It was also shown in Ref. [9] that
this so-called ponderomotive effect on waves subsumes the
ponderomotive dynamics of particles as a special case because,
quantum-mechanically, particles can be represented as waves.
However, Ref. [9] assumes that the wave period (both temporal
and spatial) is much smaller than the modulation period. This
approximation limits the applicability of the theory. One may
wonder then whether it can be relaxed (without specifying the
type of waves being considered) and whether that can help
discover new interesting physics.

Here we answer these questions positively by proposing
a general theory of the ponderomotive effect on waves. In
contrast with Ref. [9], this theory can describe waves with
temporal and spatial period comparable to that of the modula-
tion (provided that parametric resonances are avoided). Using
the Weyl calculus, we explicitly derive the effective dispersion
symbol (27) that governs the time-averaged dynamics of a
wave in a quasiperiodically modulated medium. This result
is later used to obtain the wave ponderomotive Hamiltonian
(41). This formulation can be understood as a generalization
of the oscillation-center (OC) theory, which is known from
classical plasma physics [11–13], to any linear waves and
quantum particles in particular. Our theory also shows that
any wave is, in fact, a polarizable object that contributes
to the linear dielectric tensor of the ambient medium. As
an illustration, ponderomotive energies of quantum particles
and photons are calculated within a number of models and
compared with simulations. In particular, we find that quantum

effects can change the sign of the ponderomotive force. We also
explain a fundamental connection between these results and
the commonly known expression for the electrostatic dielectric
function of quantum plasma. This work also serves as a
stepping stone to improving the understanding of modulational
instabilities in general wave ensembles, as will be reported
separately.

It is to be noted that effective Hamiltonians for temporally
driven systems have been studied before in condensed matter
physics [14–21]. However, these studies are mainly focused
on systems described by the Schrödinger equation and use
the modulation period as the small parameter. In contrast,
we study more general waves and expand in the modulation
amplitude rather than period. This way, we can calculate the
ponderomotive effect on waves using the Weyl calculus, which
provides a direct connection with classical physics and the
aforementioned OC theory in particular.

This work is organized as follows. In Sec. II the basic
notation is defined. In Sec. III we present the variational
formalism and the main assumptions used throughout the
work. In Sec. IV we derive a general expression for the
effective wave action. In Sec. V we present a theory of
ponderomotive dynamics for eikonal waves. In Sec. VI we
apply the theory to specific examples. In Sec. VII we show the
fundamental connection between the ponderomotive energy
that we derive in this paper and the commonly known dielectric
tensor of quantum plasma. In Sec. VIII we summarize our
main results. Some auxiliary calculations are presented in the
appendixes. This includes an introduction to the Weyl calculus
that we extensively use in the paper (Appendix A) and details
of some of the calculations presented (Appendix B).

II. NOTATION

The following notation is used throughout the paper. The
symbol

.= denotes definitions. Unless otherwise specified,
natural units are used in this work so that the speed of
light equals one (c = 1), and so does the Planck constant
(h̄ = 1). The Minkowski metric is adopted with signature
(+, − , − ,−). Greek indices span from 0 to 3 and refer
to spacetime coordinates, xμ = (x0,x), with x0 = t . Also,
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∂μ
.= ∂/∂xμ = (∂t ,∇), and d4x

.= dx0 d3x. Latin indices span
from 1 to 3 and denote the spatial variables, i.e., x = (x1,x2,x3)
and ∂i

.= ∂/∂xi . Summation over repeated indexes is assumed.
For arbitrary four-vectors a and b, we have a · b

.= aμbμ =
a0b0 − a · b. The Dirac bra-ket notation is used to denote
|�〉 as a state of the Hilbert space defined over R4. In
Euler-Lagrange equations (ELEs), the notation δa : denotes
that the corresponding equation was obtained by extremizing
the action integral with respect to a.

III. PHYSICAL MODEL

A. Wave action principle

We represent a wave field, either quantum or classical,
as a scalar complex function �(x). The dynamics of any
nondissipative linear wave can be described by the least action
principle, δ� = 0, where the real action � is bilinear in the
wave field [22]. In the absence of parametric resonances [23],
the action can be written in the form [24]

�
.=

∫
d4x d4x ′ �∗(x)D(x,x ′)�(x ′), (1)

where D is a Hermitian [D(x,x ′) = D∗(x ′,x)] scalar kernel
that describes the underlying medium. Varying the action (1)
leads to the following wave equations:

δ�∗(x) : 0 =
∫

d4x ′ D(x,x ′)�(x ′), (2a)

δ�(x) : 0 =
∫

d4x ′ �∗(x ′)D(x ′,x). (2b)

For the rest of this work, it will be convenient to describe
the wave �(x) also as an abstract vector |�〉 in the Hilbert
space of wave states with inner product [22,25]

〈ϒ |�〉 =
∫

d4x ϒ∗(x)�(x). (3)

In this representation, �(x) = 〈x|�〉, where |x〉 are the
eigenstates of the coordinate operator x̂ such that 〈x|x̂μ|x ′〉 =
xμ〈x|x ′〉 = xμδ4(x − x ′). Let us introduce the momentum
(wave vector) operator p̂ such that 〈x|p̂μ|x ′〉 = i∂δ4(x −
x ′)/∂xμ in the coordinate representation [26]. Thus, the action
(1) can be rewritten as

� = 〈�|D̂|�〉, (4)

where D̂ is the Hermitian dispersion operator defined such
that D(x,x ′) = 〈x|D̂|x ′〉. Treating 〈�| and |�〉 as independent
[22], we obtain the following ELEs:

δ〈�| : D̂|�〉 = 0, (5a)

δ|�〉 : 〈�|D̂ = 0, (5b)

which can be understood as a generalized vector form of
Eqs. (2). Specifically, Eqs. (2) are obtained by projecting
Eqs. (5a) and (5b) by 〈x| and |x〉, respectively, and using
the fact that

∫
d4x|x〉〈x| = 1̂ is an identity operator.

B. Problem outline

Below, we consider the propagation of a wave |�〉, called
the probe wave (PW), in a medium whose parameters are
modulated by some other wave, which we call the modulating
wave (MW). Accordingly, D(x,x ′) is a rapidly oscillating
function. Our goal is to derive a reduced version of Eqs. (5)
that describes the time-averaged dynamics of the PW.

We assume that D̂ can be decomposed as

D̂ = D̂0 + D̂osc, (6)

where D̂0 represents the effect of the unperturbed background
medium and D̂osc represents a weak perturbation caused by
the MW. Additionally, we assume

D̂osc =
∞∑

n=1

σnD̂n, (7)

where σ � 1 is some linear measure of the MW amplitude
[27] and D̂n are Hermitian. Finally, we require the MW (but
not necessarily the PW) to satisfy the standard assumptions of
geometrical optics (GO). This means that the MW frequency
� and wave vector K must be large compared to the inverse
temporal and spatial scales at which the envelope evolves.
In a homogeneous medium, those scales would be simply
the MW envelope duration τmw and the MW envelope
length 
mw. More generally, one also has the scales τbg and

bg that characterize the background temporal and spatial
inhomogeneities, correspondingly. Thus, the applicability of
our theory relies on the smallness of the following parameter:

εmw
.= max

{
1

�τ
,

1

|K|

}

� 1, (8)

where τ
.= min {τbg,τmw} and 


.= min {
bg,
mw}. A more
rigorous definition of the GO regime that covers also waves
near natural resonances is somewhat subtle, so it is not
discussed here. For further details, see e.g., Ref. [28].

IV. GENERAL THEORY

The oscillating terms in the dispersion operator will be
eliminated by introducing an appropriate variable transforma-
tion on the PW. Specifically, let |�〉 = Û|ψ〉. Then, Eq. (4)
transforms to

� = 〈ψ |D̂eff|ψ〉, (9)

where D̂eff is the effective dispersion operator

D̂eff
.= Û

†
D̂Û. (10)

Below, we search for a transformation Û such that, unlike D̂,
the operator D̂eff contains no dependence on the MW phase.
The corresponding |ψ〉 is then understood as the OC state of the
PW in a modulated medium. A schematic of the transformation
is shown in Fig. 1.

A. Near-identity unitary transformation

For convenience, we require that Û be unitary so that
〈�|�〉 = 〈ψ |ψ〉. Then, it can be represented as

Û = exp(iT̂), (11)
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FIG. 1. One-dimensional schematic of a PW (in red) propagating
in a medium with a given dispersion operator affected by some MW.
(a) Dynamics in the original variables. (b) Dynamics in the OC
representation, in which the oscillations at the MW phase and its
harmonics are removed.

where T̂ is a Hermitian operator called the generator of the
unitary transformation Û. In light of Eq. (7), we search for T̂
and D̂eff using the standard perturbation approach based on
Lie transforms [12,29]. Specifically, we consider the operators
as power series in σ so that

T̂ =
∞∑

n=1

σnT̂n, D̂eff =
∞∑

n=0

σnD̂eff,n, (12)

where T̂n and D̂eff,n are Hermitian. We substitute Eqs. (6), (7),
(11), and (12) into Eq. (10). Collecting terms by equal powers
in σ , we obtain the following set of equations [30]:

D̂eff,0 = D̂0, (13a)

D̂eff,1 = D̂1 + i[D̂0,T̂1], (13b)

D̂eff,2 = D̂2 + i[D̂0,T̂2] + Ĉ2, (13c)

where Ĉ2
.= i[D̂1,T̂1] − (1/2)[[D̂0,T̂1],T̂1] and so on. Here the

brackets denote commutators. We require that D̂eff,n contains
no high-frequency modulations, so we let

D̂eff,1 = 〈〈D̂1〉〉, (14a)

D̂eff,2 = 〈〈D̂2〉〉 + 〈〈Ĉ2〉〉, (14b)

where 〈〈...〉〉 is a time average over a modulation period. Then,
subtracting Eqs. (14) from Eqs. (13), we obtain

− i[D̂0,T̂1] = D̂1 − 〈〈D̂1〉〉, (15a)

−i[D̂0,T̂2] = D̂2 − 〈〈D̂2〉〉 + Ĉ2 − 〈〈Ĉ2〉〉. (15b)

As usual, this procedure can be iterated to higher orders in
σ . However, for the sake of conciseness, we shall only calculate
D̂eff up to O(σ 2) in this work. Below, we demonstrate how to
solve Eqs. (15) for T̂1 and T̂2.

B. Deff within the leading-order approximation

In order to explicitly obtain D̂eff and T̂n, let us consider
Eqs. (13)–(15) in the Weyl representation. (Readers who are
not familiar with the Weyl calculus are encouraged to read
Appendix A before continuing further.) For n = 0, the Weyl
transformation of Eq. (13a) leads to

Deff,0(x,p) = D0(x,p), (16)

where Dn(x,p) and Deff,n(x,p) are the Weyl symbols (A1) of
the operators D̂n and D̂eff,n, respectively. For n = 1, the Weyl
transformation of Eq. (13b) gives

Deff,1 = D1 − {{D0,T1}}, (17)

where {{·,·}} is the Moyal sine bracket (A10) and Tn(x,p) are
the Weyl symbols of T̂n. It is to be noted that Dn, Deff,n, and
Tn are real functions of the eight-dimensional phase space
because the corresponding operators are Hermitian.

Since D1 is a linear measure of the MW field, we adopt

D1(x,p) = Re[D1(x,p)ei
(x)], (18)

where the real function 
(x) is the MW phase and D1(x,p)
is the Weyl symbol characterizing the slowly varying MW
envelope [31,32]. The gradients of the phase

�(x)
.= −∂t
, K(x)

.= ∇
, (19)

determine the MW local frequency and wave vector, re-
spectively. We introduce the MW four-wave-vector Kμ(x)

.=
−∂μ
 = (�, − K), which is considered a slow function.
[Accordingly, the contravariant representation of the MW
four-wave-vector is Kμ(x) = (�,K).]

Since D1 is quasiperiodic [33], we have 〈〈D1〉〉 = 0.
Following Eq. (14a), we obtain Deff,1 = 0 and

{{D0,T1}} = D1. (20)

Let us search for T1 in the polar representation:

T1 = Re[T1(x,p)ei
(x)], (21)

where T1(x,p) is to be determined. Substituting Eqs. (18) and
(21) into Eq. (20) and equating terms with the same phase, we
obtain (Appendix B)

D1(x,p)ei
(x) = {{D0,T1e
i
}} = T1{{D0,e

i
}} + O(εmw)

= − iT1(D0 � ei
 − ei
 � D0) + O(εmw)

= − i[D0(x,p + K/2) − D0(x,p − K/2)]

× T1(x,p)ei
(x) + O(εmw), (22)

where � is the Moyal product (A6) and T1 is pulled out of the
sine bracket because it is a slowly varying function. Solving
for T1, we obtain

T1(x,p) = iD1(x,p)

D0(x,p + K/2) − D0(x,p − K/2)
+ O(εmw).

(23)
Now let us calculate Deff,2. From Eq. (13b), we have

[D̂0,T̂1] = iD̂1, so Ĉ2 = −(i/2)[T̂1,D̂1]. Then, by applying
the Weyl transform to Eq. (13c), we obtain

Deff,2 = D2 − {{D0,T2}} + C2, (24)
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where C2(x,p) = (1/2){{T1,D1}}. After substituting D1 and
T1, the Weyl symbol C2 is found to be (Appendix B)

C2(x,p) = − 1

4

∑
n=±1

|D1(x,p + nK/2)|2
D0(x,p + nK) − D0(x,p)

+ Re[C2(x,p)ei2
(x)] + O(εmw), (25)

where C2(x,p) is a slowly varying function whose explicit
expression will not be needed for our purposes.

Following Eqs. (14b) and (24), we let Deff,2 = 〈〈D2〉〉 +
〈〈C2〉〉. Then, the symbol T2(x,p) satisfies

{{D0,T2}} = D2 − 〈〈D2〉〉 + Re(C2e
i2
). (26)

We then repeat the procedure shown in Eqs. (21)–(23) to obtain
T2 that satisfies Eq. (26). Finally, after collecting the previously
obtained results of this section, the effective dispersion symbol
is found to be

Deff(x,p) = D0(x,p) + σ 2〈〈D2(x,p)〉〉

− σ 2

4

∑
n=±1

|D1(x,p + nK/2)|2
D0(x,p + nK) − D0(x,p)

+ O(εmw,σ 4). (27)

The leading-order correction to Deff(x,p), that scales as ε0
mw,

can be only of the fourth power of σ . This occurs because the
third and other odd powers of the MW field have zero average
and thus cannot contribute to the effective dispersion symbol
Deff(x,p) that governs the 
-averaged motion.

The Weyl symbol Deff(x,p) in Eq. (27) constitutes one of
the main results of this work. It determines the asymptotic form
of the effective dispersion operator that governs the dynamics
of the PW averaged over the MW oscillations at small enough
GO parameter εmw and small enough MW amplitude σ . The
operator D̂eff can be obtained from the symbol (27) using the
inverse Weyl transform (A2). Alternatively, one can find its
coordinate representation Deff(x,x ′) using Eq. (A3).

V. PONDEROMOTIVE DYNAMICS

With the effective dispersion operator D̂eff , we can describe
the time-averaged dynamics of the PW by using

D̂eff|ψ〉 = 0. (28)

Alternatively, we can apply the variational approach and study
the action (9) in the phase-space representation. Following
Refs. [24,28], the action is written as

� =
∫

d4x d4p Deff(x,p)W (x,p), (29)

where W (x,p) is the Wigner function [34] corresponding to
the OC state |ψ〉; namely,

W (x,p)
.=

∫
d4s

(2π )4
eip·s〈x + s/2|ψ〉〈ψ |x − s/2〉. (30)

The variational approach is convenient for deriving approx-
imate models of wave dynamics [9,35–42]. For illustration
purposes, here we focus on the OC dynamics of PWs in the
eikonal approximation. Specifically, we proceed as follows.

A. Eikonal approximation

Let us consider the complex function ψ
.= 〈x|ψ〉 in the

following polar representation,

〈x|ψ〉 = ψ(x) =
√
I0(x) eiθ(x), (31)

where I0(x) and θ (x) are real functions. We assume that the
phase θ is fast compared to the slowly varying function I0. We
also assume

εpw
.= max

{
1

ωτ
,

1

|k|

}

� 1, (32)

where

ω(x)
.= −∂tθ, k(x)

.= ∇θ (33)

are the local PW frequency and the wave vector, respectively.
In other words, we consider that the characteristic scale lengths
of the inhomogeneities of the background medium and of the
MW envelope are large with respect to the wavelength of the
PW. For simplicity, we combine the small parameters (8) and
(32) into a single parameter,

ε
.= max{εmw,εpw} � 1. (34)

In particular, note that in order to apply the standard GO ap-
proximation to the original problem, the PW parameters must
satisfy �/ω � 1 and |K|/|k| � 1; e.g., the PW wavelength
must be smaller than the MW wavelength. However, after
the transformation, the MW oscillations are eliminated (see
Fig. 1), so the PW parameters must satisfy the less restrictive
condition (32).

Since ψ is assumed quasimonochromatic, the Wigner
function (30) is then, to the lowest order in ε [24],

W (x,p) = I0(x)δ4(p − k) + O(ε), (35)

where kμ(x)
.= −∂μθ = (ω, − k). Substituting Eq. (35) into

Eq. (29) leads to the following action:

� =
∫

d4x I0(x)Deff(x,k). (36)

The action (36) has the form of Whitham’s action, where

I .= I0∂ωDeff(x,k) (37)

serves as the wave action density [38]. [From now on, k(x) =
−∂θ .] Treating I0 and θ as independent variables yields the
following ELEs:

δθ : ∂tI + ∇ · (Iv) = 0, (38a)

δI0 : Deff(x,k) = 0, (38b)

where the flow velocity v is given by

v(t,x)
.= − ∂kDeff

∂ωDeff
. (39)

Equation (38a) represents the action conservation theorem,
and Eq. (38b) is the local wave dispersion relation.

B. Hayes’s representation

Equation (38b) can be used to express the PW frequency ω

as some function Heff(t,x,∇θ ):

ω = Heff(t,x,∇θ ). (40)
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This determines a dispersion manifold [28,43]. The function
Heff can be represented as follows:

Heff(t,x,k)
.= H0(t,x,k) + σ 2�(t,x,k), (41)

where higher powers of σ are neglected, like in the previous
section. (Henceforth, the small parameter σ will be omitted
for clarity.) Here H0(t,x,k) is the unperturbed frequency of
the PW, so it satisfies D0(x,k∗) = 0, where

kμ
∗ (t,x,k)

.= (H0(t,x,k),k) (42)

is the unperturbed PW four-wave-vector. The function
�(t,x,k) can be understood as the PW ponderomotive fre-
quency shift. When multiplied by h̄, � is also understood as
the ponderomotive energy or ponderomotive potential; that
said, one may want to restrict usage of the term “potential” to
cases when � is independent of k.

Using Eqs. (27) and (38b) together with the Taylor
expansion

Deff(x,k)≈Deff(x,k∗) + ∂ωDeff(x,k∗)[ω−H0(t,x,k)], (43)

we obtain an explicit expression for �, which is

�(t,x,k) =
[

− 〈〈D2(x,k)〉〉
∂ωD0(x,k)

+ 1

4∂ωD0(x,k)

×
∑
n=±1

|D1(x,k + nK/2)|2
D0(x,k + nK) − D0(x,k)

]
k=k∗

. (44)

Hence, we can rewrite the action (36) in the Hayes’s form
[44]; namely,

� 	 −
∫

d4x I[∂tθ + Heff(t,x,∇θ )]. (45)

In this case, the corresponding ELE’s are

δθ : ∂tI + ∇ · (Iu) = 0, (46a)

δI : ω = Heff(t,x,k), (46b)

where u is the effective PW group velocity,

u(t,x)
.= ∂kHeff(t,x,k). (47)

Equation (46b) is a Hamilton-Jacobi equation representing the
local wave dispersion. Note that, on solutions of Eq. (46b),
u(t,x) is the same as v(t,x) defined in Eq. (39), so Eqs. (46)
are consistent with Eqs. (38).

Another comment is the following. When |K| � |k∗|, the
effective Hamiltonian can be approximated to

Heff(t,x,k) 	 H0(t,x,k) +
[

− 〈〈D2(x,k)〉〉
∂ωD0(x,k)

+ σ 2

4∂ωD0(x,k)
Kμ ∂

∂kμ

( |D1(x,k)|2
Kν∂kν D0(x,k)

)]
k=k∗

,

(48)

where Kμ∂kμ
.= �∂ω + K · ∂k. When D(x,p) in Eq. (6) is

of the Hayes’s form [D(x,p) = p0 − H (t,x,p)], Eq. (48)
recovers the same expression for Heff that was previously
reported in Ref. [9].

C. Point-particle model and ray equations

The ray equations corresponding to Eqs. (46) can be
obtained by assuming the point-particle limit. Specifically, let
us adopt the ansatz

I(t,x) = δ3(x − X(t)), (49)

where X(t) is the location of the wave packet. As in Ref. [45],
integrating the action (45) in space yields the canonical phase-
space action of a point-particle; namely,

� =
∫

dt [P · Ẋ − Heff(t,X,P)], (50)

where P(t)
.= ∇θ (t,X(t)). Here, X(t) and P(t) serve as

canonical variables. The corresponding ELEs are

δP : Ẋ = ∂PHeff(t,X,P), (51a)

δX : Ṗ = −∂XHeff(t,X,P). (51b)

Equations (51) describe the ponderomotive dynamics of
PW rays. These equations include the time-averaged refraction
of a PW caused by the MW oscillations. The ponderomotive
dynamics of charged particles is subsumed here as a special
case. (Also note that, since Heff is generally not separable
into a kinetic energy and a potential energy, the dynamics
governed by Eqs. (51) may be quite complicated and perhaps
counterintuitive [46,47].) Some examples are discussed below.

VI. DISCUSSION AND EXAMPLES

A. Example 1: Schrödinger particle in an electrostatic field

Let us consider a nonrelativistic particle interacting in a
modulated electrostatic potential. The particle dynamics can
be described using the Schrödinger equation

i∂t� = [−∇2/2m + qV (x)]�, (52)

where m and q are the particle mass and charge, the elec-
trostatic potential V (x) = Re[Vc(x)ei
(x)] is assumed small,

(x) is a real fast phase, and Vc(x) is a complex function
describing the slowly varying potential envelope. In this case,
the dispersion operator is

D̂
.= p̂0 − p̂2/2m − qV (x̂). (53)

The corresponding Weyl symbols are (Appendix A)

D0(p) = p0 − p2/2m, Dosc(x) = −qV (x). (54)

The symbol Deff is calculated using Eq. (27). Note that
D1 = −Re(qVce

i
), so D1 = −qVc and Dn = 0 for n � 2.
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Substituting into Eq. (27), we obtain

Deff(x,p)

= D0(p) − 1

4

∑
n=±1

|D1(x)|2
D0(p + nK) − D0(p)

= p0 − p2

2m
−

∑
n=±1

q2|Vc(x)|2/4(
p0 + n� − (p+nK)2

2m

) − (
p0 − p2

2m

)
= p0 − p2

2m
− q2|KVc|2/m

4(� − p · K/m)2 − (K2/m)2
. (55)

Inserting Eq. (55) into Eq. (36) leads to the action in the
Hayes’s form (45), where the effective Hamiltonian is

Heff(t,x,k) = k2

2m
+ q2|KVc|2/m

4(� − k · K/m)2 − (K2/m)2
. (56)

In the fluid description of the particle wave packet, the
corresponding ELEs are given by Eqs. (46). The corresponding
ray equations are obtained from the point-particle Lagrangian
(50). When introducing the missing h̄ factors, the effective
Hamiltonian becomes

Heff(t,X,P) = P2

2m
+ q2|KVc|2/m

4(�−P · K/m)2−(h̄K2/m)2
. (57)

In contrast with the classical ponderomotive Hamiltonian
[3,4,40]

Heff,cl(t,X,P) = P2

2m
+ q2|KVc|2

4m(� − P · K/m)2
, (58)

which is recovered from Eq. (57) at small enough K, Eq. (57)
predicts that the ponderomotive force can be attractive. This
is seen from the fact that, when the second term in the
denominator in Eq. (57) dominates, the ponderomotive energy
becomes an effective negative potential (i.e., does not depend
on P). This effect, which is similar to that reported in
Refs. [15,48], was confirmed in our numerical simulations,
whose results are shown in Fig. 2. Note that the ray trajectories
generated by Heff accurately match the motion of the wave
packet’s center.

Also note that, at � = 0, the ponderomotive energy is
resonant at 2K · P = ±h̄K2. This relation can be written
as λdB = 2d cos ζ , where λdB is the particle de Broglie
wavelength, d

.= 2π/K is the characteristic length of the
lattice, and ζ is the angle between the K and P vectors. One
may recognize this as the Bragg resonance. In other words,
our wave theory presents Bragg scattering as a variation of
the ponderomotive effect. One can also identify a parallel
between Eq. (57) and the linear susceptibility of quantum
plasma [49–51]. This will be further discussed in Sec. VII.

B. Example 2: Ponderomotive dynamics of a relativistic
spinless particle

In this section we calculate the ponderomotive Hamiltonian
of a relativistic spinless particle interacting with a slowly
varying background EM field and a high-frequency EM
modulation [52]. The particle dynamics can be described using
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FIG. 2. (a) Comparison of the simulation results obtained
by numerically integrating the full-wave Eq. (52) (solid fill)
and the ray-tracing Eqs. (51) with Heff taken from Eq. (57)
(dashed) for a stationary MW. The initial wave packet is �0(x) =
(2πη2)−1/4 exp [−(x − μ)2/(4η2)], where μ = −50 and η = 15, and
it is normalized such that

∫
dx �2

0 (x) = 1. (The simulation is one
dimensional, and x denotes the spatial coordinate, unlike in the main
text, where x denotes the spacetime coordinate.) The initial conditions
for the ray trajectory are X(0) = −50 and P (0) = 0. (b) MW profile
of the form V (x) = 0.15 sech(x/80) cos(x). Natural units are used
such that m = 1, q = 1,h̄ = 1, and K = 1. At later times (not shown),
diffraction effects become important, so the eikonal theory becomes
inapplicable.

the Klein-Gordon equation

[(i∂t − qV )2 − (−i∇ − qA)2 − m2]� = 0, (59)

where V (x) and A(x) are the scalar and vector potentials,
respectively. Let Aμ(x)

.= (V,A) be the associated four-
potential, which can be written as

Aμ(x)
.= A

μ

bg(x) + Aμ
osc(x). (60)

Here A
μ

bg(x) is the four-potential describing the background
EM field, and A

μ
osc(x)

.= Re[Aμ
c (x)ei
(x)] is the four-potential

of the modulated EM wave with small amplitude. As before,

(x) is a real fast phase, and A

μ
c (x) is a slowly varying

function. In terms of operators, the dispersion operator is

D̂0 = [p̂μ − qA
μ

bg(x̂)][p̂μ − qAbg,μ(x̂)] − m2, (61a)

D̂osc = −{qAμ
osc(x̂)[p̂μ − qAbg,μ(x̂)] + H.c.}

+ q2Aμ
osc(x̂)Aosc,μ(x̂), (61b)

where ‘H.c.’ denotes Hermitian conjugate.
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The corresponding Weyl symbols are (Appendix A)

D0(x,p) = π2 − m2, (62a)

D1(x,p) = −2qπ · Aosc(x), (62b)

D2(x,p) = q2Aosc(x) · Aosc(x), (62c)

where πμ(x,p)
.= pμ − qA

μ

bg(x). Substituting Eqs. (62) into
Eq. (27), we obtain

Deff(x,p) = π2 − m2 + q2|Ac|2
2

−
∑
n=±1

q2|Ac · (π + nK/2)|2
2nπ · K + n2K · K

, (63)

where |Ac|2 = Ac · A∗
c = |Vc|2 − |Ac|2.

Following the procedure in Sec. V, we determine the
effective Hamiltonian for a point particle. Introducing the
missing c and h̄ factors, we obtain

Heff(t,X,P) = γmc2 + qVbg − q2|Ac|2
4γmc2

+ 1

2γmc2

∑
n=±1

q2|Ac · (�∗ + nh̄K/2)|2
2n�∗ · h̄K + n2h̄2K ·K , (64)

where

γ (t,X,P)
.=

√
1 +

(
P
mc

− qAbg

mc2

)2

(65)

is the unperturbed Lorentz factor, �μ
∗

.= (γmc,P − qAbg/c) is
the unperturbed kinetic four-momentum, A

μ
c (t,X) = (Vc,Ac)

is the modulated four-potential, and Kμ(t,X) = (�/c,K) is
the MW four-wave-vector. All quantities are evaluated at the
particle position X(t).

Several interesting limits can be studied with the effective
Hamiltonian (64). In the Lorentz gauge, where ∂μA

μ
osc = 0, we

have K · Ac = O(ε). Then, Heff becomes

Heff(t,X,P) = γmc2 + qVbg − q2|Ac|2
4γmc2

−
(

q2|Ac · �∗|2
γmc2

)
K · K

4(�∗ · K)2 − (h̄K · K)2
.

(66)

Let us discuss this result. For example, in the case of a
vacuum EM wave, K · K = (�/c)2 − K = 0, so the sec-
ond line vanishes. The remaining terms can be understood
as the lowest-order expansion (in |Ac|2) of the effective
ponderomotive Hamiltonian Heff = mc2[1 + �2/(mc)2 −
q2|Ac|2/(2m2c4)]1/2 + qVbg that a relativistic spinless particle
experiences in an oscillating EM pulse [53–56]. In the case
where K · K 
= 0, the term in the second line of Eq. (66)
persists and accounts for Compton scattering, much like the
Bragg scattering discussed in Sec. VI A.

Also, let us consider a particle that interacts with an
oscillating electrostatic field so that A

μ
c = (Vc,0). In this case,

Eq. (64) gives (Appendix B)

Heff(t,X,P) = γmc2 + qVbg + q2|Vc|2
4γm

× K2 − (v∗ · K/c)2 − (h̄K/2γmc)2(K · K)

(� − v∗ · K)2 − (h̄K · K/2γm)2
,

(67)

where v∗
.= �/(γm) is the unperturbed particle velocity. The

last term in Eq. (67) is the relativistic ponderomotive energy.
[In the nonrelativistic limit, when γ 	 1 and h̄|K| � mc,
Eq. (67) reduces to Eq. (57), as expected.] When quantum
corrections are negligible, we obtain

Heff(t,X,P) = γmc2 + qVbg + q2|KVc|2
4M(� − v∗ · K)2

, (68)

where M
.= mγ |K|2 / [ |K|2 − (v∗ · K/c)2]. When v∗ is

pointed along K, one has M = mγ 3, which is understood as
the longitudinal mass. In contrast, when v is transverse to K,
one has M = mγ , which is the transverse mass [57].

C. Example 3: Electrostatic wave in a density modulated plasma

As another example, let us consider an EM wave �(x)
propagating in a density-modulated plasma. The PW dynamics
is described by

∂2
t � = ∇2� − ω2

p�, (69)

where ω2
p(x)

.= 4πq2n(x)/m is the plasma frequency squared
[58]. The plasma density is modulated such that n(x) =
nbg(x) + nosc(x), where nbg(x) is the slowly varying back-
ground plasma density and nosc(x)

.= Re[nc(x)ei
(x)] is a fast
modulation of small amplitude. The dispersion operator is

D̂ = p̂ · p̂ − ω2
p(x̂), (70)

so the corresponding Weyl symbols are

D0(x,p) = p · p − ω2
p,bg(x), (71a)

Dosc(x) = −Re[ω2
p,c(x)ei
(x)], (71b)

where ω2
p,bg(x)

.= 4πq2nbg/m and ω2
p,c(x)

.= 4πq2nc/m.
Substituting Eqs. (71) into Eq. (27), we obtain

Deff(x,p) = p · p − ω2
p,bg + |ω2

p,c|2(K · K)/8

(p · K)2 − (K · K)2/4
. (72)

Then, the effective Hamiltonian is given by

Heff(t,x,k) = ω0(t,x,k) − |ω2
p,c|2

16ω3
0

�, (73)

where ω0(t,x,k)
.= (c2k2 + ω2

p,bg)1/2 is the unperturbed EM
wave frequency, � is a dimensionless factor given by

�
.= �2 − c2K2

(� − v∗ · K)2 − (�2 − c2K2)2/4ω2
0

, (74)

and v∗ = c2k/ω0 is the unperturbed EM wave group velocity.
(We have reintroduced the missing c factors for clarity.)
The second term in Eq. (73) represents the ponderomotive
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frequency shift that a classical EM wave experiences in a
modulated plasma.

Similarly to the previous examples, the denominator in
Eq. (73) also contains photon recoil effects. The Bragg
resonance condition is also included; i.e., for EM waves
propagating in static modulated media (� = 0), the Bragg
resonance occurs at 2k · K = ±K2. In the opposite limit where
� � v∗ · K, Eq. (73) becomes

Heff(t,x,k) = ω0 +
(

|ω2
p,c|2

16ω3
0

)
N2 − 1

1 − μ2(N2 − 1)2
, (75)

where μ
.= �/2ω0 and N

.= c|K|/� is the MW refraction
index. Note that the GO result reported in Ref. [9] is recovered
in the limit μ � 1.

VII. MODULATIONAL DYNAMICS AND
POLARIZABILITY OF WAVE QUANTA

A. Basic equations

Knowing the effective Hamiltonian Heff of PWs, one
can derive, without even considering the ray equations, the
self-consistent dynamics of a MW when it interacts with an
ensemble of PWs. (As a special case, when PWs are free
charged particles, such ensemble is a plasma.) To do this,
let us consider the action of the whole system in the form
�� = �mw + �pw, where �mw is the MW action and �pw is
the cumulative action of all PWs. We attribute the interaction
action to �pw, so, by definition, �mw is the system action
absent PWs. Then, �mw equals the action of the MW EM field
in vacuum, �mw ≈ ∫

d4x (E2
mw − B2

mw)/(8π ) [59]. Since the
MW is assumed to satisfy the GO approximation, its electric
and magnetic fields can be expressed as

Emw = Re (Ece
i
), Bmw = Re (Bce

i
), (76)

where the envelopes Ec and Bc are slow compared to 
. Then,
we can approximate �mw as

�mw =
∫

d4x

( |Ec|2
16π

− c2|K × Ec|2
16π�2

)
, (77)

where we substituted Faraday’s law Bc ≈ (cK/�) × Ec.
To calculate �pw, we assume that PWs are mutually

incoherent and do not interact other than via the MW. (When
PWs are charged particles, this is known as the collisionless-
plasma approximation. In a broader context, this can be
recognized as the quasilinear approximation; for instance, see
Ref. [60].) Then, �pw = ∑

i �i , where �i are the actions of
the individual PWs. Adopting �i in the form of Eq. (45), we
obtain

�pw = �pw,0 −
∑

i

∫
d4x Ii(t,x) �i(t,x,∇θi), (78)

where �pw,0 = −∑
i

∫
d4x Ii [∂tθi + H0,i(t,x,∇θi)] is inde-

pendent of the MW variables, so it can be dropped. (In this
section, we are only interested in ELEs for the MW, and
�pw,0 does not contribute to those.) Let us consider PWs in
groups s such that, within each group, PWs have the same
ponderomotive frequency shift �s . Then, we can rewrite �pw

as follows:

�pw = −
∑

s

∫
d4x d3p fs(t,x,p) �s(t,x,p), (79)

where fs
.= ∑

i∈s Ii(t,x) δ[p − ∇θi(t,x)]. This gives �� =∫
d4x L, where the Lagrangian density L is

L = |Ec|2
16π

− c2|K × Ec|2
16π�2

−
∑

s

∫
d3p fs(t,x,p) �s(t,x,p).

The meaning of fs is understood as follows. A single wave
with a well-defined local momentum ∇θi(t,x) has a phase-
space distribution that is δ-shaped along the local wave-vector
(momentum) coordinate, ∝ δ[p − ∇θi(t,x)]. The coefficient
in front of the δ function must be the spatial probability
density for the proper normalization. In our case, the spatial
probability density is |ψi(t,x)|2, which is the same as Ii(t,x).
Thus, Ii(t,x) δ[p − ∇θi(t,x)] is the phase-space density of ith
wave. This makes fs(t,x,p) the total phase-space density of
species s. This formulation can also be applied, for example,
to degenerate plasmas to the extent that the Hartree approx-
imation is applicable [49,50]. Specifically, if the spin-orbital
interaction is negligible and particles interact with each other
only through the mean EM field, their Lagrangian densities
sum up (by definition of the mean-field approximation), so
one recovers the same L as in nondegenerate plasma. The
only subtlety in this case is that fs(t,x,p) is now restricted by
Pauli’s exclusion principle (or, in equilibrium, to Fermi-Dirac
statistics).

Since �s is bilinear in the MW field and independent on
the MW phase, it can be expressed as

�s = − 1
4 E∗

c · αs · Ec, (80)

where αs is some complex tensor that can depend on � and K
but not on Ec or E∗

c . Explicitly, it is defined as

αs
.= −4

∂2

∂Ec ∂E∗
c

�s(Ec,E∗
c ,�,K; t,x,p), (81)

or, equivalently, αs
.= −4∂2Heff,s/(∂Ec ∂E∗

c ). Then,

L = 1

16π
E∗

c · ε(t,x,�,K) · Ec − c2|K × Ec|2
16π�2

, (82)

where we introduced ε
.= 1 + χ and

χ
.= 4π

∑
s

∫
d3p fs(t,x,p) αs(t,x,p,�,K). (83)

By treating (
,Ec,E∗
c ) as independent variables, we then

obtain the following ELEs:

δ
 : ∂t (∂�L) − ∇ · (∂KL) = 0, (84)

δE∗
c : (�/c)2 ε · Ec + K × (K × Ec) = 0, (85)

plus a conjugate equation for E∗
c . [Remember that � and K are

related to 
 via Eq. (19).] We then recognize these ELEs as the
GO equations describing EM waves in a dispersive medium
with dielectric tensor ε [58,61]. Thus, χ is the susceptibility
of the medium, and αs serves as the linear polarizability of
PWs of type s [62].
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Hence, Eq. (80) can be interpreted as a fundamental
relation between the ponderomotive energy and the linear
polarizability. This relation represents a generalization of the
well-known K–χ theorem [4,63,64], which establishes this
equality for classical particles, to general waves. Those include
quantum particles as a special case and also photons, plasmons,
phonons, etc. According to the theory presented here, any such
object can be assigned a ponderomotive energy and thus has a
polarizability (81). Some examples are discussed below.

B. Examples

As a first example, let us consider a nonrelativistic quantum
electron with charge q, mass m, and OC momentum P .= mv.
Suppose the electron interacts with an electrostatic MW (so
Bc = 0). Then, Heff can be taken from Eq. (57), and Eq. (81)
readily yields that the electron polarizability is a diagonal
matrix given by

αe = −I3
q2

m
[(� − K · v)2 − (h̄K2/2m)2]−1. (86)

(Here, I3 is a 3×3 unit matrix.) From Eq. (83), the suscepti-
bility of the electron plasma is given by [65]

χ = −I3
4πq2

m

∫
d3v

f (t,x,v)

(� − K · v)2 − (h̄K2/2m)2
, (87)

which is precisely the textbook result [49,50]. This shows that
the commonly known expression for the dielectric tensor of
quantum plasmas is actually a reflection of the less-known
quantum ponderomotive energy.

Second, consider an EM wave in a nonmagnetized density-
modulated cold electron plasma. Using Gauss’s law, one
readily finds that ω2

p,c = (iq/m)K · Ec, where we assume the
same notation as in Sec. VI C. Then, using Eq. (73), one gets

� = − h̄q2�

16m2ω3
0

(E∗
c · KK · Ec), (88)

where KK is a dyadic tensor and � is given by Eq. (74). (The
factorh̄ is introduced in order to treat � as a per-photon energy
rather than as a classical frequency.) Hence, Eq. (81) gives that
the photon polarizability is

αph = h̄q2�

4m2ω3
0

KK. (89)

In principle, one must account for this polarizability when
calculating ε; i.e., photons contribute to the linear dielectric
tensor just like electrons and ions [66,67]. That said, the effect
is relatively small, and ignoring the photon contribution to
the plasma dielectric tensor is justified except at large enough
photon densities [66].

Similar calculations are also possible for dissipative dynam-
ics and vector waves and also help understand the modulational
dynamics of wave ensembles in a general context. However,
elaborating on these topics is outside the scope of this paper
and is left to future publications.

VIII. CONCLUSIONS

In this work, we show that scalar waves, both classical and
quantum, can experience time-averaged refraction when prop-

agating in modulated media. This phenomenon is analogous to
the ponderomotive effect encountered by charged particles in
high-frequency EM fields. We propose a covariant variational
theory of this ponderomotive effect on waves for a general
nondissipative linear medium. Using the Weyl calculus, our
formulation is able to describe waves with temporal and
spatial period comparable to that of the modulation (provided
that parametric resonances are avoided). This theory can be
understood as a generalization of the oscillation-center theory,
which is known from classical plasma physics, to any linear
waves or quantum particles in particular. This work also shows
that any wave is, in fact, a polarizable object that contributes
to the linear dielectric tensor of the ambient medium. Three
examples of applications of the theory are given: a Schrödinger
particle propagating in an oscillating electrostatic field, a
Klein-Gordon particle interacting with modulated EM fields,
and an EM wave propagating in a density-modulated plasma.

This work can be expanded in several directions. First,
one can extend the theory to dissipative waves [68] and
vector waves with polarization effects [39,69], which could be
important at Bragg resonances. Second, the theory presented
here can be used as a stepping stone to improving the
understanding of the modulational instabilities in general
wave ensembles. This requires a generalization of the analysis
presented in Sec. VII and will be reported in a separate paper.
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APPENDIX A: THE WEYL TRANSFORM

This appendix summarizes our conventions for the Weyl
transform. (For more information, see the excellent reviews
in Refs. [28,70–72].) The Weyl symbol A(x,p) of any given
operator Â is defined as

A(x,p)
.=

∫
d4s eip·s〈x + s/2|Â|x − s/2〉, (A1)

where p · s = p0s0 − p · s and the integrals span over R4. We
shall refer to this description of the operators as a phase-space
representation since the symbols (A1) are functions of the
eight-dimensional phase space. Conversely, the inverse Weyl
transformation is given by

Â =
∫

d4x d4p d4s

(2π )4
eip·sA(x,p)|x − s/2〉〈x + s/2|. (A2)

Hence, A(x,x ′) = 〈x|Â|x ′〉 can be expressed as

A(x,x ′) =
∫

d4p

(2π )4
eip·(x ′−x)A

(
x + x ′

2
,p

)
. (A3)

In the following, we will outline a number of useful
properties of the Weyl transform:
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(i) For any operator Â, the trace Tr[Â]
.= ∫

d4x 〈x|Â|x〉 can
be expressed as

Tr[Â] =
∫

d4x d4p

(2π )4
A(x,p). (A4)

(ii) If A(x,p) is the Weyl symbol of Â, then A∗(x,p) is the

Weyl symbol of Â
†
. As a corollary, the Weyl symbol of a

Hermitian operator is real.
(iii) For any Ĉ = ÂB̂, the corresponding Weyl symbols satisfy
[73,74]

C(x,p) = A(x,p) � B(x,p). (A5)

Here � refers to the Moyal product, which is given by

A(x,p) � B(x,p)
.= A(x,p)eiL̂/2B(x,p), (A6)

and L̂ is the Janus operator, which is given by

L̂ .= ←−
∂p · −→

∂x − ←−
∂x · −→

∂p = {·,·}. (A7)

The arrows indicate the direction in which the derivatives act,
and AL̂B = {A,B} is the canonical Poisson bracket in the
eight-dimensional phase space, namely,

L̂ =
←−
∂

∂p0

−→
∂

∂x0
−

←−
∂

∂x0

−→
∂

∂p0
+

←−
∂

∂x
·
−→
∂

∂p
−

←−
∂

∂p
·
−→
∂

∂x
. (A8)

(iv) The Moyal product is associative; i.e.,

A � B � C = (A � B) � C = A � (B � C). (A9)

(v) The antisymmetrized Moyal product defines the so-called
Moyal bracket

{{A,B}} .= 1

i
(A � B − B � A) = 2A sin

(
L̂
2

)
B. (A10)

Because of the latter equality, the Moyal bracket is also often
called the sine bracket. To the lowest order in ε,

{{A,B}} 	 {A,B}. (A11)

(vi) Now we tabulate some Weyl transforms of various oper-
ators. (We use a two-sided arrow to show the correspondence
with the Weyl transform.) First of all, the Weyl transforms of
the identity, position, and momentum operators are given by

1̂ ⇔ 1, x̂μ ⇔ xμ, p̂μ ⇔ pμ. (A12)

For any two functions f and g, one has

f (x̂) ⇔ f (x), g(p̂) ⇔ g(p). (A13)

Similarly, using Eq. (A6), one has

p̂μf (x̂) ⇔ pμf (x) + (i/2)∂μf (x), (A14)

f (x̂)p̂μ ⇔ pμf (x) − (i/2)∂μf (x). (A15)

APPENDIX B: AUXILIARY CALCULATIONS

Here we include additional details on some of the calcu-
lations that are reported in the main text. In particular, to
obtain Eq. (22), we note that 
(x) is a fast function while
Kμ(x)

.= −∂μ
 is a slow function; then,

A(x,p) � ei
 = A(x,p)eiL̂/2ei


= A(x,p)

( ∞∑
n=0

in

2nn!

←−
∂ n

∂pn
·
−→
∂ n

∂xn

)
ei


= A(x,p)

[ ∞∑
n=0

in

2nn!

←−
∂ n

∂pn
·
(

i
∂


∂x

)n
]
ei
 + O(εmw)

= A(x,p)

[ ∞∑
n=0

1

n!

←−
∂ n

∂pn
·
(

K

2

)n
]
ei
 + O(εmw)

= A(x,p + K/2)ei
 + O(εmw), (B1)

where the symbol · denotes contraction. Similarly,

ei
 � A(x,p) = A(x,p − K/2)ei
 + O(εmw). (B2)

For the calculation shown in Eq. (25), we need the following
result:

A(x,p)ei
1 � B(x,p)ei
2

= A(x,p)ei
1eiL̂/2B(x,p)ei
2

= A(x,p)ei
1ei(
←−
∂p ·−→∂x −←−

∂x ·−→∂p )/2ei
2B(x,p)

= A(x,p)ei
1e−(
←−
∂p ·∂x
2−∂x
1·−→∂p )/2ei
2B(x,p) + O(εmw)

= A(x,p)ei
1e
←−
∂p ·(K2/2)e−(K1/2)·−→∂p ei
2B(x,p) + O(εmw)

= A(x,p + K2/2)B(x,p − K1/2)ei(
1+
2) + O(εmw).

(B3)

Substituting this result, we then obtain

C2 = {{T1,D1}}/2

= {{T1(x,p)ei
,D∗
1(x,p)e−i
}}/8

+ {{T ∗
1 (x,p)e−i
,D1(x,p)ei
}}/8

+ {{T1(x,p)ei
,D1(x,p)ei
}}/8

+ {{T ∗
1 (x,p)e−i
,D∗

1(x,p)e−i
}}/8

= T1(x,p − K/2)D∗
1(x,p − K/2)/(8i)

− T1(x,p + K/2)D∗
1(x,p + K/2)/(8i)

+ T ∗
1 (x,p + K/2)D1(x,p + K/2)/(8i)

− T ∗
1 (x,p − K/2)D1(x,p − K/2)/(8i)

+ Re[C2(x,p)e2i
(x)] + O(εmw), (B4)

where C2(x,p) is some function, whose explicit expression is
not important for our purposes. Substituting Eq. (23) into
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Eq. (B4), we obtain

C2 = −1

4

[ |D1(x,p + K/2)|2
D0(x,p + K) − D0(x,p)|2 + |D1(x,p − K/2)|2

D0(x,p − K) − D0(x,p)

]
+ Re[C2(x,p)e2i
(x)] + O(εmw)

= −1

4

∑
n=±1

|D1(x,p + nK/2)|2
D0(x,p + nK) − D0(x,p)|2 + Re[C2(x,p)e2i
(x)] + O(εmw). (B5)

The calculation of Eq. (67) is presented below. Starting from Eq. (64) and letting A
μ
c = (Vc,0), we have

Heff(t,X,P) − γmc2 − qVbg = −q2(Ac · A∗
c )

4γmc2
+ 1

2γmc2

∑
n=±1

q2|Ac · (�∗ + nh̄K/2)|2
2n�∗ · h̄K + n2h̄2K · K

,

= − q2|Vc|2
4γmc2

+ q2|Vc|2
2γmc2

[
(γmc + h̄�/2c)2

2�∗ · h̄K + h̄2K · K
− (γmc − h̄�/2c)2

2�∗ · h̄K − h̄2K · K

]

= − q2|Vc|2
4γmc2

+
(

q2|Vc|2
2γmc2

)
(γmc + h̄�/2c)2(2�∗ · h̄K − h̄2K · K) − (γmc − h̄�/2c)2(2�∗ · h̄K + h̄2K · K)

4(�∗ · h̄K)2 − (h̄2K · K)2

= − q2|Vc|2
4γmc2

+
(

q2|Vc|2
8γmc2

)
4γm�(�∗ · K) − 2γ 2m2c2(K · K) − h̄2�2(K · K)/2c2

(�∗ · K)2 − (h̄K · K/2)2

=
(

q2|Vc|2
8γmc2

)
4γm�(�∗ · K) − 2γ 2m2c2(K · K) − 2(�∗ · K)2 − h̄2�2(K · K)/2c2 + h̄2(K · K)2/2

(�∗ · K)2 − (h̄K · K/2)2

=
(

q2|Vc|2
8γmc2

)
4γm�(γm� − � · K) − 2γ 2m2c2(�2/c2 − K2) − 2(γm� − � · K)2 − h̄2K2(K · K)/2

(�∗ · K)2 − (h̄K · K/2)2

=
(

q2|Vc|2
4γm

)
K2 − (� · K/γmc)2 − (h̄K/2γmc)2(K · K)

(� − � · K/γm)2 − (h̄K · K/2γm)2

=
(

q2|Vc|2
4γm

)
K2 − (� · K/γmc)2

(� − � · K/γm)2
+ O

(
h̄2

)
. (B6)
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