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We provide a very simple case showing that the weak form of the Heisenberg limit can be beaten while the

prior information is improved without bias.
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I. INTRODUCTION

The question of the ultimate quantum limits to the precision
in signal detection has received a great deal of attention. One of
the reasons for this interest relies on the growing importance of
novel quantum technologies where quantum physics is applied
to an increasing number of practical tasks.

In this work we focus on the most common scheme in
quantum metrology, where the signal to be detected is encoded
as a shift ¢ of the phase of an harmonic oscillator. In the
most practical terms, this means an electromagnetic field mode
illuminating an interferometer.

A key issue in quantum metrology is the trade-off between
resolution and resources employed, usually counted as the
number of photons in the probe state. The common belief
points to an ultimate minimum uncertainty A¢ scaling as
the inverse of the total number of photons N; this is A¢,
I/N [1-11]. We will refer to this as the strong form of
the Heisenberg limit or simply strong Heisenberg limit. In
order to reach this limit all the photons must be employed
in a single realization of the measurement and a highly
nonclassical probe state with a very large number of photons
is required. Such states are very difficult to generate and
extremely fragile against practical imperfections [12—14].
These considerations may spoil the actual practical meaning
of the strong Heisenberg limit.

In a more practical scenario, we should consider instead the
repetition m times of the measurement with identical probes
prepared in a nonclassical state with small mean number 7,
such that N = ma can be still very large. Considering that
the m repetitions are statistically independent, the minimum
uncertainty would scale as [15]

1
Weak form: A¢,, o« ——, 1.1
¢ NG (L.1)
which is rather different from the strong form,
1
Strong form: A¢; x — = —, (1.2)
mn N

especially for meaningful situations where m will be far larger
than 71. We will refer to A¢,, as the weak form of the Heisenberg
limit, or simply weak Heisenberg limit.

The actual meaning of the strong Heisenberg limit has been
much debated [16-30]. However, the weak Heisenberg limit
has not so extensively examined [5,23,30], although it has a
more deep practical meaning, as discussed above.
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In this work, we show by means of an extremely simple
example the meaningful beating of the weak form of the
Heisenberg limit. Moreover, this example suggests that the
strong limit may be as well approached in this same scenario
of large m and small 7.

We can benefit from many conclusions of the strong-limit
scenario. To begin with, one must be careful concerning the
performance estimators we can trust [ 16-20,23]. It is crucial to
check the presence of bias and whether meaningful improve-
ment over the prior information is achieved [3,8,10,25,30].
Because of this, we mainly focus on Bayesian-like approaches
involving averages over the prior knowledge. Nevertheless, we
will contrast the results also with pointwise approaches such
as the Cramér-Rao bounds.

II. DETECTION SCHEME

The physical system for the detection is a single-mode
electromagnetic field. The probe is prepared in the state )
expressed in the photon-number basis as

[¥) = V1 =12(0) + v|ia/v?),

where v is a parameter that will be considered small enough
v <K 1, while 7 is the mean number of photons of each probe-
state realization, assuming always that 1/v? is an integer. These
kind of states have been considered before [5,23] and known,
for example, as unbalanced cat states [31].

In this scheme, the signal to be detected induces a phase
shift ¢ transforming the probe state into

() = v/ 1T —12]0) + "/ v]ii/v?).

We will consider that all which is known about the signal is
that ¢ is included in the interval [0, W]. This knowledge is
often summarized in a prior distribution P(¢), in our case as
P(¢) =1/W for ¢ € [0,W] and P(¢) = O otherwise.

2.1)

2.2)

III. BOUNDS

In general terms, many variable factors affect the estima-
tion performance, such as probe state, signal codification,
measurement performed, data analysis followed, experimental
imperfections, and so on. Because of this, most performance
analysis focus on the derivation of lower bounds on the
estimation error, rather than dealing with exact precision limits.
This is clearly discussed in Ref. [32], where several lower
bounds to the estimation uncertainty A¢ are presented and
discussed.
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Among them, the most popular is the Cramér-Rao bound,
which focuses on the variance of the signal estimator ¢
A% = PkIDIGK) — oI (3.1)

k
where k are the outcomes of the measurement performed,
assumed discrete for simplicity, P(k|¢) is the probability of

outcome k when the signal is ¢, and ¢ (k) is the estimation of
¢ after the outcome k. Then it can be seen that

A% > Alger = ——
= CR — ’
mF

where F is the Fisher information of a single measurement,

—Z (8P<k|¢>)
P<k|¢>> 09 )

The dependence of Adcr on the measurement performed
can be removed, leading to the quantum Cramér-Rao bound
Adocr, which is again of the form (3.2) but where the
Fisher information (3.3) is replaced by the quantum Fisher
information Fy. For probes in pure states F reads simply as
the variance of the generator G of the phase shift on the probe
state

Fo =4[y (@G |¥(9)) — (VDG ($)*] (3.4)

and in our case G is the number operator G = /1. Note that
in general these pointwise bounds depend on the unknown
signal value ¢, ignore prior information P(¢), and do not
address whether the estimation protocol is efficiently reaching
the lower bound.

An alternative picture that can take into account all these
points is provided by Bayesian approaches that aim to
construct a posterior distribution for the signal estimator ¢,
for example, in the form

P(@l¢) o Plk(P)|B], (3.5)

where k(¢) is given by inverting the relation ¢(k). A clear
advantage of this approach is that it solves many issues at once,
such as unbiasedness and efficiency. Within this Bayesian
scenario the uncertainty on ¢ can be estimated, including the
prior information contained in P(¢), for example, via the mean
square estimation error averaged over the prior distribution

P(9)

(3.2)

(3.3)

A% = / > PI)P@DIFK) — 9. (3.6)
k

A suitable lower bound for A2<5 is the Ziv-Zakai bound [3]

PR ¢ -
A¢>§/O d¢¢(1—W)[l—\/l—uwwwm ]

3.7
where
WY @) = (1 — v2)2 4+ v* + 201 — v2) cos(iig /v2).
(3.8)

In order to deal with practicable expressions, let us assume, as
a first condition, that

Wii/v? <« 1 lst condition, (3.9)
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so that in due course we may approximate cos (ii¢p/v?) as
cosx >~ 1 —x?/2aswellas (1 — y)™ ~ ¢~ within the range
of values allowed for ¢ by the prior distribution. In such a case

(W ly @)™ = (3.10)

Moreover, in order to proceed with user-friendly expressions
we further assume as a second condition that

maWw /v > 1 (3.11)

This is natural since we expect that a very large number of
repetitions m is needed to reach a meaningful resolution. Thus
we may approximate in Eq. 3.7) 1 — /1 —z >~ z/2 withz =
exp(—mii>¢?*/v?). Finally, after the ¢ integration we have

_ r—l2¢2/v2)m ~ efmﬁzqﬁz/vz-

2nd condition.

2 2

8mi2  8N?'
This is the final form for the Ziv-Zakai bound. The first
conclusion is that this scheme clearly includes the possibility
of beating the weak Hesienberg limit thanks to the small factor
v in the numerator of A(ﬁzz. Moreover, now we get that the
condition (3.11) means that the bound is clearly smaller than
the prior information, Adrz < W.

The conjunction of the two above conditions (3.9) and
(3.11) implies that mv? > 1, which agrees with the results
in Ref. [3] regarding the strong Heisenberg limit, since this
would imply that Adzz > Ad,. Nevertheless, we recall that
conditions (3.9) and (3.11) were imposed in order to get
manageable expressions. But the scheme can work equally
well without them, as demonstrated by the following example.

After Eq. (3.12) it is not excluded that this strategy may
approach the strong Heisenberg limit A¢;; ~ A¢, provided
that mv? ~ 1. This suggests that the attainability of the strong
limit scaling refers essentially to the 7 scaling. The other
variables m,v are customarily fixed as function of 7 to obtain
the desired result for A¢ up to constant factors.

Finally, as shown in Ref. [32], there is the Bayesian Cramér-
Rao bound suitably mixing both strategies in the form

1
m [dpP@)F +1°

where F is the Fisher information associated to the measure-
ment, while 7 represents Fisher information corresponding to
the prior information

ol
P@)L 9o 1°

IV. POSTERIOR DISTRIBUTION

(3.12)

A’@pcr = (3.13)

(3.14)

The above result (3.12) for the Ziv-Zakai bound does not
prove that the weak Heisenberg limit can be actually beaten
in a specific scheme since this is a bound that may or may
not be reached. In this section we proceed by showing a
specific detection scheme, providing a proof of principle that
the bound can be actually approached. We also compare the
resolution reached with the other bounds in Sec. IIl as a
consistence check. To this end we begin with by deriving
explicitly the posterior distribution P(¢|¢) for the estimated
phase ¢ conditioned to the true unknown phase shift ¢ as
presented in Eq. (3.5).
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The measurement in this example has just two outputs
labeled & whose probabilities P(+£|¢) are given by projecting
the signal-transformed state [¢/(¢)) in Eq. (2.2) on the
orthogonal vectors |£), expressed in the number basis as

1

+) = ﬁ(|0> +ila/v?)). (4.1)
This is
P(£]¢) = 1 £ vv1 — v2sin(¢i/v?). 4.2)

When repeating the measurement m times, the probability that
we get k positive outcomes and m — k negatives is the binomial

m m—
P(k|$) = ( k)Pk<+|¢>P “(~1¢). (4.3)
In the limit of large m, which is our case here, the binomial
(4.3) can be well approximated by the Gaussian

lk=—mP(+Ip)
exp {— InPEH$)P(—1®) )

V2rmP(+1$)P(—1d)

Following a maximum likelihood strategy, to each result with
k positive outcomes we can assign the estimator ¢ given by
relation

P(kl¢) ~

4.4)

P(+|¢) = k/m,

as the phase shift that maximizes the probability P(k|¢p) of
obtaining the result actually obtained. Using again that the
first condition (3.9) holds,

(4.5)

P(+|p) ~ L + pii/v = k/m, (4.6)
so that
G=KTM2 Gy = w2t mAdy. @7)
mii /v

With this, the final posterior distribution becomes after
Egs. (3.5), (4.4), and (4.7)

- 2mi? mi? . )
P(p|o) ~ 2 exp [—27(05 —9) :|

where we have approximated P(+[¢)P(—|¢) > 1/4. Note
that P(¢|¢) readily provides the uncertainty of the estimator
as

(4.8)

1)2

Amii?’
which is just twice the Ziv-Zakai bound (3.12). We can check
also in Eq. (4.8) that in this limit there is no bias, since the
mean value of the estimator ¢ coincides with the true value ¢.

Therefore this scheme is able to beat the weak Heisenberg
limit for a suitable choice of large m and small v. At difference
with the strong Heisenberg form, in this case the violation is
not jeopardized by any relation between m and v. The only
requirement is that m >> 1 and v < 1. In the next section we
present a specific numerical example.

Regarding the Cramér-Rao bounds we have that the Fisher
information in Eq. (3.3) after condition (3.9) and using P(k =
+|¢)in Eq. (4.2) becomes F =~ 4732 / v? so that the Cramér-Rao

AP~

(4.9)
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bound (3.2) is

2
4mn?’
This is just equal to the actual Bayesian uncertainty achieved
in this scheme A%@ in Eq. (4.9) so our scheme saturates the
Cramér-Rao bound. Moreover, it saturates also the quantum
Cramér-Rao bound since the quantum Fisher information in

Eq. (3.4) for v <« 1 matches the Fisher information Fp >~ F =~
4712 /v, so that

Ndeg =~

(4.10)

A¢ >~ Adcr >~ Adocr.

Regarding the Bayesian Cramér-Rao bound in Eq. (3.13)
and considering in our case Z ~ 1/ W? we get

@11

m / dpP($)F + I ~ 4mi*/v? + 1/ W? ~ dmi*/v?,
(4.12)

where we have used condition (3.11). Therefore we get that
our scheme also saturates this Bayesian Cramér-Rao bound,
so that

Ad ~ Adcr ~ Adgcr =~ Adser. (4.13)

V. BEATING THE WEAK HEISENBERG LIMIT

Let us show explicitly that the above analysis provides
a proof of principle that the weak Heisenberg limit can be
beaten. To this end we present a numerical evaluation of
the posterior distribution without any approximation directly
by combining Eqgs. (4.3), (4.5), and (3.5). This is compared
with the approximation (4.8). In Fig. 1 we have plotted both
posterior distributions for

W =103, m = 10°, v=0.1.

(5.1

Both conditions (3.9) and (3.11) are satisfied with W7 /v? =
0.1, /miaW /v = 10,and mv> = 10*. So the exact and approx-
imate expressions are indistinguishable and the uncertainty is
readily given by Eq. (4.9). More specifically, in this case we get

i=1, ¢ =107%,

8000
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P(0 |0)
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¢

FIG. 1. Posterior distribution P(¢|¢) for the estimator ¢ for
W=103,7a=1,m=10°v=0.1, and ¢ = 10~*. The exact and
approximate expressions are indistinguishable. We have marked with
vertical dashed lines the values of ¢ and W.
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FIG. 2. Posterior distribution P(¢|¢) for the estimator ¢ for
W=1073, a=1, m=1.6x10* v=0.03, and ¢ = 10~*. The
exact (solid line and approximate (dashed line) expressions are
indistinguishable. We have marked with vertical dashed lines the
values of ¢ and W.
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A¢ =5 x 1073, which is clearly below both the weak limit
and the prior, being above the strong limit

Ad = 0.05A¢, = 0.05W = 50Ag, (5.2)

where for definiteness we have considered A¢,, = 1/(/mi1)
and A¢, = 1/(mn).

Next we can examine whether this strategy can approach
the strong Heisenberg limit for a proper choice of parameters.
This is the case, for example, of a slight variation of the above
example as

W=1073, a=1, m=16x10%

¢ =10"* v=0.03, (5.3)
leading to A = 1.1 x 10~* with

Agp =0.015A¢, = 0.11W = 2A¢, (5.4

so this is just twice the strong Heisenberg limit. In Fig. 2
we have plotted both the exact and approximate posterior
distributions, showing again that they almost coincide, so
Eq. (4.9) holds. In this case the first condition (3.9) is not
satisfied since Wii/v?> = 1.1 while the second one (3.11) is
close to be satisfied as /miaW /v = 5, leading to mv? = 20.

VI. DISCUSSION

We have provided analytical and numerical evidences
showing that the weak form of the Heisenberg limit can be
beat while the prior information is improved without bias.
The probe and measurement presented may be regarded as
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unpractical, but the main goal was to provide a simple as
possible proof of principle of this.

The key point is that in any case the weak-probe scenario is
better than the bright-probe case. This is because special states
of light, such as the probe (2.1) or even NOON states, are much
more accessible and robust against practical imperfections for
small mean numbers that for large numbers. In this regard,
the use of weak coherent states is excluded since they would
deprive us of the v parameter which has been crucial in the
above analysis.

One of the main questions addressed in quantum metrology
is how to use resources in the most efficient way. The answer
is not simple and one must trust the conclusions provided
by the performance estimator chosen, in this case the mean
square error averaged over prior distribution. Coherent states
are much easily produced but they are not efficient enough
according to these statistical tools. We may say that although
each run provides a minuscule amount of information, it is of
a much larger quality regarding long-run cumulative effects
when compared to a single measurement with all photons
gathered in a bright coherent state.

Quantum metrology protocols proceed without explicit
references to the physical meaning of the parameter to be
estimated. Nevertheless, in our case we may question what
the phase in Eq. (2.2) is relative to. This point is settled by
the measurement process that directly or indirectly embodies
the reference phase. We may say that this is a somewhat
sophisticated version of homodyne or heterodyne quadrature
measurements, where the phase of a single-mode field can be
suitably observed relative to the phase of the local oscillator
that defines the actual quadratures being measured.

Saturation of bounds is a quite tricky point in every
estimation procedure. Actually, this was the main reason for
focusing on Bayesian approaches. We have shown that our
scheme saturates all bounds including the Cramér-Rao bounds
with quantum and classical Fisher informations.

Finally, a merit of these results is that they point to a largely
dismissed possibility in quantum metrology, the multiple
repetitions in a weak-probe scenario. To secure this point,
we have shown that it avoids most of the difficulties that face
more naive approaches such as prior information and bias. We
show that is a quite interesting route to be followed to obtain
suggestive nontrivial results.
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