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We propose that measurements of time-of-arrival correlations in multipartite systems can sharply distinguish
between different approaches to the time-of-arrival problem. To show this, we construct a positive-operator-valued
measure for two distinct time-of-arrival measurements in a bipartite system, and we prove that the resulting
probabilities differ strongly from ones defined in terms of probability currents. We also prove that time-of-
arrival correlations are entanglement witnesses, a result suggesting the use of temporal observables for quantum
information processing tasks. Finally, we construct the probabilities for sequential time-of-arrival measurements
on a single particle. We derive the state-reduction rule for time-of-arrival measurements; it differs significantly
from the standard one, because time-of-arrival measurements are not defined at a single predetermined moment
of time.
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I. INTRODUCTION

The simplest version of the time-of-arrival problem in
quantum mechanics [1,2] is the following. A particle is
prepared on an initial state |ψ0〉 that is localized around x = 0
and has positive mean momentum. A detector is located at
x = L. What is the probability P (L,t)dt that the particle is
detected at x = L at some moment between t and t + δt?

In spite of the problem’s apparent simplicity, there is no
consensus on the answer. The reason is that there exists
no self-adjoint operator for time in quantum mechanics [3];
hence we cannot obtain an unambiguous answer by employing
Born’s rule. Several different approaches to the problem have
been developed, each following a different reasoning. All
approaches lead to probability densities P (L,t) that differ from
each other only at the level of small quantum fluctuations,
so that they cannot easily be distinguished experimentally.
Such a distinction would be highly desirable, because the
time-of-arrival problem is only an elementary manifestation
of an important foundational issue, namely, understanding the
role of time in quantum mechanics.

The main idea of this paper is that different theories about
the time of arrival could be distinguished if they are applied
to more elaborate time-of-arrival measurements. Consider, for
example, a multiparticle system. The time of arrival of each
particle is a distinct observable that is recorded by different
detectors. The correlations between different time-of-arrival
observables are in principle measurable. We expect that
different theories will lead to different predictions for such
correlations.

We implement this idea by extending the construction of
time-of-arrival probabilities of Ref. [4] to setups that involve
two or more time-of-arrival measurements. We express time-
of-arrival correlations in terms of positive-operator-valued
measures (POVMs). These correlations turn out to differ
significantly from ones defined in terms of probability currents.

Our treatment of the time of arrival is based on the quantum
temporal probabilities (QTP) method [4,5]. The QTP method
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provides an algorithm, applicable to any quantum system, that
allows for the construction of quantum probabilities in which
time is treated as a random variable. Besides the time-of-arrival
problem [4,6], the method has also been applied for the tem-
poral characterization of tunneling [5,7,8], for calculating the
response and correlations of accelerated particle detectors [9]
and to relativistic quantum measurements [10]. The key idea
is to distinguish between the time parameter of Schrödinger
equation from the time of occurrence of a measurement
event [11,12]. The latter are physical observables: they are
treated as quasiclassical macroscopic variables associated to a
detector’s degrees of freedom, and the associated probabilities
are unambiguously defined [13].

The probability density with respect to the times of n

particle detection events is a linear functional of 2n-correlation
functions of the associated quantum field. The simplest time-
of-arrival measurement involves one particle and one detector;
hence the detection probability is a linear functional of the
two-point function [4]. The measurements considered in this
paper involve two detection events; either one detection for
each particle in a bipartite system, or two successive detections
of a single particle. The associated probability densities are
linear functionals of field four-point functions.

Our analysis proceeds as follows. First, we revisit the
time-of-arrival probability measure of Ref. [4]. We transform
the measure to the classical state space, and study the
properties of the quantum fluctuations. We find that different
proposals about the time of arrival are distinguished at very
low momenta (or, equivalently, very low temperatures): the
traversed distance must be of the order of the particles’ thermal
de Broglie wavelength.

Second, we consider time-of-arrival measurements in
bipartite particle systems. We derive the joint probability
distribution for the times of arrival t1 and t2 of the two
particles. We prove that the resulting probabilities cannot, in
general, be expressed in terms of probability currents. Thus we
prove that different approaches to the time of arrival lead to
experimentally distinguishable predictions for time-of-arrival
correlations. Moreover, we show that these correlations define
entanglement witnesses. This result suggests that quantum
temporal observables can be used for the detection of entan-
glement and, possibly, for information processing tasks.
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Third, we consider sequential time-of-arrival measurements
on a single particle. We derive the joint probability distribution
for the times of arrival t1 and t2 at two spatially separated
detectors. We identify the rule for the change of the quantum
state after a time-of-arrival measurement and show that it is
very different from the usual “state reduction” rule. We also
define an observable for the time-of-flight velocity that differs,
in general, from the canonical momentum observable.

The structure of this paper is the following. In Sec. II, we
set up our notation and present the time of arrival probabilities
derived by the QTP method. In Sec. III, we study the proba-
bilities associated to a single time-of-arrival measurement. We
focus on the properties of quantum fluctuations, and we discuss
possible ways to distinguish experimentally between existing
proposals. In Sec. IV, we consider time-of-arrival probabilities
and correlations in composite systems. In Sec. V, we consider
sequential time-of-arrival measurements. In Sec. VI, we
summarize and discuss our results.

II. PROBABILITY ASSIGNMENT

In this section, we set up our notation and we present the
time-of-arrival probabilities derived by the QTP method. The
derivation is sketched in Appendix A. For further details, see
Refs. [4,5,10].

We consider a system of nonrelativistic particles described
by a Hilbert spaceF . For identical particles,F is a Fock space,
either bosonic or fermionic. In the former case, F carries a
representation of the canonical commutation relations

[âkkk,âkkk′] = [â†
kkk,â

†
kkk′] = 0, [âkkk,â

†
kkk′] = δ3(kkk − kkk′), (1)

expressed in terms of the bosonic annihilation and creation
operators âkkk and â

†
kkk .

In the latter case,F carries a representation of the canonical
anticommutation relations

{ĉkkk,ĉkkk′ } = {ĉ†kkk,ĉ†kkk′ } = 0, {ĉkkk,ĉ
†
kkk′ } = δ3(kkk − kkk′), (2)

expressed in terms of the fermionic annihilation and creation
operators ĉkkk and ĉ

†
kkk .

In what follows, we will ignore spin and internal degrees of
freedom of the particles, as they do not affect time-of-arrival
measurements. The quantum fields associated to the particles
are

ψ̂(xxx) =
{∫

d3k
(2π)3/2 e

ikkk·xxx âkkk for bosons,∫
d3k

(2π)3/2 e
ikkk·xxx ĉkkk for fermions.

(3)

For bosons, the Hamiltonian on F is ĥ = ∫
d3k

(2π)3 εkkkâ
†
kkkâkkk and

for fermions ĥ = ∫
d3k

(2π)3 εkkkĉ
†
kkkĉkkk , where εkkk = kkk2

2m
.

The QTP probability distribution for a particle to be
detected at time t by a detector located at LLL is

P (1)(LLL,t) = C

∫
ds ds ′√f (t − s)f (t − s ′)〈�0|

× Ŷ †(LLL,s ′)Ŷ (LLL,s)|�0〉, (4)

where C is a constant and |�0〉 is the initial state of the particle
system.

The operator Ŷ (xxx,s) is the Heisenberg-picture evolution
eiĥs Ŷ (xxx)e−iĥs of a composite operator Ŷ (xxx) that is a local

functional of the quantum fields ψ̂(xxx). This operator originates
from the interaction Hamiltonian between the particles and
the detector. In what follows, we will consider two types of
interaction.

(1) Ŷ (xxx) = ψ̂(xxx). This choice corresponds to a process in
which the particle is absorbed during detection.

(2) Ŷ (xxx) = ψ̂†(xxx)ψ̂(xxx). This choice corresponds to a
process in which the particle is scattered during detection.

The smearing function f in Eq. (4) is centered around
zero with a width of order σ , the temporal coarse-graining
of the detector. Smearing is essential for the definition of
probabilities in the QTP method, because the time parameter t

is a coarse-grained quasiclassical variable that coincides with
the emergence of a macroscopic record of observation in the
detector.

For example, we can employ Gaussian smearing functions,

f (s) = 1√
2πσ 2

e
− s2

2σ2 . (5)

The Gaussians satisfy the useful identity

√
f (t − s)fσ (t − s ′) = f

(
t − s + s ′

2

)
g(s − s ′), (6)

where

g(s) = e
− s2

8σ2 . (7)

The analog of Eq. (6) is also satisfied approximately for non-
Gaussian smearing functions. In such cases, g is a positive
function that satisfies g(0) = 1 and lim|s|→∞ g(s) = 0.

Using Eq. (6), the probability distribution P (LLL,t) can be
expressed as a convolution

P (1)(LLL,t) =
∫

dt ′f (t − t ′)P (1)
f.g.(LLL,t ′), (8)

where

P
(1)
f.g.(LLL,t)

= C

∫
dτ g(τ )〈�0|Y †

(
LLL,t − τ

2

)
Ŷ

(
LLL,t + τ

2

)
|�0〉 (9)

is a probability distribution, finer than P (LLL,t), that usually
takes a simple form.

The probability density associated to the measurement of
one particle at time t1 by a detector located at LLL1 and of one
particle at time t2 by a detector located at LLL2 is

P (2)(LLL1,t1;LLL2,t2)

= C

∫
ds1ds ′

1ds2ds ′
2

×
√

f1(t1 − s1)f1(t1 − s ′
1)f2(t2 − s2)f2(t2 − s ′

2)

×〈�0|T̄ [Ŷ †
1 (LLL1,s

′
1)Ŷ †

2 (LLL2,s
′
2)]

× T [Ŷ2(LLL2,s2)Ŷ1(LLL1,s1)]|�0〉, (10)

where T stands for time-ordered product and T̄ for anti-
time-ordered product. Equation (10) takes into account the
possibility that each detector may be associated to a different
composite operator Ŷi(xxx).
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Again P (LLL1,t1;LLL2,t2) can be expressed as a convolution

P (2)(LLL1,t1;LLL2,t2) =
∫

dt ′1dt ′2f1(t1 − t ′1)f2(t2 − t ′2)

×P
(2)
f.g.(LLL1,t

′
1;LLL2,t

′
2), (11)

of a finer probability density

P
(2)
f.g.(LLL1,t1;LLL2,t2)

= C

∫
dτ1dτ2g(τ1)g(τ2)〈�0|

× T̄
[
Ŷ
†
1

(
LLL1,t1 − τ1

2

)
Ŷ
†
2

(
LLL2,t2 − τ2

2

)]

×T
[
Ŷ2

(
LLL2,t2 + τ2

2

)
Ŷ1

(
LLL1,t1 + τ1

2

)]
|�0〉. (12)

The probability densities (9) and (12) involve averaging over
the temporal and not the spatial coordinates. They have been
obtained using the approximation (A11) in Appendix A 2.
Temporal averaging is essential for the definition of prob-
abilities in the QTP method. This is not the case for spatial
averaging. It is usually subsumed under the effects of temporal
averaging and can be omitted for simplicity.

III. SINGLE TIME-OF-ARRIVAL MEASUREMENT

In this section, we revisit the time-of-arrival probability
derived in Ref. [4]. We examine its phase-space properties, the
classical limit, the associated uncertainties, and discuss how
different candidates for the time-of-arrival probabilities might
be distinguished experimentally.

A. Ideal probability distribution

We evaluate the fine-grained probability distribution (9)
for a single detection of a particle of mass m. We consider
the simplest case of particle detection by absorption, i.e., we
choose Ŷ (xxx) = ψ̂(xxx). The resulting probability distribution is
the same for fermions and bosons,

P
(1)
f.g.(LLL,t) = C

∫
d3k d3k′

(2π )3

× g̃

(
εkkk + εkkk′

2

)
ei(kkk−kkk′)·LLL−i(εkkk−εkkk′ )t ρ0(kkk,kkk′), (13)

where g̃ is the Fourier transform of the function g. The function

ρ
(1)
0 (kkk,kkk′) = 1

N
〈�0|â†

kkk′ âkkk|�0〉 (14)

is the one-particle density matrix, where |�0〉 has been
assumed an N -particle state. [In Eq. (13), a multiplicative
factor of N has been absorbed in the constant C.]

Let the initial state be localized at xxx = 0 and the detector at
xxx = LLL. We reduce the system to one dimension along the axis
that connects the particle source to the detector. The probability
density (13) then becomes

P
(1)
f.g.(L,t) = C

∫
dk dk′

2π

× g̃

(
εk + εk′

2

)
ei(k−k′)L−i(εk−εk′ )t ρ

(1)
0 (k,k′). (15)

Equation (15) is physically meaningful only for t � 0,
but it can be mathematically extended to t < 0. For initial
density matrices with support only on positive momenta k

and localized at x < L, Pf.g.(L,t) is strongly suppressed for
negative t . Hence, when considering the total probability of
detection Prob(L) := ∫ ∞

0 Pf.g.(L,t), we can extend the range
of integration to the whole real axis. Then,

Prob(L) = mC

∫
dk

g̃(εk)

|k| ρ
(1)
0 (k,k). (16)

The extension of integration to negative times is inadmissible
for states with negative momentum, or for states with position
support on both sides of the detector. Equation (15) accounts
also for these cases, but Eq. (16) does not apply.

We define the absorption rate α(ε) of the detector as the
fraction of particles with incoming energy ε that is absorbed
by the detector. Equation (16) implies that

α(ε) ∼ g̃(ε)/
√

2mε. (17)

We choose the constant C, so that Prob(L) equals the fraction
of detected particles. Then,

P
(1)
f.g.(L,t) =

∫
dk dk′

2π
α

(
εk + εk′

2

)

×
√

εk + εk′

m
ei(k−k′)L−i(εk−εk′ )t ρ

(1)
0 (k,k′). (18)

For a homogeneous detector of length d 	 L, the absorp-
tion rate is α(ε) = μ(ε)d, where μ(ε) is the usual attenuation
coefficient of the absorbing material. The attenuation coeffi-
cient can be measured directly, and it is a defining characteristic
of the detector. In some cases, μ(ε) can be computed from
first principles as nσabs, where n is the number density of the
individual absorbers and σabs is the absorption cross section.1

In what follows, we will consider ideal detectors, char-
acterized by constant absorption rate. Normalizing so that
Prob(L) = 1, we obtain the ideal time-of-arrival probability
distribution

P
(1)
id (L,t) =

∫
dk dk′

2π

√
εk + εk′

m
ei(k−k′)L−i(εk−εk′ )t ρ

(1)
0 (k,k′).

(19)

For initial states with momentum spread much smaller
than the mean momentum, we can approximate εk + εk′ =

1
2m

(k2 + k′2) = 1
2m

[(k − k′)2 + 2kk′] 
 kk′/m. Then, Eq. (19)
coincides with the time-of-arrival probability distribution of
Kijowski [14].

The probability density (19) is expressed as Tr[ρ̂�̂L(t)]
where �̂L(t) are positive operators with matrix elements

〈k|�̂L(t)|k′〉 = 1

2π

√
εk + εk′

m
ei(k−k′)L−i(εk−εk′ )t . (20)

1The probability density P
(1)
f.g.(L,t) of Eq. (18) is integrated with

respect to all possible loci of detection, so it is not a density
with respect to L. The corresponding density can be read imme-
diately, by substituting the absorption rate α(ε) with the attenuation
coefficient μ(ε).
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When restricted to the subspace of states with only positive
values of momentum, and when all values t ∈ RRR are taken into
account, �̂L(t) defines a POVM. For general initial states,
we can define a POVM by including the positive operator
associated to the event of no detection,

�̂L(∅) = 1 −
∫ ∞

0
�̂(t)dt. (21)

B. Time of arrival in the Wigner picture

We bring the ideal probability distribution (19) into a form
that allows for a comparison with the classical time of arrival.
To this end, we express the density matrix ρ̂

(1)
0 in terms of its

associated Wigner function

W0(X,P ) =
∫

dy

2π

〈
X − y

2

∣∣∣∣ρ̂(1)
0

∣∣∣∣X + y

2

〉
eiPy. (22)

Substituting

ρ
(1)
0 (k,k′) = 1

2π

∫
dξ W0

(
X,

k + k′

2

)
e−iX(k−k′) (23)

into Eq. (19), we obtain

P
(1)
id (L,t) =

∫
dX dP

2P 2

m
u

[
2P

(
L− X − t

m
P

)]
W0(X,P ),

(24)

where

u(s) := 1

2π

∫ ∞

−∞
dξ

√
1 + ξ 2eiξs = 1

π
Re

∫ ∞

0
dξ

√
1 + ξ 2eiξs .

(25)

The integral u(s), Eq. (25), defines a distribution function that
is singular at s = 0. The properties of the distribution u are
analyzed in Appendix B1.

For any a > 0,

u(as) = 1

2πa

∫ ∞

−∞
dy

√
1 + (y/a)2eiys . (26)

For large values of a, we can expand the square root, to obtain
a formal series

u(as) = 1

a
δ(s) − 1

2a3
δ′′(s) − 1

8a5
δ′′′′(s) + · · · . (27)

We use Eq. (27) in order to express the probability density
Eq. (24) as a series:

P
(1)
id (L,t) = P

(1)
cl (L,t) + P

(1)
1 (L,t) + P

(2)
2 (L,t) + · · · . (28)

The first term in the series,

P
(1)
cl (L,t) =

∫
dX dP

|P |
m

δ

(
L − X − P

m
t

)
W0(X,P )

=
∫

dX dP δ

(
t − m

L − X

P

)
W0(X,P ), (29)

coincides with the probability distribution associated to the
classical time-of-arrival observable [15],

Tc(X,P ) = m(L − X)

P
. (30)

The associated operator

T̂c = 1
2 [(L − x̂)p̂−1 + p̂−1(L − x̂)] (31)

was first studied by Aharonov and Bohm [16]. T̂c is Hermitian
but not self-adjoint. However, when restricted to states with
support on positive momentum and well localized at positions
x < L, T̂c is indistinguishable from its self-adjoint variants
[17,18].

The action of T̂c on states |ψ〉 with support on strictly
positive momenta is well defined. For such states, T̂c and the
Hamiltonian Ĥ satisfy a canonical commutation relation,

[T̂c,Ĥ ]|ψ〉 = −i|ψ〉. (32)

The first correction to the classical distribution is

P
(1)
1 (L,t) = − 1

8m

∫
dP

∂2
XW0

(
L − P

m
t,P

)
|P | . (33)

This term diverges, unless the Wigner function vanishes at
P = 0.

C. Nonclassical effects

The moment-generating function of the probability distri-
bution (24) is

Z(1)[μ] :=
∫ ∞

−∞
dt P

(1)
id (t)e−iμt =

〈
e−iμTc

√
1 + μ2

16H 2

〉
,

(34)

where H (X,P ) = P 2

2m
, and we wrote

〈F 〉 =
∫

dX dP F (X,P )W0(X,P ) (35)

in order to denote averaging with respect to the Wigner
function W0.

For 〈μ2/H 2〉 	 1, Z(1)[μ] is well approximated by the
generating function of the classical observable Tc. Thus
P

(1)
id (L,t) 
 P

(1)
cl (L,t), except for the regime of very low

kinetic energies or very early times (large μ).
The expectation value t̄ and the mean deviation �t of the

time of arrival are

t̄ = 〈Tc〉, (36)

(�t)2 = (�Tc)2 − 1
16 〈H−2〉. (37)

For states with support on strictly positive momenta, Eq. (32)
implies the uncertainty relation �Tc�H � 1

4 . Then, Eq. (37)
becomes

(�t)2 � 1

4(�H )2
− 1

16
〈H−2〉. (38)

The lower bound to �t is smaller by what one would surmise
from a naive application the Kennard-Robertson inequality to
the time-of-arrival operator.

The analog of Eq. (38) for Kijowski’s POVM has a plus
sign in front of the 〈H−2〉 term, and thus implies that (�t) �
1
4

√
〈H−2〉. By Jensen’s inequality, 〈H−2〉 � 〈H 〉−2, and an

uncertainty relation 〈H 〉�t � 1
4 follows. This is of the same

form (modulo a constant of order unity) with the inequality
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derived in Ref. [19]. However, no such uncertainty relation
exists for the POVM (19).

Two types of nonclassical effects are manifested in the
probability distribution Eq. (24). First, the classical time-of-
arrival observable may exhibit quantum interference, as a
consequence of the nonclassical character of the initial state. In
this case, the time of arrival behaves like any other phase-space
variable. An oscillating behavior of the Wigner function W0

in some region of the phase space leads to interference terms
in the probability distribution. For example, we consider a
superposition state c1|φ1〉 + c2|φ2〉, where |φ1〉 corresponds to
a Wigner function localized at (X1,P1) and |φ2〉 corresponds to
a Wigner function localized at (X2,P2). Then, the probability
distribution for the time of arrival exhibits two peaks at
t1 = Tcl(X1,P1) and t2 = Tcl(X2,P2) and by oscillatory terms
in the intermediate values of t .

The other nonclassical effect is that the time-of-arrival
probability P

(1)
id may differ significantly from the probability

P
(1)
cl that is defined in terms of the classical observable Tc.

The difference between the two distributions is significant if
�t

√
〈H−2〉 is of order unity or smaller, and it is negligible if

�t/
√

〈H−2〉  1. The latter condition is satisfied if

�t〈H 〉  1. (39)

Equation (39) is a classicality condition for the time of arrival.2

D. Distinguishing between different time-of-arrival proposals

While all physically reasonable proposals for the time-
of-arrival probability have to coincide at the classical limit,
they are expected to differ in their description of nonclassical
effects.

In order to avoid complications inessential to the main
argument, we restrict to states with support on positive values
of momentum, and localized at x < L, so that the probability
of no detection is negligible. Hence the probability density for
the time of arrival is normalized to unity.

We will consider ideal probability distributions P (1)(L,t)
that do not depend on any parameters that characterize
the measuring apparatus. We assume that for large mo-
menta, P (1)(L,t), the classical time-of-arrival variable is Tc.

2Conditions similar to Eq. (39) have appeared in several approaches
to the time of arrival based upon measurement models and/or
complex potentials [20–23]. In those models, �t is not the mean
deviation of the probability distribution, but the accuracy in the
determination of the time of arrival. This quantity coincides with the
temporal coarse-graining parameter σ that is introduced in the QTP
method—see Sec. II. As a matter of fact, the first derivation of the
probability density (19) required the hypothesis that σ 〈H 〉  1 [6].
This condition was not necessary in later derivations that described the
interaction between quantum particle and measurement apparatus in
terms of local quantum fields [4]. The coarse-graining scale σ appears
as a parameter in the absorption rate α(ε) of the detector, and, as
such, enters the probability distribution (18). The deviation from the
ideal distribution (19) is σ dependent; however, there is no a priori
reason why this dependence is stronger at the low momentum limit.
In our opinion, the requirement that σ 〈H 〉  1 is not a fundamental
condition upon the measurability of the time of arrival.

These conditions imply that the moment-generating function
Z(1)[μ] := ∫ ∞

−∞ dt P (1)(L,t)e−iμt has the form

Z(1)[μ] = 〈e−iμTcη(μ/H )〉 (40)

for some positive function η(x) of the dimensionless quantity
x = μ/H . The function η depends only on the ratio μ/H ,
because μ has the dimensions of energy, and in the absence
of other parameters with dimension of energy (characterizing
the apparatus), μ/H is the only possible combination.

We require that η(x) satisfies the following properties.
(i) η(0) = 1, since P (1)(L,t) is normalized to unity.
(ii) η′(0) = 0, so that Eq. (36) holds. This condition

guarantees that the expectation value always coincides with
that of the classical observable Tc. Equation (36) is the analog
of Ehrenfest’s theorem for the time of arrival.

(iii) η(−x) = η(x), so that the time-of-arrival probabilities
are time-reversal covariant.

From Eq. (40), we express the probability density P (1)(L,t)
in terms of the density matrix ρ̂(1),

P (1)(L,t) =
∫

dk dk′

2π

k + k′

2m
η

(
4(k′ − k)

k + k′

)

× ei(k−k′)L−i(εk−εk′ )t ρ
(1)
0 (k,k′). (41)

The probability densities of the form (41) transform co-
variantly under time translations. They are special cases of
Werner’s time-of-arrival probability distribution [15].

Different choices of the function η correspond to different
proposals for an ideal time-of-arrival probability distribution.

(i) The probability density (19) defined through the QTP

method corresponds to η(x) =
√

1 + x2

16 .
(ii) Kijowski’s probability distribution [14] corresponds to

η(x) =
√

1 − x2

16 .
(iii) Several different proposals correspond to η(x) = 1.

Proposals based on defining self-adjoint variants of the
operator T̂c [17,18] lead to the probability density P

(1)
cl (L,t)

when restricted to states with positive momentum and x < L.
This is also the case for the time-of-arrival probability defined
by the probability current [1] and for some measurement
models [24,25].

All probability densities (41) have the same behavior at
high momentum. This is also true for some proposed time-
of-arrival probabilities that are noncovariant with respect to
time translations [26]. Thus the different proposals can only
be distinguished by their predictions in the low momentum
regime. However, moments such as (�Tc)2 and 〈H−2〉 cannot
be used for this purpose because they diverge.

We quantify the low momentum behavior of the time-of-
arrival probabilities in terms of a temperature variable. We
consider an initial state with a thermal distribution of positive
momenta, at temperature β−1

W0(X,P ) = n0(X)

√
2β

πm
e− 1

2 βP 2/mθ (P ); (42)

n0 is a probability distribution for position with zero mean and
mean deviation σX. For σX 	 L, we can substitute n0 with
a δ function. The probability density P (1)(L,t) turns out to
be of the form

∫ ∞
0 dx η(x)G(x), for some function G(x). The
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exact form of G(x) is not relevant, only the fact that G(x)
decays as e−2mL2x2/β for large x. If mL2/β is significantly
larger than unity, only values of x very close to zero contribute
to the integral, and different functions η(x) lead to the same
probability density. Hence a distinction between different
candidate time-of-arrival probabilities is possible only if the
quantity

ν = β

mL2
(43)

is at least of order one. This means that the distance L between
source and detector must be of the order of the thermal de
Broglie wavelength of the particles.

We also have to take into account that the temporal
scale τ = L

√
mβ for the measured time of arrival must be

significantly larger than the time resolution of the apparatus.
Lowering the temperature increases both ν and τ . For β−1

near a tenth of a milli-Kelvin, ν becomes of order unity, while

τ ∼ 1 μs is significantly larger than resolutions achieved in
solid-state detectors. Such a measurement requires L∼ 30 μm
for electrons and L ∼ 1 μm for neutrons.

These estimates suggest that the quantum regime above
is not beyond present capabilities. Thus an experimental
distinction between different proposals for the time of arrival
is possible in principle, even if the realization of such an
experiment may very difficult. Perhaps the distinction can
be made easier in a different setup, namely, time-of-arrival
measurements in multipartite systems that are discussed in the
following section.

IV. TIME OF ARRIVAL IN COMPOSITE SYSTEMS

The QTP method also applies to setups that involve more
than one time-of-arrival measurement. In this section, we study
time-of-arrival measurements in a bipartite system.

A. Probability assignment

We evaluate the fine-grained probability distribution (12) for two detection events. We assume that both particles are absorbed
at detection, i.e., Ŷ1(xxx) = Ŷ2(xxx) = ψ̂(xxx). Then,

P
(2)
f.g.(LLL1,t1;LLL2,t2) = C

∫
d3k1d

3k2d
3k′

1d
3k′

2g̃

(
εkkk1 + εkkk′

1

2

)
g̃

(
εkkk2 + εkkk′

2

2

)

× ei(kkk1−kkk′
1)·LLL1−i(εkkk1 −εkkk′

1
)t1ei(kkk2−kkk′

2)·LLL2−i(εkkk2 −εkkk′
2

)t2ρ
(2)
0 (kkk1,kkk2|kkk′

1,kkk
′
2), (44)

where

ρ
(2)
0 (kkk1,kkk2|kkk′

1,kkk
′
2) = 1

N2 − N
〈�0|ĉ†kkk′

1
ĉ
†
kkk′

2
ĉkkk2 ĉkkk1 |�0〉, (45)

and |�0〉 was assumed to be an N -particle state. Equation (44) applies for both bosons and fermions, the only difference being
the symmetrization properties of the density matrix ρ̂

(2)
0 .

We consider a particle source localized atxxx = 0 and two detectors localized atxxx = LLL1 andxxx2 = LLL2, respectively. For distances
Li = |LLLi | much larger than the dimensions of the source, we can treat each particle as one dimensional, moving along the axis
connecting the source to the detector. Following the procedure of Sec. 3.1, we obtain an ideal probability distribution that
generalizes Eq. (19),

P
(2)
id (L1,t1; L2,t2) =

∫
dk1dk′

1dk2dk′
2

4π2m2

√
εk1 + εk′

1

m

√
εk2 + εk′

2

m

× e
i(k1−k′

1)L1−i(εk1 −εk′
1
)t1

e
i(k2−k′

2)L2−i(εk2 −εk′
2
)t2

ρ
(2)
0 (k1,k2; ,k′

1,k
′
2). (46)

Equation (46) can be written as

P
(2)
id (L1,t1; L2,t2) = Tr

[
ρ̂

(2)
0 �̂L1 (t1) ⊗ �̂L2 (t2)

]
, (47)

where the positive operators �̂L(t) are given by Eq. (20).
It is straightforward to express the probability density (47) in terms of a Wigner function W0(X1,X2,P1,P2) for a pair of

particles

P
(2)
id (L1,t1; L2,t2) =

∫
d2X d2P

4P 2
1 P 2

2

m2
u

[
2P1

(
L1 − X1 − t1

m
P1

)]
u

[
2P2

(
L2 − X2 − t2

m
P2

)]
W0(X1,X2,P1,P2). (48)

The corresponding moment-generating function is

Z(2)[μ1,μ2] :=
∫

dt1dt2P
(2)
id (L1,t1; L2,t2)e−iμ1t1−iμ2t2 =

〈
e−iμ1Tc1−iμ2Tc2

√
1 + μ2

1

16H 2
1

√
1 + μ2

2

16H 2
2

〉
. (49)
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The probability density (47) has to be supplemented with probabilities for the events of no detection in either detector, namely,

P
(2)
id (L1,∅; L2,t2) = Tr

[
ρ̂0�̂L1 (∅) ⊗ �̂L2 (t2)

]
, (50)

P
(2)
id (L1,t1; L2,∅) = Tr

[
ρ̂0�̂L1 (t1) ⊗ �̂L2 (∅)

]
, (51)

Prob(2)
id (L1,∅; L2,∅) = Tr

[
ρ̂0�̂L1 (∅) ⊗ �̂L2 (∅)

]
. (52)

Using Eq. (21) we obtain a relation between P (2) and P (1)∫ ∞

0
dt2P

(2)
id (L1,t1; L2,t2) + P

(2)
id (L1,t1; L2,∅) = P (1)(L1,t1). (53)

As in Sec. III A, the probabilities (50)–(52) vanish for initial states with support only on positive values of momenta. In this
case, ∫ ∞

0
dt2P

(2)
id (L1,t1; L2,t2) = P (1)(L1,t1). (54)

Equation (47) also applies for pairs of distinguishable particles. The derivation requires the use of a different field for each
type of particle; otherwise, it proceeds in exactly the same way. The differences are that (i) the initial density matrix ρ̂

(2)
0 is not

restricted to the antisymmetric or symmetric subspace of the particle’s Hilbert space and (ii) that the two particles may have
different masses.

B. Incompatibility with probability currents

The use of probability currents is the oldest, and ar-
guably the simplest, approach to the time-of-arrival problem.
The time-of-arrival probability density for a single particle
is the expectation value of a current operator Ĵ (L,t) as
〈ψ0|Ĵ (L,t)|ψ0〉 on an initial state |ψ0〉. The usual probability
current of Schrödinger’s equation corresponds to

Ĵ (L,t) = eiĤ t [p̂δ(x̂ − L) + δ(x̂ − L)p̂]e−iĤ t . (55)

This choice for Ĵ (L,t) is not satisfactory, because it does not
lead to positive-definite probabilities [27,28]. However, the
probability densities obtained from POVMs can be expressed
as operator-ordered variations of the Schrödinger current.
For example, Kijowski’s probabilities correspond to a current
operator

Ĵ (L,t) = eiĤ t |p̂|1/2δ(x̂ − L)|p̂|1/2e−iĤ t . (56)

Thus, for a single particle, approaches based on the notion
of a probability current do not lead to significantly different
predictions from the time-of-arrival POVMs. This equivalence
fails in multipartite systems. Time-of-arrival probabilities
defined in terms of probability currents should be of the form

P (1)(L,t) = 〈�0|Ĵ (L,t)|�0〉, (57)

P (2)(L1,t1; L2,t2) = 〈�0|Ĵ (L1,t1)Ĵ (L2,t2)|�0〉, (58)

for |�0〉 ∈ F some current operator Ĵ (L,t) on F . The current
operator should satisfy [Ĵ (L1,t1),Ĵ (L2,t2)] = 0, so that the
probability (58) is real valued. By “current operator” we
mean any operator on F that depends on L and t and that
defines positive-definite probabilities. When restricted to the
one-particle subspace, it should correspond to the standard
probability current, Eq. (55), modulo operator ordering.

For systems of identical particles, Eqs. (57) and (58) are
not compatible with Eqs. (19) and (52). To see this, consider
a two-particle state |�0〉. Equation (57) reproduces the single

particle distribution corresponding to a POVM �̂L(t), if it is
of the form

Ĵ (L,t) = 1
2 (�̂L(t) ⊗ 1̂ + 1̂ ⊗ �̂L(t)), (59)

where we have taken into account that any physical operator
must be invariant under exchange of the two identical particles.

Comparing Eq. (58) and Eq. (47), we obtain

Ĵ (L1,t1)Ĵ (L2,t2) = �̂L1 (t1) ⊗ �̂L2 (t2). (60)

Equations (59) and (60) are clearly incompatible. The time-
of-arrival probabilities obtained by the QTP method cannot be
expressed in terms of a probability current. In fact, any ap-
proach to the time of arrival in terms of POVMs would lead to
an equation similar to (47) when applied to composite systems.
We conclude that current-based approaches strongly disagree
with POVM-based approaches in multipartite systems.

Probabilities defined in terms of a current operator are
subject to constraints that do not apply to probabilities defined
through POVMs. To prove this, we first define the two-time
coherence function

C(2)(L1,t1; L2,t2) = P (2)(L2,t2; L1,t1)

P (1)(L1,t1)P (1)(L2,t2)
, (61)

where the probability distributions P (2)(L2,t2; L1,t1) and
P (1)(L,t) satisfy Eq. (54).

The diagonal elements of C(2) define the coincidence
function,

c(2)(L,t) := C(2)(L,t ; L,t). (62)

For c(2)(L,t) > 1 simultaneous detection is more probable
than what would be predicted if the events were statistically
independent, while for c(2)(L,t) < 1 simultaneous detection is
less probable.

For the probability densities (57) and (58), the coincidence
function satisfies

c(2)(L,t) = 〈Ĵ (L,t)2〉
〈Ĵ (L,t)〉2

� 1 +
(

�J (L,t)

〈Ĵ (L,t)〉

)2

� 1, (63)
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where �J (L,t) stands for the standard deviation of Ĵ (L,t).
Thus any measurement of the coincidence function that
violates Eq. (63) for some value of t disproves the definition of
time-of-arrival probabilities in terms of probability currents.

In Sec. IV D, we present explicit examples of coincidence
functions that violate Eq. (63) very strongly. For example,
for some fermionic quantum states, c(2)(L,t) may vanish.
These examples strongly suggest that the violation of (63)
is measurable, and so is the distinction between POVM-based
and current-based approaches to the time-of-arrival problem.

We note that the QTP method leads not only to a probability
density of the form (47), but also to the specific expression
(20) for the POVM (20). As shown above, the predictions
of the QTP method can sharply be distinguished from those
of current-based theories. The distinction from other POVM-
based approaches, for example, POVMs �̂L(t) other than (20),
is rather more difficult. It would require exploring the regime
of low momenta, as discussed in Sec. III D.

C. Nonclassical correlations

Consider a bipartite particle system described by a classical
probability density ρ0(ξ ) on a state space �. The joint
probability for two time-of-arrival measurements is of the form

P (2)(L1,t1; L2,t2) =
∫

dξ ρ0(ξ )FL1,t1 (ξ )FL2,t2 (ξ ), (64)

where FL,t are positive valued functions on �. The classical
probability density (64) is subject to constraints that do not
limit the quantum probability density (48). We shall express
some of these constraints in terms of two inequalities for the
coherence function (61).

The first constraint follows from the Cauchy-Schwartz
inequality for Eq. (58),

P (2)(L2,t2; L1,t1)

�
√

P (2)(L2,t2; L2,t2)P (2)(L1,t1; L1,t1) (65)

or, equivalently,

C(2)(L1,t1; L2,t2) �
√

c(2)(L1,t1)c(2)(L2,t2). (66)

We shall refer to Eq. (66) as the CS constraint.
The second constraint is formally identical with Eq. (63),

c(2)(L,t) =
〈
F 2

L,t

〉
〈FL,t 〉2

� 1, (67)

where here 〈. . .〉 stands for averaging with respect to ρ0.
We shall refer to Eq. (63) as the bunching condition,

meaning that the simultaneous detection of particles is en-
hanced. The condition c(2)(L,t) < 1 will be referred to as
antibunching.3 Both constraints can be violated by systems
prepared in an entangled state—some examples are provided

3We decided to use a different terminology from quantum optics,
where bunching refers to the analog of Eq. (66) (for stationary or
almost stationary states) and condition (63) is referred to as “super-
Poissonian photon statistics” [29]. Unlike photons, massive particles
do not exhibit superpositions of different particle number. Hence
notions related to the distribution of particle numbers are not useful.

in Sec. IV D. Therefore, time-of-arrival measurements define
entanglement witnesses. The relation between time of arrival,
entanglement, and other quantum resources will be elaborated
in other publications.

Here we restrict to a simple example that demonstrates
how entanglement information is encoded into time-of-arrival
correlations. For simplicity, we will consider a system of
distinguishable particles, in order to avoid subtleties in the
definition of separability in systems of identical particles. We
characterize separability using the Peres-Horodecki criterion
[30] for continuous variables [31].

We restrict to states ρ̂
(2)
0 with strictly positive momentum

content for both particles, so that the action of the operators T̂ci

is well defined. Then we define the operators T̂± = T̂c1 ± T̂c2

and Ĥ± = Ĥ1 ± Ĥ2. For any separable state, the following
inequalities hold:

�H+�T− � 1, �H−�T+ � 1. (68)

We evaluate the mean deviation of the variables, t± = t1 ±
t2, with respect to the probability distribution (48)

(�t±)2 = (�T±)2 − 1
16

〈
H−2

1 + H−2
2

〉
. (69)

Thus, for a separable initial state, the following inequalities
are satisfied:

(�t±)2 � 1

(�H∓)2
− 1

16

〈
H−2

1 + H−2
2

〉
. (70)

Conversely, if Eq. (70) is violated, the state of the system is
entangled.

We specialize to the case of an initial density matrix
that is symmetric under particle exchange. Then, (�t1)2 =
(�t2)2 = (�t)2, (�H1)2 = (�H2)2 = (�H )2, and 〈H 2

1 〉 =
〈H 2

2 〉 = 〈H 2〉. For this state, (�t±)2 = 2(�t)2 ± 2Ct1t2 and
(�H±)2 = 2(�H )2 ± 2CH1H2 , where CAB = 〈AB〉 − 〈A〉〈B〉
is the correlation function of the observables A and B. Then,
the separability conditions (70) become

(�t)2 ± Ct1t2 � 1

4[(�H )2 ∓ CH1H2 ]
− 1

16
〈H−2〉. (71)

D. Example

We evaluate the probability density (47) for states of the
form

|�0〉 = 1√
2

(|ψ1〉 ⊗ |ψ2〉 ± |ψ2〉 ⊗ |ψ1〉), (72)

for two orthogonal single-particle states |ψ1〉 and |ψ2〉. The
plus sign in Eq. (72) corresponds to bosonic and the minus
sign to fermionic particles.

We assume that |ψ1〉 has support at large momenta, so
that the corresponding single-time probability densities (41)
are indistinguishable; we assume the same for |ψ2〉. Then
we can approximate �̂L(t) with Kijowski’s POVM, so that
〈ψj |�̂L(t)|ψi〉 = ai(L,t)a∗

j (L,t), where

ai(L,t) =
∫

dk√
2πm

√
|k|eikL−iεk t ψ̃i(k). (73)
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Then, we obtain

P
(1)
id (L,t) = 1

2 [|a1(L1,t1)|2 + |a2(L2,t2)|2], (74)

P
(2)
id (L1,t1; L2,t2)

= 1
2 {|a1(L1,t1)a2(L2,t2)|2 + |a1(L2,t2)a2(L1,t1)|2
± 2 Re[a1(L1,t1)a∗

2 (L1,t1)a2(L2,t2)a∗
1 (L2,t2)]}, (75)

The coincidence function c(2)(L,t) vanishes identically for
fermions. Equation (67) is thus violated: fermions exhibit
antibunching behavior at all times.

For bosons,

c(2)(L,t) = 8|a1(L,t)a2(L,t)|2
[|a1(L,t)|2 + |a2(L,t)|2]2

. (76)

Plots of c(2)(L,t) are given in Fig. 1 for a specific choice of
initial states. Bosons exhibit either bunching or antibunching
behavior at different times. Figure 1 also demonstrates that
the coincidence function contains information that is not
accessible from single time-of-arrival measurements.

We consider the special case of a probability current
operator J (L,t) of the form (59). We can always choose the
positive operators �̂L(t) so that the single time probabilities
P (1)(L,t) are the same in the POVM and in the probability
current description. For example, we can choose �̂L(t) to be
Kijowski’s POVM so that the current operator is a operator-

ordered variation of the Schrödinger current operator. Thus the
only difference lies in the value of the coincidence function.
We obtain

c
(2)
J (L,t) = 1

2
c

(2)
� (L,t) + 〈ψ1|�̂L(t)2|ψ1〉 + 〈ψ2|�̂L(t)2|ψ2〉

〈ψ1|�̂L(t)|ψ1〉2 + 〈ψ1|�̂L(t)|ψ1〉2
,

(77)

where c
(2)
J (L,t) is the coherence function for the probability

current operator and c
(2)
� (L,t) is the coherence function

evaluated in terms of the POVM as above. The key observation
is that the second term in the right-hand side (RHS) of Eq. (77)
is always larger than unity since 〈�̂L(t)2〉 � 〈�̂L(t)〉2. Since
c

(2)
� (L,t) � 0, the second term guarantees that c

(2)
J (L,t) is

always larger than unity. We note that the term 〈�̂L(t)2〉
diverges if �̂L(t) is Kijowski’s POVM, so a proper definition
of the current operator would require appropriate smearing.

The CS constraint (66) is always violated for fermions,
since c(2)(L,t) = 0 even when the coherence func-
tion C(2)(L1,t1; L2,t2) is nonzero. In Fig. 2, we plot
C(2)(L1,t1; L2,t2) for a specific choice of initial state. The
coherence function is characterized by oscillations, with a
characteristic frequency of the order of |Ē1 − Ē2|, where Ēi

is the mean energy of the state |ψi〉. Whether such oscillations
are observable or not depends on the scale σ of temporal coarse
graining. The probability density (46) is a special case of the

FIG. 1. Single-time probability densities and coincidence functions for an initial state of the type (72), where ψi(x) = φ(x − xi)eipix ,
for some constants xi,pi,i = 1,2. We choose for φ(x) a Gaussian φ(x) = (2πσ 2

x )−1/4exp[−x2/(4σ 2
X)]. For |x2 − x1|  σX , ψ1 and ψ2 are

orthogonal. The mean time of arrival for each wave packet is t̄i = m(L − xi)/pi . We have chosen L/σX = 1000, p1σX = 100, p2σX = 110.
In plots (i) and (ii), t̄1 = t̄2. The superposition cannot be identified at the level of the probability density P

(1)
id (L,t) of plot (i). Plot (ii) describes

the coincidence function c(2)(L,t) as a function of t/(mσ 2
X) for bosons. Bunching or antibunching behavior is time dependent. Plots (iii) and

(iv) are the same as (i) and (ii) only with t̄1 = 0.99t̄2. There are two distinguishable peaks in the probability density, and the peak in c(2)(L,t) is
much lower and narrower.
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FIG. 2. Coherence function C(2)(L,t1; L,t2) for an initial
fermionic state of the type (72), where ψi(x) = φ(x − xi)e−pix , for
some constants xi,pi,i = 1,2; φ(x) is the same Gaussian as in Fig. 1.
We have chosen L/σX = 1000, p1σX = 100, p2σX = 102, and xi so
that the mean times of arrival of each wave packet have the same value
t̄ . In the plot, we fix t1 = t̄ , and vary t2 using dimensionless units.

probability density (12). This implies that smearing at a scale
of σ is required in order to obtain the observable probabilities
(11). Hence the oscillations of C(2)(L1,t1; L2,t2) are observable
only if |Ē1 − Ē2|σ is at most of order unity.

For bosons, we evaluate the ratio

h(t1,t2) =
√

c(2)(L,t1)c(2)(L,t2)

C(2)(L1,t1; L2,t2)
, (78)

which is larger than unity when the CS constraint is satisfied.
In Fig. 3, h(t1,t2) is evaluated for a specific initial state. It takes
values both larger and smaller than unity, so the CS constraint
is violated also for bosons.

V. SEQUENTIAL TIME-OF-ARRIVAL MEASUREMENTS

In this section, we consider two successive time-of-arrival
measurements on the same particle. We find how the quantum
state changes after a time-of-arrival measurement and we
construct the probabilities for the time-of-flight velocity.

FIG. 3. Ratio h(t1,t2), Eq. (78), evaluated for a bosonic initial
state of the form (72), for the same ψi(x) with Fig. 2. Both wave
packets ψi(x) have the same mean time of arrival t̄ . In the plot, we
fix t1 = t̄ , and vary t2 using dimensionless units.

A. Probability assignment

Two successive measurements can be performed on a single
particle only if the first measurement does not annihilate the
particle. In the QTP method, this implies that the composite
operator Ŷ1(xxx) of Eq. (10) must describe particle scattering
rather than absorption, i.e., Ŷ1(xxx) = ψ̂†(xxx)ψ̂(xxx). There is no
constraint for the second measurement, so we take Ŷ2(xxx) =
ψ̂(xxx), as in Secs. III and IV.

Equation (10) for a one-particle initial state |�0〉 =∫
d3k ψ0(kkk)â†

kkk|0〉 yields

P
(2)
f.g(LLL1,t1;LLL2,t2)

= C

∫
d3k1d

3k2d
3k′

1d
3k′

2

(2π )9
g̃1

(
εkkk1 − εkkk2 + εkkk′

1
− εkkk′

2

2

)

× g̃2

(
εkkk2 + εkkk′

2

2

)
e
i(kkk2−kkk′

2)·LLL2−i(εkkk2 −ε′
kkk2

)t2

× e
i(kkk1−kkk2−kkk′

1+kkk′
2)·LLL1−i(εkkk1 −εkkk2 −εkkk′

1
+εkkk′

2
)t1

ψ̃0(kkk′
1)ψ̃0(kkk1), (79)

where g̃i are the Fourier transforms of the functions gi .
In general, the particle can scatter towards any direction

after the first measurement. We restrict to propagation along
the axis connecting the source to the locus LLL1 of the first
detector, and then along the axis LLL2 − LLL1 connecting the loci
of the two apparatuses. The assumption that LLL1 and LLL2 are
parallel incurs no loss of generality and allows us to use a
notation for a one-dimensional problem.

For an initial state with positive momentum, Eq. (79)
becomes

P
(2)
f.g(L1,t1; L2,t2)

= C

∫
dk1dk2dk′

1dk′
2

(2π )3
θ (k2)θ (k′

2)

× g̃1

(
εk1 − εk2 + εk′

1
− εk′

2

2

)
g̃2

(
εk2 + εk′

2

2

)

× e
i(k1−k2−k′

1+k′
2)L1−i(εk1 −εk2 −εk′

1
+εk′

2
)t1

× e
i(k2−k′

2)L2−i(εk2 −εk′
2
)t2

ψ̃∗
0 (k′

1)ψ̃0(k1). (80)

We have restricted the integration to positive values of k2

and k′
2, since particles exiting the first detector with negative

momenta will not be recorded by the second detector.4

The probability densities (80) are strongly suppressed if
t1 < 0 or if t2 < t1. Hence the total probability Prob(L1,L2)
that two detection events have occurred is well approximated

4The positivity of k2 and k′
2 is not an additional assumption. We

phrased it as such because in this paper we ignore position coarse-
graining—we employ the approximation (A11) in Appendix (A2).
Suppose we smear Eq. (80) with respect to the position L1. If the
smearing length is sufficiently large, a δ function δ(k1 − k2 − k′

1 + k′
2)

appears. Together with the constraints to the energies from g̃1, it
guarantees the positivity of k2 and k′

2. The particle does not backscatter
as a result of the first time-of-arrival measurement.
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by integrating P
(2)
f.g along the whole real axis for both t1 and t2.

Then,

Prob(L1,L2) :=
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2P

(2)
f.g(L1,t1; L2,t2)

= Cm2
∫

dk1dk2

2π |k1k2| g̃1(εk1 − εk2 )

× g̃2(εk2 )θ (k2)|ψ̃0(k1)|2. (81)

Equation (81) implies that (i) g̃2(εk)/|k| is the absorption
coefficient of the second detector and (ii) 1

|k1| g̃1(εk1 − εk2 ) is
the probability that an incoming particle of momentum k1 is
scattered to a different momentum k2.

We consider ideal detectors. For the first detector, the
idealization consists in the assumption that energy transfer
during scattering is negligible. For the second detector, the
idealization is the same with Sec. III A, i.e., we assume
that particle absorption in the second detector is independent
of the particle’s momentum. These conditions imply that
g̃1(εk − εk′) ∼ εkδ(εk − εk′) and that g2(ε) ∼ √

ε. Choosing
the constant C so that Prob(L1,L2) = 1, we obtain the ideal
probability distribution

P
(2)
id (L1,t1; L2,t2)

=
∫

dk1dk2dk′
1dk′

2

2π2

(
εk1 + εk′

1

m

)3/2

θ (k2)θ (k′
2)

×δ(εk1 − εk2 + εk′
1
− εk′

2
)ei(k2−k′

2)L2−i(εk2 −εk′
2
)t2

× e
i(k1−k2−k′

1+k′
2)L1−i(εk1 −εk2 −εk′

1
+εk′

2
)t1

ψ̃∗
0 (k′

1)ψ̃0(k1). (82)

Equation (82) does not have the standard form of probability
densities for sequential measurements. If the observable A

corresponding to a POVM Ê(a) is measured first, and the
observable B corresponding to a POVM F̂ (b) is measured
second, the joint probability density is

P (a,b) = Tr[ρ̂0

√
Ê(a)F̂ (b)

√
Ê(a)], (83)

where ρ̂0 is the initial state. Equation (82) cannot be brought
in the form (83). This is not surprising since the two measure-
ments in Eq. (83) take place at fixed time instants, while time
is a random variable in time-of-arrival measurements.

B. Marginal distributions

The two marginal distributions of the probability density
(82) have different properties. When tracing out the time
t2 of the second measurement, we recover the probability
distribution P

(1)
id (L1,t1) of Eq. (19),

∫ ∞

−∞
dt2P

(2)
id (L1,t1; L2,t2) = P

(1)
id (L1,t1). (84)

By causality, the second measurement cannot affect the
statistics of the first one.

However, when tracing out the time t1 of the first measure-
ment, we obtain a probability distribution that differs from

P
(1)
id (L2,t2), ∫ ∞

−∞
dt1P

(2)
id (L1,t1; L2,t2)

=
∫

dk dk′

2π

√
m(εk + εk′)3/2

|kk′|
× ei(k−k′)L2−i(εk−εk′ )t2ψ̃∗

0 (k′)ψ̃0(k). (85)

The marginal distribution (85) is of the form (41) for

η(x) =
(
1 + x2

16

)3/2

1 − x2

16

. (86)

Equation (85) implies that the first measurement has trans-
formed the initial state ρ̂0 as

ρ̂0 → (p̂ρ̂0p̂
−1 + p̂−1ρ̂0p̂). (87)

In order to find the analog of the state reduction for a time-
of-arrival measurement, we write Eq. (82) as

P
(2)
id (L1,t1; L2,t2)

=
∫

dk dk′

2π

√
εk + εk′

m

× ei(k−k′)(L2−L1)−i(εk−εk′ )(t2−t1)ρ
(red)
L1,t1

(k,k′), (88)

where

ρ
(red)
L,t (k,k′) = εk + ε′

k

m

∫
dk1dk′

1

π
δ(εk + εk′ − εk1 − εk′

1
)

× e
i(k1−k′

1)L−i(εk1 −εk′
1

)t
ρ0(k,k′)

= εk + εk′

πm

∫ ∞

−∞
ds eis(εk+εk′ )

×〈L|eiĤ (t+s)ρ̂0e
−iĤ (t−s)|L〉. (89)

Thus a measurement by a detector at L that records the value
t changes the state of the system, by a generalized “state
reduction” rule,

ρ̂0 → ρ̂
(red)
L,t = 1

πm

∫ ∞

−∞
ds〈L|eiĤ (t+s)ρ̂0e

−iĤ (t−s)|L〉

× [
Ĥ |s〉〈−s| + |s〉〈−s|Ĥ ]

, (90)

where |s〉 = ∫ ∞
0 dk eisεk |k〉.

Obviously, the rule (90) is very different from the standard
rule of quantum state reduction. This is not surprising, because
a time-of-arrival measurement refers to a fixed point in space
and variable time, in contrast to the usual reduction rule that
refers to a fixed instant of time. We note that the transformation
(90) is constructed solely from the Hamiltonian Ĥ and the
generalized eigenstates of the position operator.

C. Classical correspondence

We rewrite Eq. (82) as

P
(2)
id (L1,t1; L2,t2) =

∫
dk dk′ψ∗

0 (k′)ψ0(k)〈k|�̂L1

× (t1)|k′〉F (εk + εk′,L2 − L1,t2 − t1),

(91)
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where 〈k|�̂L1 (t)|k′〉 is given by Eq. (20) and

F (E,�,τ ) = 2E

πm

∫ ∞

0
dk

∫ ∞

0
dk′ei(k−k′)�−i(εk−εk′ )τ

× δ(εk + εk′ − E). (92)

The Fourier transform of the function F with respect to τ is
readily evaluated,

F̃ (E,�,μ) :=
∫

dτ e−iμτF (ε,�,τ )

=
⎧⎨
⎩

E√
E2−μ2

ei
√

m(E−μ)�−√
m(E+μ)�, μ� E

0, μ> E

. (93)

In Appendix B 2, we obtain an analytic expression for the
function F , using a stationary phase approximation to the
inverse Fourier transform of F̃ . Here, we note that, for |μ| 	
E, F̃ (E,�,μ) 
 e−i

√
m/E�μ. Hence, for sufficiently large times

(Eτ  1), F approximates a δ function,

F (E,�,τ ) 
 δ

(
τ −

√
m

E
�

)
. (94)

Transforming Eq. (91) into the Wigner picture, we obtain

P
(2)
id (L1,t1; L2,t2) =

∫
dX dP W0(X,P )

×
(

1

2πm

∫
dξ eiξ (L1−X− P

m
t1)

√
P 2 + ξ 2

4

× F

(
P 2

m
+ ξ 2

4m
,L2 − L1,t2 − t1

))
.

(95)

An inspection of Eq. (24) shows that the classical time-
of-arrival probability distribution corresponds to the limit
|ξ | 	 |P | in the integral. This is the same regime in which
Eq. (94) applies. Approximating P 2 + ξ 2/4 
 P 2 and using
Eq. (94), we obtain the classical probability distribution for
two successive time-of-arrival measurements

P
(2)
cl (L1,t1; L2,t2) =

∫
dX dP W0(X,P )δ(t1 − Tc1)

× δ(t2 − t1 − Tc2 + Tc1), (96)

where

Tci = m
Li − X

P
. (97)

D. Time-of-flight velocity

Next, we define the probability density P (τ ) for the time-
of-flight τ = t2 − t1 between the two measurements

P (τ ) :=
∫

dt P
(2)
id (L1,t ; L2,t + τ )

=
∫

dk|ψ̃0(k)|2F (2εk,L2 − L1,τ ). (98)

We use the term “time of flight” as distinct from the term
“time of arrival.” The time of arrival refers to one measurement

record on a single detector, while the time of flight requires
two measurement records at spatially separated detectors.

The time of flight τ and the time t1 of the first measurement
are uncorrelated: the correlation function Ct1τ , calculated from
Eq. (91), vanishes.

Equation (98) implies that the time of flight can be repre-
sented by an operator τ̂ that is a function of the momentum p̂:
τ̂ = τf (|p̂|), where

τf (p) =
∫ ∞

0
ds s F

(
p2

m
,L2 − L1,s

)
. (99)

We also define the time-of-flight velocity

vtof(p) := L2 − L1

τf (p)
. (100)

In the regime where Eq. (94) applies, Eq. (99) yields
τf (p) = m(L2 − L1)/p. Hence

vtof(p) = p

m
, (101)

i.e., the time-of-flight velocity coincides with the canonical
velocity p/m. This result agrees with the classic analysis of
Park and Margenau [32], even though the context is slightly
different. The difference is that the time-of-flight velocity is
defined here in terms of two measurements of time at specific
locations, while in Park and Margenau’s work, the time-of-
flight velocity is defined in terms of two position measurements
at prespecified times.

In general, probabilities associated to velocity differ from
the probabilities associated to momentum. This is because mo-
mentum and velocity are defined differently in any histories-
based theory [11]. This difference is manifested in temporally
extended measurements. For example, in time-extended von
Neumann measurements, velocity and momentum correspond
to different Hamiltonian operators for the interaction between
the quantum system and the measurement apparatus [33].

This difference turns out to be insignificant for time-of-
flight velocities. The evaluation of (100) using the approxima-
tion (B11) of Appendix B 2 yields appreciable differences from
Eq. (101) only for (L2 − L1)p 	 1, i.e., when the distance
between the detectors is much smaller than the de Broglie
wavelength of the particles.

VI. CONCLUSIONS

The main result of this paper is the construction of time-of-
arrival probabilities for multipartite systems and for sequential
measurements. This was made possible by the use of the QTP
method, in which the relevant probabilities are constructed as
linear functionals of appropriate field correlation functions.
The method can be straightforwardly generalized to setups
more elaborate than the ones considered here, involving three
or more detection events.

When the time-of-arrival problem is formulated in terms of
a single particle and a single detector, all approaches lead to
almost indistinguishable predictions. In multipartite systems,
this is no longer the case. Approaches to the time of arrival
based on probability currents lead to quantitatively different
predictions from those based on POVMs. Therefore, we
propose that measurements of time-of-arrival correlations in
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multipartite systems can distinguish between different theories
about the time of arrival. In particular, the QTP method
makes a specific prediction about the time-of-arrival POVM
in multipartite systems.

Besides the main result above, we also showed that the
time-of-arrival correlations can play the role of entanglement
witness in multipartite systems. This result suggests that
temporal observables can be used for the retrieval of quantum
information and might even be employed in quantum informa-
tion processing. We also derived the probability distribution
associated to sequential time-of-arrival measurements, and
we found that the state-reduction rule for a time-of-arrival
measurement is very different from the standard one.

APPENDIX A: QUANTUM TEMPORAL
PROBABILITIES METHOD

1. General probability assignment

We consider a composite physical system that consists of a
microscopic and a macroscopic component. The microscopic
component is the quantum system to be measured and the
macroscopic component is the measuring device.

We denote the Hilbert space associated to the composite
system by H. We describe a measurement event as a transition
between two complementary subspaces of H. To this end,
we split H in two subspaces: H = H+ ⊕ H−. The subspace
H+ describes the accessible states of the system given that
the event under consideration is realized. For example, if the
event is a detection of a microscopic particle by an apparatus,
H+ corresponds to all states of the apparatus compatible
with the macroscopic record of detection. We denote the
projection operator onto H+ as P̂ and the projector onto H−
as Q̂ := 1 − P̂ . We assume that the system is described by a
Hamiltonian operator Ĥ .

In Refs. [4,10], we constructed the probability density with
respect to time that is associated to the transition of the system
from H− to H+. A pointer variable λ of the measurement
apparatus was also assumed to take a definite value after the
transition has occurred. It is described by a set of positive
operators �̂(λ) that correspond to the different values of λ.
The operators �̂(λ) satisfy

∑
λ �̂(λ) = P̂ .

First, we construct the probability amplitude |ψ ; λ,[t1,t2]〉
that, given an initial (t = 0) state |ψ0〉 ∈ H−, a transition
occurs during the time interval [t1,t2] and a value λ for
the pointer variable is obtained for some observable. For a
vanishingly small time interval, i.e., t1 = t and t2 = t + δt ,
one obtains [4]

|ψ0; λ,[t,t + δt]〉 = −i δt e−iĤ (T −t)
√

�̂(λ)Ĥ Ŝt |ψ0〉, (A1)

where Ŝt = limN→∞(Q̂ e−iĤ t/NQ̂)N is the restricted propaga-
tor in the subspace H−.

The amplitude (A1) defines a density with respect
to time: |ψ0; λ,t〉 = −i e−iĤT Ĉ(λ,t)|ψ0〉, where Ĉ(λ,t) :=
eiĤ t

√
�̂(λ)Ĥ Ŝt is a history operator. The total amplitude that

the transition occurred at some moment within a time interval
[t1,t2] is

|ψ ; λ,[t1,t2]〉 = −i e−iĤT

∫ t2

t1

dt Ĉ(λ,t)|ψ0〉. (A2)

Equation (A2) involves the restricted propagator Ŝt which
may be difficult to evaluate in practice. We sidestep the
evaluation of Ŝt , by using the following approximation. We
consider a Hamiltonian Ĥ = Ĥ0 + ĤI where [Ĥ0,P̂ ] = 0,
and HI is a perturbing interaction. To leading order in the
interaction,

Ĉ(λ,t) = eiĤ0t
√

�̂(λ)ĤI e
−iĤ0t , (A3)

with no dependence on Ŝt . All models for relativistic mea-
surements we consider in this paper use the approximation
(A3).

We construct a probability measure from the amplitude (A2)
by coarse-graining the time variable [4,10]. This is a natural
procedure for systems that involve a macroscopic component
such as a measuring apparatus [13,34]. Hence probabilities are
defined only for time intervals ]t1,t2] such that |t2 − t1|  σ ,
where σ is the coarse-graining scale.

We implement temporal coarse-graining by defining
smeared history operators, Ĉf (λ,t) = ∫

ds
√

f (t − s)Ĉ(λ,s).
The function f (s) is positive, it is centered around s = 0, and
has width of order σ , like, for example, the Gaussian (5).
The probability density that a transition occurs during the time
interval [t1,t2] and a value λ for the pointer variable is obtained
is

P (λ,t) = Tr[Ĉf (λ,t)ρ̂0Ĉ
†
f (λ,t)], (A4)

where ρ̂0 = |ψ0〉〈ψ0|.
An analogous equation holds for multiple events. The

probability density that one event associated to a measurement
record λ1 occurs at time t1 and another event associated to a
measurement record λ2 occurs at time t2 is

P (λ1,t1; λ2,t2) = Tr
[
Ĉf1,f2 (λ1,t1,λ2,t2)ρ̂0Ĉf1,f2 (λ1,t1,λ2,t2)

]
,

(A5)

where

Ĉf1,f2 (λ1,t1,λ2,t2) =
∫

ds1ds2f1(t1 − s1)f2(t2 − s2)

× Ĉ(λ1,t1,λ2,t2) (A6)

is the smeared form of the amplitude operator

Ĉ(λ1,t1,λ2,t2) = T [Ĉ2(λ2,t2)Ĉ1(λ1,t1)], (A7)

where T is the standard time-ordering operator and Ĉi(λi,ti)
are the class operators (A3) for the ith event.

2. Time-of-arrival probabilities

Next, we specialize to time-of-arrival measurements. In this
case, the measured quantum system consists of free particles
and the records of observation λ are identified with the location
LLL of a particle detector.

Let F be the Hilbert space associated to the particles. For
treating multiparticle states, it is convenient to identify F with
a Fock space, either bosonic or fermionic. Hence F carries
either a representation of the canonical commutation relations
(1), or of the canonical anticommutation relations (2). We will
denote the Hamiltonian on F by ĥ and the initial state of the
field by |�0〉. Ignoring spin and internal degrees of freedom,
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and restricting to nonrelativistic particles, the field operators
on F are defined by Eq. (3).

We assign a Hilbert space Ki to each detector. Thus, for a
single detection event, the Hilbert space of the total system is
H1 = F ⊗ K1 and for two detection events the Hilbert space
of the total system is H2 = F ⊗ K1 ⊗ K2. We will denote the
initial state of each detector as |�(i)

0 〉.
We make the common assumption in von Neumann mea-

surements that the self-dynamics of the detector is negligible.
This implies that the unperturbed Hamiltonian Ĥ0 is ĥ ⊗ 1̂
on H1 and Ĥ0 = ĥ ⊗ 1̂ ⊗ 1̂ on H2. We assume a local
Hamiltonian governing the interaction between the particles
and the detector of the form ĤI = ∫

d3x Ŷa(xxx) ⊗ J a(xxx), where
Ŷa are composite operators on F and Ĵ a(xxx) are current
operators on the Hilbert space of the detector.

Two cases are of particular interest.
(1) An interaction Hamiltonian linear with respect to the

fields

ĤI =
∫

d3x[ψ(xxx) ⊗ Ĵ (xxx) + ψ̂†(xxx) ⊗ Ĵ †(xxx)]. (A8)

This Hamiltonian corresponds to detection by particle absorp-
tion. In order to avoid spurious signals in the detector, it is
necessary to assume that the initial state |�0〉 of the apparatus
satisfies Ĵ †|�0〉 = 0. Hence Ŷ effectively coincides with ψ(xxx).

(2) An interaction Hamiltonian ĤI = ∫
d3x ψ̂†(xxx)ψ̂(xxx) ⊗

Ĵ (xxx) that is quadratic to the fields corresponds to the scattering
of the detected particle. The associated composite operator
Ŷ (xxx) is the particle density ψ̂†(xxx)ψ̂(xxx).

The interaction Hamiltonian of the two-detector system is

ĤI =
∫

d3x(Ŷ1(xxx) ⊗ Ĵ1(xxx) ⊗ 1̂ + Ŷ2(xxx) ⊗ 1̂ ⊗ Ĵ2(xxx)). (A9)

The detectors are assumed to be static and localized in position.
Thus a detection event corresponds to a position pointer
variable LLL, described by positive operators P̂LLL on the Hilbert
space K of the detector. This implies that the positive operator
�̂λ in Eq. (A3) is 1̂ ⊗ P̂LLL on H2.

Assuming an initial state |�0〉 ∈ F for the particles and an
initial state |�0〉 ∈ K1 for the detector, Eq. (A3) yields

P (LLL,t) =
∫

ds ds ′√f (t − s)f (t − s ′)

×
∫

d3x d3x ′〈�0|Y †(xxx ′,s ′)Ŷ (xxx,s)|�0〉

× 〈�0|Ĵ †(xxx ′)P̂LLLĴ (xxx)|�0〉. (A10)

If the distance between the particle source from the detector
is much larger than the size of the detector, P̂LLLĴ (xxx)|�0〉
vanishes unless LLL 
 xxx. Ignoring position coarse-graining, we
can approximate

〈�0|Ĵ †(xxx ′)P̂LLLĴ (xxx)|�0〉 = Cδ3(xxx − LLL)δ3(xxx − LLL), (A11)

for some positive constant C. Hence Eq. (A10) gives Eq. (4).
Using the same procedure, one obtains Eq. (10) from Eq. (A5).

FIG. 4. Graph of the function ζε(s) of Eq. (B4) for ε = 10−5.

APPENDIX B: FUNCTIONS THAT APPEAR
IN PROBABILITY DISTRIBUTIONS

1. Distribution u(s), Eq. (25)

The integral u(s), Eq. (25), defines a probability distribution
that is singular at s = 0, and it is characterized by a moment-
generating functional

z(μ) :=
∫

ds u(s)eiμs =
√

1 + μ2. (B1)

The moments of u(s) are obtained from the differentiation of
z(μ) at μ = 0,∫

ds snu(s)

=

⎧⎪⎨
⎪⎩

1
2k , n = 2k, k = 0,1,2,
1×3×···×(2k−3)

2k , n = 2k, k = 3,4, . . . ,

0, n = 2k + 1, k = 0,1,2, . . . .

(B2)

The distribution u(s) is best characterized as

u(s) = d

ds
ζ (s), (B3)

where ζ (s) is the weak limit of the family of functions

ζε(s) = 1

π

∫ ∞

0
dk

sin ks

k

√
1 + k2e−kε, (B4)

as ε → 0. (See Fig. 4.)
For large values of |s|, the dominant contribution to the

integral (B4) is

1

π

∫ ∞

0
dk

sin ks

k
,

which has a finite value 1
2 sgn(s). Hence ζ (s) 
 θ (s) − 1

2 ,
where θ (s) is the Heaviside step function. This approximation
justifies the substitution of u(s) with a δ function, since
δ(s) = d

ds
θ (s).

For s around zero,

ζε(s) 
 1

π

∫ ∞

0
dk sin ks e−kε = 1

π

s

s2 + ε2
. (B5)

Equation (B5) implies that, in the vicinity of s = 0, ζ

approaches the distribution PV 1
s
, where PV stands for the

Cauchy principal value.
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The distribution ζ (s) decreases everywhere with s except
for the infinite jump from −∞ to ∞ at s = 0. Even if u(s) <

0 everywhere but s = 0, the positive contribution from the
infinite jump dominates over the negative values so that the
moments (B2) turn out to be positive. However, the integral∫ ∞
−∞ ds u(s)f (s) is negative for any smooth positive function

f (s) that vanishes in an open neighborhood of s = 0.
Regarding the role of u(s) in the probability density (24), we

note the following. If Eq. (24) involved a classical probability
distribution rather than a Wigner function, the probabilities
Eq. (24) could become negative. A classical probability
distribution can have support on a bounded region U of the
(X,P ) plane, so that the argument of u in Eq. (24) cannot
become zero for (X,P ) ∈ U . However, unlike a classical
probability distribution, a Wigner function cannot be sharply
localized in a bounded region. Since the argument of u in
Eq. (24) involves both X and P , it will always cross s = 0,
even if s = 0 corresponds to a tail of the Wigner function.
Hence the densities (24) are positive for Wigner functions, but
they can be negative for classical probability distributions that
are not Wigner functions of some quantum state.

2. Function F(E,�,τ ), Eq. (92)

We compute F (E,�,τ ) by evaluating the inverse Fourier
transform of Eq. (93). Setting x = μ/E, we find

F (E,�,τ ) = E

2π

∫ 1

−1

dx√
1 − x2

ei(Eτ )S(x), (B6)

where

S(x) = x − γ (
√

1 + x − √
1 − x), (B7)

for

γ =
√

m

E

�

τ
. (B8)

For γ < 1, the function S(x) has two critical points at x = ±x0,
where

x0 =
√

1 − γ 2

4
(1 +

√
1 + 8/γ 2). (B9)

For γ > 1, there are no critical points.
We evaluate the integral in Eq. (B6), using the stationary

phase method, to obtain

F (E,�,τ ) =
√

2E

πB(γ )τ
cos

[
A(γ )Eτ − π

4

]
, (B10)

for γ � 1. We used the notation A(γ ) = S(x0) and B(γ ) =
|S ′′(x0)|(1 − x2

0 ). For γ > 1, F is strongly suppressed. Within
the domain of validity if Eq. (B10), we can set F (E,�,τ ) = 0.

For γ close to 1, x0 

√

4
3 (1 − γ ), and B(γ ) 


√
3
4 (1 − γ ).

Hence F (E,�,τ ) is sharply peaked at γ = 1. When evaluating
integrals of the form

∫ ∞
0 dτ F (E,�,τ )g(τ ) for some positive

function τ , only values of γ close to unity contribute
significantly. In this case, the critical points of S(x) are close
to zero, so we are justified in expanding S(x) around x = 0.
The lowest order in the expansion leads to the classical limit,
Eq. (94). Keeping terms up to the next order, we approximate

F (E,�,τ ) 
 E

2π

∫ ∞

−∞
dx eiEτ [x−γ (x+ 1

8 x3)]

= D Ai[−D(τ −
√

m/E�)], (B11)

where Ai is the Airy function and D = 2( E5

9m�2 )
1/6

.
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