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Activation of monogamy in nonlocality using local contextuality
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A unified view of the phenomenon of monogamy exhibited by Bell inequalities and noncontextuality
inequalities arising from the no-signaling and no-disturbance principles is presented using the graph-theoretic
method introduced by Ramanathan et al. [Phys. Rev. Lett. 109, 050404 (2012)]. We propose a hitherto unexplored
tradeoff relation, namely, Bell inequalities that do not exhibit monogamy features of their own can be activated
to be monogamous by the addition of a local contextuality term. This is illustrated by means of the well-known
I3322 inequality and reveals a resource trade-off between bipartite correlations and the local purity of a single
system. In the derivation of no-signaling monogamies, we uncover a unique feature, namely, that two-party
Bell expressions that are trivially classically saturated can become nontrivial upon the addition of an expression
involving a third party with a single measurement input.
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I. INTRODUCTION

The Bell theorem [1] and the Kochen-Specker theorem
[2] are cornerstone results in the foundation of quantum
mechanics. While the Bell theorem demonstrates that local
hidden variable theories are incompatible with the statistical
predictions of quantum mechanics, the Kochen-Specker (KS)
theorem demonstrates the incompatibility of quantum theory
with the assumption of outcome noncontextuality when de-
scribing systems with more than two distinguishable states. In
other words, the KS theorem shows that there are quantum
measurements whose outcomes cannot be predefined in a
noncontextual manner, i.e., independent of the measurement’s
context (the choice of jointly measurable tests that may be per-
formed together). However, Bell’s theorem can be interpreted
as a specific case of this feature where the measurement’s
context is remote.

The nonlocal correlations between spatially separated
systems that lead to the violation of the well-known Clauser-
Horne-Shimony-Holt (CHSH) inequality [3] exhibit the phe-
nomenon of monogamy [4]. In particular, it was proved by
Toner in [4] that in a Bell experiment with three spatially
separated parties Alice, Bob, and Charlie, when Alice and
Bob observe a violation of the CHSH inequality between their
systems, the no-signaling principle imposes that Alice and
Charlie cannot at the same time observe a violation of the
inequality. This feature of nonlocal correlations reflects the
monogamy of entanglement in the underlying quantum state
used in the Bell experiment and is significant in cryptographic
scenarios [5,6] where Alice and Bob can verify a sufficient
Bell violation to guarantee that their systems are not much
correlated with any eavesdropper’s system. In fact, such a
trade-off in the nonlocal correlations can be seen for every
Bell inequality [7]. Other (stricter) no-signaling monogamy
relations for specific classes of Bell inequalities have also been
discovered [8–11].

A general constraint analogous to no-signaling is also
imposed in a single-system-contextuality scenario. This is
the no-disturbance principle [12], which is a consistency
constraint that the probability distribution observed for the out-
come of the measurement of any observable is independent of
which set of other (co-measurable) observables it is measured

alongside. It was shown in [12] that this constraint also imposes
a trade-off in the violations of noncontextuality inequalities
on a single system, the simplest of these inequalities being
the Klyachko-Can-Binicoglu-Shumovsky (KCBS) inequality
[13]. Recently, the phenomenon of monogamy between the
nonlocal correlations and the single-system contextuality has
been pointed out by Kurzynski et al. [14] and has been
experimentally verified [15]. In particular, any violation of the
CHSH inequality between Alice’s and Bob’s systems implies
that locally Alice’s system alone does not exhibit a violation
of the KCBS inequality and vice versa.

In this Rapid Communication we first outline a suffi-
cient condition to derive no-signaling and no-disturbance
monogamies using a graph-theoretic method, while showing
that this condition is not also necessary by means of a
counterexample. This method allows us to derive hitherto un-
explored monogamy relations. For instance, we show any two
cycle inequalities for any length of the cycle, whether studied
as noncontextuality [16,17] or Bell inequalities [18], exhibit a
monogamy relation in both contextual and nonlocal scenarios
under certain conditions. Then we proceed to our main result
that a nonmonogamous Bell inequality can be activated to
be monogamous by the addition of a local (state-dependent)
noncontextuality inequality. Such a monogamy relation, which
we illustrate via the well-known I3322 Bell inequality, reveals a
resource trade-off between bipartite correlations and the local
purity of a single system. This is a theory-independent non-
locality analog of the well-known Coffman-Kundu-Wootters
trade-off [19] for entanglement. Finally, in investigating
methods for the derivation of no-signaling monogamies, we
uncover the feature that Bell expressions that are trivially
satisfied by a classical Alice and Bob system can give rise to
no-signaling violations upon the addition of a third party with
a single measurement input. We explore this counterintuitive
feature by means of an explicit example.

II. GRAPH-THEORETIC METHOD TO DERIVE
MONOGAMY RELATIONS

Let us first state and explain the graph-theoretic method to
derive general monogamy relations for both noncontextuality
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and Bell inequalities [12]. All the observables {A1, . . . ,An}
that appear in the combined Bell and contextuality experiment
are represented by means of a commutation graph G that
is constructed as follows. Each vertex of G represents an
observable and two vertices are connected by an edge if the
corresponding observables can be measured together. Notice
that in the commutation graph each clique represents a context,
i.e., a jointly measurable system of observables.

A graph is said to be chordal if all cycles of length 4 or
more in the graph have a chord, i.e., an edge connecting
two nonadjacent vertices in the cycle. As explained in the
Supplemental Material, chordal graphs are known to have
equivalent characterizations in terms of admitting a maximal
clique tree as well as having a simplicial elimination scheme
[20]. The importance of chordal commutation graphs comes
from the following proposition [12] stating that a set of
observables admits a joint probability distribution for its
outcomes when its corresponding commutation graph is
chordal. This statement can be seen as the generalization of the
statement by Fine [21] showing that tree graphs admit a joint
probability distribution. A similar statement in the context of
relational databases was proven in [22]. For completeness,
we give an explicit proof in the Supplemental Material [23]
using the notion of simplicial elimination ordering for chordal
graphs. It is also noteworthy that the above condition is not
necessary for existence of a monogamy relation, as discussed
in the Supplemental Material [23].

III. METHOD

Consider a set of Bell and noncontextuality inequalities
{Ik} and let ωc = ∑

k ωc(Ik) define the maximum classical
value of the combined expression, i.e.,

∑
k Ik � ωc in any

classical theory. Let G{Ik} denote the commutation graph
representing the observables measured by all the parties
in the noncontextuality or Bell scenario. A no-signaling
or no-disturbance monogamy relation holds if G{Ik} can
be decomposed into a set of induced chordal subgraphs
{G(j )

c-sub} such that the sum of the algebraic values of the
reduced Bell expressions in each of the chordal graphs
equals ωc.

Lemma. It is sufficient to consider induced chordal sub-
graphs in the method described above.

To see this, suppose that a set of chordal graphs G
(j )
c-sub

with associated (classical equals no-signaling) values for the
reduced Bell expressions ω

(j )
c exists satisfying

∑
j ω

(j )
c =

ωc. Consider the optimal classical deterministic strategy
achieving value ωc for the whole graph; this strategy must
therefore necessarily achieve value ω

(j )
c on each of the chordal

subgraphs. In other words, a set of optimal and compatible
classical (deterministic) strategies for all of the G

(j )
c-sub exists,

where compatibility means that the values are assigned by the
strategies to any observable Am that is the same in each of
the chordal subgraphs Am appears in. From this observation, it
follows that each G

(j )
c-sub may be taken to be induced, i.e., any

edges between two vertices Ai,Aj ∈ V (G(j )
c-sub) that are present

in G{Ik} may also be included in G
(j )
c-sub.

However, we remark that when considering different Bell
expressions, it may happen that the classical deterministic

strategies for these expressions are not compatible with each
other, in the sense that the same observable Ai is assigned dif-
ferent values in the optimal strategies for different expressions.
In such cases one might have classical monogamies, where the
classical value of the sum is strictly smaller than the sum of
the individual classical values, i.e., ωc <

∑
k ωc(Ik) [10,12].

IV. CYCLE INEQUALITIES

As mentioned earlier, any Bell inequality can also be
viewed as a noncontextuality inequality of the combined
system of distant parties. By incorporating other Bobs into
Alice’s system monogamy relations in nonlocal-contextual
and contextual-contextual scenarios can be inferred from
those in the Bell scenario. However, the most interesting
case is when the contextuality test is performed on a single
system (for example, qutrit) that does not exhibit nonlocality.
Recently, n-cycle (n � 5) noncontextual inequalities have
been proposed and shown to be maximally violated by qutrits
[16,17]. The analogous cycle Bell inequality [18] with n

inputs each has also been studied. Motivated by these facts,
we first consider cycle inequalities that are the simplest
nontrivial case to study unified monogamy relations. It is
shown that monogamy exists for two n-cycle Bell inequality
of same length in the nonlocal-nonlocal scenario [24]. In
the nonlocal-contextual scenario, monogamy between the
CHSH and n-cycle noncontextuality inequalities and, in the
contextual-contextual scenario, monogamy between any two
cycle inequalities are pointed out [25]. Here we show a more
general result in this direction.

Proposition. Any two cycle inequalities with possible dif-
ferent cycle lengths, having at least two common observables,
are monogamous in any theory satisfying the no-disturbance
principle. For the monogamy to hold in the nonlocal-contextual
and contextual-contextual scenarios, suitable additional com-
mutation relations are required.

The proof of this proposition with the decompositions
of induced chordal subgraphs is explicitly described in the
Supplemental Material [23]. This result can also be generalized
for many outcome cycle inequalities [24] in all three scenarios
(see the Supplemental Material [23]).

V. ACTIVATION OF THE MONOGAMY RELATION
IN THE BELL INEQUALITY

The monogamy relations for entanglement establish a strict
trade-off in the shareability of this resource. In [19], Coffman
et al. established a monogamy relation for the tangle, which
is a well-known measure of entanglement. The monogamy
relation for the tangle reads

τ
(1)
A|BC � τ

(2)
AB + τ

(2)
AC, (1)

where τ
(1)
A|BC is the tangle between qubit A and the pair

BC. This relation says that the amount of entanglement
that qubit A has with BC cannot be less than the sum
of the individual entanglements with qubits B and C

separately.
We now propose an analogous relationship between non-

locality and contextuality. Consider the nonlocal-contextual
scenario with three observers Alice, Bob, and Charlie. Alice
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performs six possible ±1-valued measurements, say, Ai ,
with i ∈ {1, . . . ,6}. In each run of the experiment, Alice
randomly measures two compatible observables from the set
{A1A2,A2A3,A3A4,A4A5,A5A1} or a single observable A6

on her subsystem while Bob and Charlie randomly perform
one of their three ±1-valued observables, say, B1,B2,B3

and C1,C2,C3, on their respective subsystems. The I3322

inequality [26] involving Alice’s observables A1,A4,A6 and
Bob’s observable B1,B2,B3 is given by

IA1A4A6
B1B2B3

= 〈A1〉 + 〈A4〉 + 〈B1〉 + 〈B2〉 − 〈A1B1〉
− 〈A1B2〉 − 〈A1B3〉 − 〈A4B1〉 − 〈A4B2〉
+ 〈A4B3〉 − 〈A6B1〉 + 〈A6B2〉 � 4. (2)

A no-signaling box exists that achieves the value 8 for this
inequality. This is a tight Bell inequality in the scenario of
two parties, with three dichotomic inputs each, which exhibits
several remarkable properties [26–28]. With regard to its
monogamy properties, it was shown in [26] that the nonlocality
that it reveals can be shared, i.e., there exist three qubit
states |ψ〉ABC such that both ρAB = trC(|ψ〉〈ψ |) and ρAC =
trB(|ψ〉〈ψ |) violate the inequality at the same time. Here we
show another remarkable property of the I3322 inequality,
namely, that the addition of a minimal local state-dependent
contextuality term can make the I3322 inequality monogamous.
More precisely,

IA1A4A6
B1B2B3

+ IA1A4A6
C1C2C3

+ 2I(5)
ND

� 14, (3)

whereI(5) = ∑4
i=1〈AiAi+1〉 − 〈A5A1〉 � 3 is the noncontex-

tual bound.
Proof. To show the validity of the above inequality, let us

decompose the commutation graph of the whole quantity in
the following way:

G
[
IA1A4A6

B1B2B3

] + G
[
IA1A4A6

C1C2C3

] + 2 × G[I(5)]

→ G
[
IA1A4A6

B1,C2,A5

] + G
[
IA1A4A6

B2,C1,A5

] + G
[
I(5)A1A2A3A4

B3

]

+G
[
I(5)A1A2A3A4

C3

]
, (4)

where G[I] denotes the commutation graph corresponding
to the set of observables appearing in the inequality I. It
can be checked (as shown in Fig. 1) that all the decomposed
induced graphs are chordal and hence possess joint probability
distributions.

To see the correspondence between (1) and (3), one can
reinterpret the monogamy relation (1) in terms of the purity
of the subsystem A (denoted by pA) as τAB + τAC + pA � 1.
Similarly, the purity of a system can be related to the resource
of state-dependent contextuality [29]. This generalizes the
view presented in [14], where a single CHSH inequality was
shown to have a trade-off in violation with a local contextuality
term. In the above scenario, on the other hand, it is worth noting
that a single I3322 inequality does not exhibit monogamy
with the local noncontextuality inequality I(5). In fact, a
no-signaling box that violates both inequalities can be found
[23].

A6

B3

A1

B2

A4

C1

B1

C2

C3

A1

A2

A5

A3

A4
A1

A2

B3(C3)

A3

A4

A6

A5

A1 A4

B1(C1)

C2(B2)

2×

FIG. 1. Chordal decomposition given in Eq. (4) to show the
monogamy relation between the bipartite I3322 correlations of Alice
and Bob, Alice and Charlie, and between commuting measurements
on Alice’s subsystem. Here the dashed line represents the contradic-
tion edge and gray lines denote the additional commutation relations.

VI. LACK OF MONOGAMIES DUE TO NONTRIVIAL
BELL INEQUALITIES WITH SINGLE INPUTS

FOR SOME PARTIES

In this section we study a unique feature of Bell inequalities
that appears in the derivation of no-signaling monogamy rela-
tions. There exists a two-party Bell expression, which has the
same classical and no-signaling value, that can be turned into a
nontrivial inequality upon the addition of an expression involv-
ing a third party with a single measurement input. We present
such an example in the scenario of three parties with one, two,
and three inputs, respectively, and four outputs per setting.
While this appears counterintuitive at first sight, we explain
that this arises due to an incompatibility between the optimal
classical strategies for the subexpressions into which the com-
mutation graph of the whole Bell expression is decomposed.

In [10] it was shown that in the paradigmatic example of cor-
relation inequalities for binary outcomes, the parameter known
as the contradiction number gives a sufficient characterization
of the monogamy. Namely, if the removal of a certain number
m of observables of any one party (m is called the contradiction
number of the inequality) results in the residual expression
having a local hidden variable description, then monogamy
manifests itself when Alice performs the correlation Bell
experiment with m + 1 Bobs. The existence of nontrivial Bell
inequalities with single inputs for some of the parties as stated
above then implies that this result does not readily extend to
general inequalities for many outcomes.

We study a specific example of an inequality IA1A2A3
B1B2B3

that
has a contradiction number of one, i.e., upon the removal of the
input B3 for Bob, the residual expressionIA1A2A3

B1B2
admits a local

hidden variable description [a joint probability distribution
P (A1,A2,A3,B1,B2)]. The residual expression IA1A2A3

C1
also

evidently admits a classical description P (A1,A2,A3,C1)
simply because Charlie only measures a single input in this
expression. Intuitively, one might expect that the expression
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TABLE I. Description of the no-signaling probability distribution for which the tripartite inequality (6) attains its algebraic value 9. Each
column corresponds to six different inputs Ak,Bl,C1, and for a particular input only the events P (a(k)

0 a
(k)
1 ,b

(l)
0 b

(l)
1 ,c

(1)
0 c

(1)
1 |Ak,Bl,C1) with nonzero

probability are listed where the probability of each of these events is 1
8 .

A1B1C1 A1B2C1 A2B1C1 A2B2C1 A3B1C1 A3B2C1

(00, 00, 00) (00, 00, 00) (00, 00, 00) (00, 00, 00) (00, 00, 01) (00, 00, 01)
(00, 00, 01) (00, 00, 01) (00, 00, 10) (00, 10, 10) (00, 00, 10) (00, 11, 10)
(00, 01, 00) (00, 01, 00) (01, 00, 01) (01, 01, 01) (01, 00, 00) (01, 01, 00)
(00, 01, 01) (00, 01, 01) (01, 00, 11) (01, 11, 11) (01, 00, 11) (01, 10, 11)
(01, 00, 10) (01, 10, 10) (10, 01, 01) (10, 00, 01) (10, 01, 00) (10, 00, 00)
(01, 00, 11) (01, 10, 11) (10, 01, 11) (10, 10, 11) (10, 01, 11) (10, 11, 11)
(01, 01, 10) (01, 11, 10) (11, 01, 00) (11, 01, 00) (11, 01, 01) (11, 01, 01)
(01, 01, 11) (01, 11, 11) (11, 01, 10) (11, 11, 10) (11, 01, 10) (11, 10, 10)

IA1A2A3
B1B2C1

also admits such a description, for instance, via the
Fine trick [21]

P (A1,A2,A3,B1,B2,C1)

= P (A1,A2,A3,B1,B2)P (A1,A2,A3,C1)

P (A1,A2,A3)
. (5)

Here the subtlety arises. The optimal strategy that achieves the
classical value for IA1A2A3

B1B2
need not give rise to the same

marginal distribution P (A1,A2,A3) as the optimal strategy
for IA1A2A3

C1
. This implies that the above construction does

not automatically work and therefore one might encounter
violation of Bell expressions IA1A2A3

B1B2C1
for which IA1A2A3

B1B2

is trivially saturated by a classical strategy and yet the
contradiction arises from a third party measuring a single
setting. We give below an example of a Bell expression having
such a property.

This is a Bell expression IA1A2A3
B1B2B3

belonging to the family
of tight Bell expressions in the (2,3,3,4,4) scenario found
by Cabello [30] and has been experimentally tested [31].
The expression of interest to us is actually the reduced Bell
expression IA1A2A3

B1B2C1
given as

IA1A2A3
B1B2C1

= 〈
A10

1 B10
1

〉 + 〈
A01

1 B10
2

〉 + 〈
A11

1 C10
1

〉

+ 〈
A10

2 B01
1

〉 + 〈
A01

2 B01
2

〉 + 〈
A11

2 C01
1

〉

+ 〈
A10

3 B11
1

〉 + 〈
A01

3 B11
2

〉 − 〈
A11

3 C11
1

〉
� 7, (6)

where 〈Aik,jk

k B
il ,jl

l 〉 denotes the mean value of the product of
the ikth and jkth bits (assigned ±1 values) of the result of
measuring Ak times the il th and jl th bits of the result of mea-
suring Bl (or Cl), respectively. Evidently, a classical strategy
can be found for the residual expression IA1A2A3

B1B2
when B3 is

removed, for instance, Alice and Bob output 00. The residual
expression IA1A2A3

C1
also trivially admits a classical strategy, for

instance, Charlie outputs 00 and Alice outputs 00 for inputs
A1 and A2 and 10 for input A3. On the other hand, no classical
strategy exists to saturate both expressions simultaneously and
it can be shown that IA1A2A3

B1B2C1
� 7 in any local hidden variable

theory. From the extremal box of the no-signaling polytope
given in Table I, it can be verified that the algebraic value of
the inequality is 9. This implies that the Bell inequalities and
the corresponding classical polytopes with single inputs for
some of the parties have some interesting property.

VII. CONCLUSION

In this paper we have presented a unified view on
monogamy relations for the Bell and noncontextuality inequal-
ities derived from the physical principles of no signaling and
no disturbance. The unification was achieved by considering a
graph-theoretic decomposition of the graph representing all the
observables in the experiment in induced chordal subgraphs.
We have used this method to show that any two generalized
cycle inequalities (for any number of outputs) exhibit a
monogamy relation. As a main result, the feature of activation
of monogamy of the Bell inequality by considering local
contextuality term is proposed. Finally, we uncovered an in-
teresting characteristic of Bell inequalities that the trivial Bell
expression can have no-signaling violations upon the addition
of a third party with a single input. This implies that the study
of Bell inequalities (and the corresponding classical polytopes)
with single inputs for some of the parties becomes interesting.

Several open questions remain. An interesting question
is to settle the computational complexity of the chordal
decomposition method for identifying monogamies. Another
important question is to show that local state-independent
contextuality inequalities cannot replace the state-dependent
ones in the monogamies we have formulated in the paper.
If true, this would lend added strength to the resource-
theoretic character of the trade-offs as suggested in [14]. It
is also relevant to study the correspondence between such a
monogamous relation and the feature in which nonlocality can
be revealed from local contextuality [32–34]. It would also be
of interest to identify the quantum boundaries of the trade-offs
between nonlocality and contextuality identified here, such
as done for the case of Bell inequalities in [35,36]. The
extension of the above results to the multiparty scenario and
network configurations such as in [36] is of special interest,
particularly with regard to cryptographic applications such
as secret sharing [37]. Finally, it would also be interesting
to investigate the class of minimal noncontextuality inequal-
ities whose addition activates the monogamy of any Bell
inequality.
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