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The objective, classical world emerges from the underlying quantum substrate via the proliferation of redundant
copies of selected information into the environment, which acts as a communication channel, transmitting that
information to observers. These copies are independently accessible, allowing many observers to reach consensus
about the state of a quantum system via its imprints in the environment. Quantum Darwinism recognizes that the
redundancy of information is thus central to the emergence of objective reality in the quantum world. However,
in addition to the “quantum system of interest,” there are many other systems “of no interest” in the Universe that
can imprint information on the common environment. There is therefore a danger that the information of interest
will be diluted with irrelevant bits, suppressing the redundancy responsible for objectivity. We show that mixing
of the relevant (the “wheat”) and irrelevant (the “chaff”) bits of information makes little quantitative difference to
the redundancy of the information of interest. Thus, we demonstrate that it does not matter whether one separates
the wheat (relevant information) from the (irrelevant) chaff: The large redundancy of the relevant information
survives dilution, providing evidence of the objective, effectively classical world.

DOI: 10.1103/PhysRevA.95.030101

Amplification, already invoked by Bohr [1], is the central
process by which the underlying quantum substrate gives rise
to the objective, classical world [2,3]. Quantum Darwinism
[4,5] formalizes this notion into the concept of redundancy:
When quantum systems are decohered [6—8], they transfer
select information—information about their pointer states
[9]—to their environment. Many observers can then infer
the state of the system indirectly by intercepting some small
fragment of the environment [10,11]. In other words, this select
information is redundant, as any small fragment will do, and
is thus objective: Many observers can independently deduce
the pointer state of the system and reach a consensus about it.

In our Universe there are many fragments of the envi-
ronment that have no or nearly no information about any
given quantum system of interest at any given time. Thus,
in what way can one then apply the quantum Darwinist
considerations? To begin addressing this question, we consider
a spin model introduced in Ref. [12] with two types of spins
in the environment £: ones that acquire perfect (classical)
information about the system & and others that acquire
no information. These are the “good” &; and “bad” &p
environments, respectively. This can be represented by a state
of the form

& & Ep
1
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Physically, this state is generated when a set &; of good
environment components — the “wheat” — each perfectly
decohere the system in the z basis and a set £g — the “chaft”
— do not interact at all with the system. In what follows,
the results are not limited to “diametrically opposed” good
and bad environments [i.e., ones like in Eq. (1)], but rather
extend to the case with partial information in both the good
and bad environments, as well as mixed states, states without
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permutational invariance (e.g., in the environment &), and
alternative measurements to extract the information [13].
Pure decoherence, whether in a globally pure state or in
a mixed state, is the process by which the state structure in
Eq. (1) arises. The Hamiltonian and initial states for pure
decoherence by independent environment components [14,15]

are H=Hg + [s 3,5, Ts + 305, 4 with [[15,Hs] = 0

and p(0) = ps(0) ® [®;f:] prr(0)], where k specifies an en-
vironment subsystem. Under pure decoherence, no transitions
occur between the pointer states § (the eigenstates of I s [7,9)).
Up to unimportant local unitary rotations, the state, Eq. (1),
develops via a pure decoherence process, e.g., one having a
gro oy interaction in the Hamiltonian with g, = 1 fork € &g
and g, = 0 for k € £, and an initial state (|0)s + [1)s)| +
--+4)]0---0)/2, where |+) is a o* eigenstate. These models,
which include run-of-the-mill, everyday photon environments
[2], approximate the case where decoherence is strong com-
pared to the natural dynamics of the system. Moreover, spin
models of this type help elucidate the nature of redundancy in
various settings [3,16], which is what we will do here.

Intuitively, we know the redundancy of information in the
state in Eq. (1): There are *£; “good” bits, which are in a
Greenberger-Horne-Zeilinger (GHZ) state, and thus perfectly
classically correlated with the pointer observable of the system,
and there are *Ep “bad” bits, which are in a product state,
and thus not correlated at all with the system. Hence, the
redundancy is just “€;. However, in a world where we are
bombarded with good and bad bits alike, the question arises:
What is the typical fragment size that we need to intercept from
the total environment, £ = £ ® £, to get nearly complete
information about S? Likewise, in what way should we define
redundancy, with respect to £ or just Eg7?

To answer these questions, we examine the mutual infor-
mation, which quantifies the correlations between the system
and some fragment of the environment,

I(S: F) = Hs + Hy — Hsyr. )
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This can be divided into classical (the Holevo quantity [17])
and quantum (the discord [18-20]) components [21],

I(S:F)=x(Ils : F)+ D(I1s : F), 3)

where Ils specifies a basis (or, more generally, a posi-
tive operator-valued measure) on S. The Holevo quantity,
x(Ils : F), gives the maximum classical information available
about Ils in F, while the quantum discord D(Ils : F) is
what remains. The information most efficiently transmitted by
the environment will be about the pointer basis, ﬁg [10,21].
Thus, the Holevo quantity for that basis, X(ﬁs : F), will be
of interest.

To define redundant information, we need to know how
much (what portion) of the “classical information of interest”
is contained in a typical fragment F (of size *Fj5 < *&) of
the total environment, £. Thus, we seek *Fs, the size of the
fragments that contain all but the information deficit § of the
classical information,

(x(Ts : F))er, = (1 — 8)Hs. 4)

Above (-):z, is the average over fragments of size *Fs and
Hs = H(IIy), i.e., the entropy of the pointer observable—
the missing information about S. Observers do not require
(and usually cannot get) all the missing information. The
information deficit, §, is the amount of information that
observers are prepared to forgo. The averaging can be done
over the relevant environment, £, or the total environment,
E. Alternatively, one can maximize the number of distinct
fragments that give nearly complete information about ITg,
ie., (1 —8)Hs.

Each of these approaches may yield different results. We
will show that all these procedures give the same value for the
redundancy,

Rs = — ®)

up to an insignificant scaling factor, where *F; is taken from
Eq. (4) or from the maximization procedure.
The Holevo quantity will approach Hs according to [2,3]

x(Tls : F) ~ Hs — H(P,), (6)

where H (x) is the binary entropy of x and P,, a function of F,
is the error probability for distinguishing the conditional states
of the fragment. The latter are given by (§|ps7|5)/p;, where
|§) is a pointer state, p; is the probability that state occurs,
and psr is the reduced state of the system and fragment. In
the case of the state in Eq. (1), the conditional states are just
10---0)g,]0---0)g, and [1---1)g,[0- - - 0)eg,.

The asymptotic behavior of the error probability is given
by

P, ~ expl—&qcs" Fl, O
where the exponent
gocg = —1In (tr[:oifu pl:\gc])keé' ®)

is the “typical” Chernoff information [2], which generalizes
the quantum Chernoff bound (QCB) [22-25] to sources
of quantum states that are not independent and identically
distributed (i.i.d.). The error probability also depends on the
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Ps, but only in a prefactor to the exponential, and thus it does
not play a role as *F becomes large. The optimal value of ¢
(with 0 < ¢ < 1) is the one that maximizes EQCB. The latter is
not an easy task for non-i.i.d states. However, for spin systems
undergoing pure decoherence [of which the state in Eq. (1) is
an example] the value of ¢ is 1/2 [3] (the value of ¢ can also
be found for certain classes of photon environments [2]).

This maps the understanding of classical information
communicated by F (and £) into a problem of understanding
the distinguishability of conditional states py; on individual
environment components k (i.e., for the case here, individual
environment spins). Equations (4), (6), and (7) allow us to
estimate the redundancy [2,3], Eq. (5), as

~ g SQCB 9)
In1/6

Indeed, this shows that macroscopic redundancy is unavoid-
able for pure decoherence; except for states of measure zero
(i.e., completely mixed initial environment states or ones that
commute with the Hamiltonian), redundancy is always present
[2,3,14,15]. The worst scenario for the dilution of information
is when #&; is small and fixed, while *£5 is taken to be larger
and larger. Taking *€3 > *£5.,°F, Eq. (8) is simple:

_ ng 14 ﬁgG .0
‘§QCB =—In T
-1 e
Thus, the redundancy is
o~ o (11)
In1/é§

We see that the calculation requires that 1€ > In(l /8), as
redundancy cannot be less than 1. If *£; < In (1/8), it means
that the scenario is outside of the realm of validity of the
QCB calculation, as an observer needs essentially the whole
environment to approach (1 — §) Hg bits of information about
S, if they can acquire that amount of information at all.

We note that one can also exactly solve for the average
Holevo quantity or mutual information, which yields the same
result as above: Given a fragment F, x(I1s : F) will be 1 if
a good bit is intercepted and zero otherwise [similarly for the
quantum mutual information, /(S : F), unless all the good bits
are intercepted, but this happens with negligible probability].
The probability that the observer will intercept *F bad bits—
and have zero information about the system—is

f f — f —(CF —
P3=é Ep 1._.53 tF 1)’ (12)
e 1g—1 1€ —CF-1)
with #€ = 8£; 4 £p. The probability to intercept at least one
good bitis 1 — Pg, giving

N FERICE — )
(x(Ils : F)):r = Hs(1 — Pp) =1 — m,
(13)
with Hs = 1. Redundancy requires that
EERI(PE — FFp)!
_epl( Fs) (14)

T (FEp — 1Fs)IEEN
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and we can use Stirling’s approximation to get the limiting
forms of this expression, In§ ~ —#F;*E;/*Eg. This yields
the redundancy

e - &+ N g

Ry = — ~ ~ ,
"TER T Zmis  Inljs

15)

in agreement with the QCB result. For small tFs, one
can similarly expand Eq. (14), finding Rs = *£5/(1 — 8) ~
1€6/1In(1/8) for § near 1—e.g., for FFy =1, § = €5 /P ~
1-and showing that the QCB result can work well even in the
non-asymptotic regime. While this exact calculation is simple,
the QCB calculation is even simpler still and is easily extended
to many other cases (see, e.g., Ref. [3]).

If instead of the usual definition of redundancy [Egs. (4)
and (5)], one defined redundancy as the maximum number
of disjoint fragments for which x(ITs : F) >~ (1 — 8)Hs, the
result would be R; = *&. For this “perfect” good-bad state,
Eq. (1), thisis true forany § # 1[26]. By the same token, if one
averaged Eq. (4) only over the environment g, then *F5 = 1
and Rs = *£g: Only one spin from &g is necessary to acquire
the requisite information (we note that for the perfect GHZ
state of the good bits with the system, the QCB calculation is
not valid when limiting to the relevant environment, as EQCB
diverges, reflecting that Ry = & for any 8). Indeed, these
two latter approaches agree with our intuition about the state
in Eq. (1), as there are just "*E; copies of the pointer state
information.

These definitions lead to Rs = *£;/1In(1/8) and Rs = &g
and are thus not equivalent. However, they only differ by a
factor of In 1/8 (and this result is unaffected by the choice of
Do, P1, the probabilities for |0)s and |1)s in the initial state of
the system) [27]. For any reasonable §, the two definitions are
practically the same [28]. The reason for the correspondence
between the definitions is that, when an observer intercepts
both relevant and irrelevant bits, the probability not to get any
good bit drops exponentially with the size of the fragment * F.
This only weakly affects the ability of the observer to capture a
good bit and deduce the state of the system. This is remarkable,
as it says that when states of the form in Eq. (1) arise we need
not worry about distinguishing between parts of the larger
environment—parts that interact with the system and parts
that either do not or only weakly interact—for quantifying the
redundancy of information. In other words, we need not worry
about separating the wheat from the chaff.

This example can be extended to the case where the good
and bad spins are not diametrically opposed, i.e., not perfectly
good or bad. For instance, one can consider *£g good spins that
contribute |yg|* to the decoherence factor and *£5 bad spins
that contribute |yz|%. In this case, the QCB gives immediately

t
“in| L lys + £ lyol]
Rs ~
’ Ind

where we have made use of the relationship between decoher-
ence and information in pure states, trp,f“ p,}lgc = |%l? [3].
As with the perfect good-bad state, this calculation can
be done in an alternative manner. To find the averaged
Holevo quantity, one makes use of the equality x (ITs : F) =
H(.1+|yoﬁf*;fﬁ|y5|“f3

, (16)

) for pure states or its more general form
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for py # p; [15]. Expanding the binary entropy H(x) for
x near 1/2 shows that one just needs to find the average
decoherence factor. For fragments of size tF, the latter is
given by the sum of * Fp from 0 to *F of |)/G|2(uf_:f3)|y3|2uf5
times the probability

‘1 285 6l (€ —tF)
PFB\CF — 2 Fp) (F€p — P Fp)! (&g —*Fg)! P!

a7
of intercepting *Fp bad spins and “F; good spins in the
fragment. Stirling’s approximation can be used on the three
last factors in the probability and the sum performed. This
yields the QCB result, Eq. (16), at much greater expense.

For simplicity, we now assume that the bad spins give
|)/B|2 =1, i.e., a worst case where those bits never interacted
with the system (and thus have no information). Expanding
the QCB result, Eq. (16), one finds

o~ o= lrP)
T i

Maximizing the number of fragments that give (1 — §)Hs
bits of information is asymptotically equivalent to a QCB
calculation (for permutationally invariant states) that simply
ignores the € bad spins:

(18)

R, ~ “Enlyg

Iné
These results, Eqs. (18) and (19), for the redundancy look
different and it is not readily apparent that the same conclusions
hold as in the perfect good-bad model, as the difference
depends on the contribution to the decoherence factor from
the good spins. The ratio between the two results, Egs. (18)
and (19), is

19)

(1 —lyel®
Inl/lyg|>’

As we will now show, the smallest this ratio can be is
~1/In1/§, just like the perfect good-bad model above.

One first has to note that Eq. (20) is monotonically
increasing to 1 as |y |? increases to 1 (giving a redundancy of
zero and making the definitions of redundancy the same in this
limit). This can be proven by taking its derivative and applying
the inequality in footnote [25] of Ref. [2] to show the derivate
is always positive. The smallest value of Eq. (20) can then
be found by taking the smallest value of |yg|* allowed by a
consistent application of the QCB. There are two calculations
of redundancy: one with good and bad spins, and one with only
good spins. The former, Eq. (18), allows for all |y¢|? [indeed,
this just recovers Eq. (11)]. The latter, Eq. (19), however,
requires 8 < |yg|* [i.e., Eq. (19) cannot be larger than *£g
no matter how small |y¢ |2 is, or in other words, £ F5 cannot be
less than 1]. When

(20)

In |yg|*
— =1, 21
Iné 21

or |)/G|2 =4, each good spin holds a sufficient record to
immediately put the information to within § of the plateau
upon receipt of one spin [29]. When |y|* < 8, the redundancy
no longer depends on |y(;|2, itis just Rs = F&; [30]. Thus, the
QCB result, Eq. (19), is valid only when |y(;|2 > 5. When
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this is the case, the ratio of the two computed redundancies is
Eq. (20). This ratio is minimal when |yg|* = 8, giving

(1—-9)
In1/8 "

and is also unaffected by the choice of pg (p;). Since we want
& to be small, this ratio is essentially 1/1In1/§. Thus, just as
with the perfect good-bad model, the two definitions differ
only by an insignificant factor.

In both cases, we see that—when examining symmetric
(permutationally invariant) good environments, Eg—there is
no difference between redundancy defined as the maximization
and redundancy defined with the averaging in Eq. (4) over only
the good environment. To extend this calculation to mixed
and/or nonpermutationally invariant states is a straightforward
matter. One only has to note the Chernoff information is no
longer directly related to the decoherence factor, |yg|?, but
rather takes on a different form [compare Eqs. (16) and (19) in
Ref. [3]], but otherwise the calculation is formally identical.
Thus, the correspondence between definitions of redundancy,
i.e., a difference of at most ~In1/4, is a general feature of
pure decoherence.

This example not only shows the ease of computation
using the QCB, it also helps us understand the definition of
redundancy itself. If redundancy was defined by maximizing
the number of copies of information, rather than taking an

(22)
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average over all fragments of a given size, then one would
obtain a different value. However, both definitions give Rs
£, where the proportionality is different only by a factor
of In(1/4), i.e., a factor that is only weakly dependent on §.
This is the case even when taking an essentially arbitrarily
large number of bad bits in the environment. The reason for
such a close correspondence between definitions is that, as the
observer intercepts a larger and larger fragment, the probability
of not receiving a good bit decreases exponentially with
fragment size. The observer is thus likely to always receive
a good bit. The definition of redundancy in Egs. (4) and (5)
applied to the total environment &, therefore, gives reasonable
estimates—lower than the maximal redundancy but different
only by an insignificant factor—for the number of records
proliferated into the environment. Thus, the emergence of the
classical, objective reality is unavoidable [2,10,31] and there
is no need to separate the wheat from the chaff to perceive
objective states of the systems of interest.
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! Fs — 1. The maximization, though, changes discontinuously, [30] In this regime, |yg|*> < 8, one has to perform computations
jumping from Ry = *€; to Rs = #€ at § = 1 (where the records in an alternative way, but the conclusion is the same: The
hold no information, which is an unimportant case). When one redundancy using the maximumis R; = *£g and the redundancy
is interested in & being close (but not equal) to one, using from the other definition does not change (the presence of £
the maximization is more appropriate, as it accurately reflects “regularizes” the QCB, so it does not matter if |y;|* < 8). Thus,
the number of imperfect copies of information, whereas using their minimum ratio is still Eq. (22).

Eq. (4) will overestimate this redundancy. [31] E. G. S. L. Brandao, M. Piani, and P. Horodecki, Nat. Commun.

[29] This ignores finite size effects, which are nevertheless order 1. 6, 7908 (2015).
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