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We perform an ab initio study of the ultimate capabilities and limits of applicability of the method for
few-cycle pulse formation via the resonant interaction of extreme ultraviolet (XUV) radiation with atoms dressed
by a moderately strong infrared (IR) laser field proposed in two earlier works [Y. V. Radeonychev et al.,
Phys. Rev. Lett. 105, 183902 (2010) and V. A. Polovinkin et al., Opt. Lett. 36, 2296 (2011)]. Taking into
account all the multiphoton processes in the systems under consideration on the basis of numerical solution of
the three-dimensional time-dependent Schrödinger equation (TDSE) in the single-active-electron approximation,
we show the possibilities to produce 1.1-fs pulses from 124.6-nm XUV radiation via the linear Stark effect in
atomic hydrogen, as well as 500-as pulses from 58.4-nm XUV radiation via excited-state ionization in helium.
We derive a generalized analytical solution, which takes into account the interplay between sub-laser-cycle Stark
effect and excited-state ionization and allows us to analyze the results of TDSE calculations. We found that the
ultimate intensity of the IR field suitable for few-cycle pulse formation via the linear Stark effect or excited-state
ionization is limited by the threshold for atomic ionization from the resonant excited state or the ground state,
respectively. We show that the pulses with shorter duration can be produced in the medium of ions with higher
values of the ionization potential.
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I. INTRODUCTION

Starting from the turn of the millennium [1,2], attosecond
physics has become a fascinating branch of modern science,
opening the possibility for real-time imaging and steering
of electronic motion in atoms, molecules, and solids on
its intrinsic time scale [3–9], conceptually similar to the
femtosecond optical control of chemical reactions [10].

During recent years, remarkable progress has been achieved
in understanding and manipulating the sub-laser-cycle dynam-
ics of the bound and autoionizing atomic states induced by an
intense laser field combined with attosecond pulses or pulse
trains of the extreme ultraviolet (XUV) radiation produced via
high-harmonic generation (HHG) of a replica of the laser field
[4,6–8,11–20]. In these studies, the laser field is not strong
enough to ionize or excite atoms from their ground state, but
it strongly perturbs the excited states resonantly populated by
high-harmonic radiation. This perturbation has been visualized
directly via the attosecond transient absorption technique
[6,17,18]. Due to mutual coherence of the fundamental laser
field and its high-order harmonics, the pathways of atomic
excitation and ionization through absorption of a higher-
harmonic photon or a lower-harmonic photon along with a
few photons of the laser field (or, explicitly, the pathways
of atomic excitation by different harmonics into the same
Floquet state) interfere, leading to beatings of the atomic
ionization yield versus the sub-laser-cycle time delay between
the harmonic signal and the laser field [11–13,15,17–19] and
allowing for the complete transparency of the medium for the
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resonant XUV radiation [19,20]. However, the possibilities for
such investigations and control over the ultrafast intra-atomic
dynamics are limited by the nature of the HHG process in
gases, which is commonly used for the attosecond pulse
formation and dictates the relatively high carrier frequency
and low efficiency of generation of the XUV pulses [1,3,8].

Although in recent years both HHG and laser technologies
have been considerably advanced, resulting, in particular, in
the generation of high-energy (∼1 μJ) isolated attosecond
pulses [21], the photon energy of these pulses remains above
the ionization potential of both the generating medium and
the majority of neutral media, which prevents their being
used for nonionizing manipulation of ultrafast intra-atomic
and intramolecular processes and impedes investigation of
such processes without photoionization. At the same time,
the below-threshold harmonics can be produced with gen-
eration efficiency up to 1% (which is much higher than
that of the above-threshold harmonics used in [21]) under
the resonance conditions [22]. However, although the below-
threshold harmonics are generated in a comb [23], they are
not phase matched with each other and do not constitute
attosecond pulses in the time domain. Furthermore, the use
of resonantly enhanced HHG and plasma-based x-ray lasers
allow for producing XUV and soft x-ray field with high
power, exceeding the power of nonresonant high harmonics
at the same wavelength. In particular, the transitions from
autoionizing states to the ground state of multielectron atoms
(ions) allow increasing the intensity of the resonant (above-
threshold) harmonic compared to nonresonant ones by two
orders of magnitude and achieve 10−4 efficiency of a single
harmonic generation [24–26], whereas transient inversion
on high-frequency transitions of multiply charged ions in
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laser-produced plasmas provides an opportunity to generate
picosecond pulses of XUV and soft x-ray field with energy
up to several mJ [27–30]. However, these sources produce
quasimonochromatic radiation, which is not suitable for the
time-domain studies of the ultrafast femto- and attosecond
processes.

Recently, a method has been proposed which may allow
for the conversion of XUV and soft x-ray radiation from these
high-energy sources into the attosecond pulses. This method
uses the resonant interaction of an incident XUV radiation
with an atomic gas dressed by a moderately strong infrared
(IR) laser field [31,32] and is based on sub-laser-cycle splitting
(due to the linear Stark effect [17,33]) and/or broadening (due
to ionization [34,35]) of the excited energy levels, selected
and populated by the XUV radiation, under the action of
the IR field. The magnitudes of the splitting and broadening
of the atomic energy levels oscillate in time and space
along with oscillation of the laser-field strength, leading to
the multifrequency resonant response of the IR-field-dressed
atoms to the (quasimonochromatic) incident XUV radiation.
Under the optimal conditions, both Stark splitting of the
resonant excited atomic energy level in a hydrogenlike medium
[31,36] and rapid quasistatic ionization from the resonant
excited state in arbitrary atomic gas [32,37,38] allow for
the formation of nearly bandwidth-limited few-femto- or
attosecond pulses without external adjustment of phases of
the generated sidebands (in contrast with the attosecond
pulse formation through HHG, which implies the attochirp
compensation [39]). The possibilities to produce both the
(quasi-) periodic pulse trains [31,32,36,37] and the isolated
attosecond pulses [38] were shown. The efficiency of energy
conversion of the XUV field into a pulse train can exceed 75%
[36] in the case of pulse formation based on the linear Stark
effect and reach 10% in the ionization-switching regime [40].
The discussed approach allows for the formation of attosecond
pulses with the carrier frequency below the ionization potential
of neutral atoms, molecules, and solids (corresponding to the
wavelength range of 50–200 nm), providing an opportunity
for the nondestructive subfemtosecond control of the bound
electron dynamics [4,6–9]. Proximity of the carrier frequency
of the pulses to various resonances in neutral and ionized
media holds the promise to use the resonant enhancement
of the nonlinear susceptibilities for the implementation of
the attosecond pump–attosecond probe experiments [21,41].
Furthermore, the possibility to transform high-energy pi-
cosecond pulses of x-ray plasma lasers [27–30,42–44] into
the trains or isolated attosecond pulses opens the door for
numerous applications in dynamical, high temporal and high
spatial resolution element-specific imaging in biochemistry
and mateials science [45,46].

The previously obtained results were restricted to three-
or two-level models, implying adiabatic approximation for
atomic perturbation by the IR field and the resonant approx-
imation for interaction of XUV radiation with atoms. The
influence of the IR field on the atomic system was taken
into account through space-time variation of instantaneous
position and width of the resonant excited atomic energy
levels, while interaction of the XUV radiation with atoms,
although described dynamically, was considered in few-level
models. Although this approach is correct in the limit of a

low frequency and low intensity of the IR field and allows
for the analytical solutions, as well as numerical treatment of
the propagation problems, it does not allow for determining
the ultimate capabilities and the limits of applicability of the
method.

In the present paper, we address these questions taking into
account all the multiphoton processes in the considered system
on the basis of numerical solution of the full three-dimensional
time-dependent Schrödinger equation (TDSE) in the single-
active-electron approximation. We find the maximal intensity
and the minimal wavelength of the laser field suitable for few-
femto- and attosecond pulse formation from incident XUV
radiation via modulation of the resonant atomic response,
as well as the minimal duration of the produced pulses.
The mechanisms of pulse formation due to the linear Stark
effect [31,36] and the excited-state ionization [32,37,38] are
considered for the hydrogen and helium atoms, respectively.
The results of numerical calculations are compared to the
analytical solutions obtained in [36,37]. In order to analyze
the differences between these quasistatic analytical solutions
[36,37] and the results of ab initio TDSE calculations,
we develop a generalized analytical theory, which takes
into account a sub-IR-field-cycle space-time variation of the
quadratic Stark effect and the excited-state ionization rates.
The developed theory allows for distinguishing the differences
between the simplified analytical solutions [36,37] and the
ab initio calculations, which are caused by the interplay
between the Stark effect and quasistatic ionization, from those
originating from the nonadiabatic processes. Moreover, the
generalized theory allows for tracing a transition between the
two regimes of pulse formation (based on the linear Stark effect
and excited-state ionization) with increasing intensity of the
IR field. The performed TDSE calculations are free of most
of the assumptions made in theoretical works (restricting the
number of levels, neglecting the interaction with a continuum
or using the quasistatic approximation for ionization rates,
neglecting higher-order Stark effect, etc.) and, thus, provide a
direct bridge to an experimental implementation of suggested
mechanisms.

The paper is organized as follows. In Sec. II, we analyze
the possibilities for ultrashort pulse formation from XUV
radiation via Stark splitting of the resonant excited energy
level of the atomic hydrogen by a moderately strong IR field
of various intensities and wavelengths. In Sec. III, we consider
the ionization-switching mechanism of few-cycle attosecond
pulse formation from the resonant XUV radiation in helium
under the action of a strong IR field. The paper is finalized by
a conclusion.

II. FEW-FEMTOSECOND PULSE FORMATION VIA
LINEAR STARK EFFECT IN ATOMIC HYDROGEN

Let us consider the propagation of XUV radiation through
an optically thin medium of an atomic gas. At the entrance
to the medium, x = 0, the radiation is monochromatic and its
electric field has the form

�Einc(t) = 1
2 �z0E0 exp{−iω0t} + c.c., (1)

where E0 is the incident field amplitude, ω0 is its angular
frequency, and c.c. stands for the complex conjugation. The
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radiation (1) is chosen to be near resonant to the transition
|1〉 ↔ |2〉 between the ground state and an excited atomic
bound state, ω0 ≈ ω0

21 (where ω0
21 is the frequency of the

unperturbed resonant transition).
The medium is simultaneously irradiated by a moderately

strong IR laser field,

�EIR(x,t) = 1
2 �z0EC exp{−i�(t − x/c) + ϕ0} + c.c., (2)

where EC is the amplitude of the IR field, � is its angular
frequency, ϕ0 is its initial phase (ϕ0 = 0, unless specified
otherwise), and c is the speed of light in vacuum. Both the IR
field and the XUV radiation propagate along the same direction
and are identically polarized. Since in an isotropic gas the
polarizations of the fields are not changed, the vector notations
will be omitted for now on. Since the medium considered in the
paper is optically thin, due to far detuning from the relevant
atomic resonances and tiny population of the excited states,
the IR field (2) does not suffer from atomic dispersion and
traverses the medium without appreciable distortions.

Propagation of the XUV radiation through the medium is
described by the wave equation

∂2EXUV

∂x2
− 1

c2

∂2EXUV

∂t2
= 4π

c2

∂2PXUV

∂t2
, (3)

where EXUV is the XUV radiation strength, EXUV(x = 0,t) =
Einc(t), and PXUV is the high-frequency polarization of the
medium.

Since the characteristic scales of a spatial evolution of
XUV radiation in a gas are much larger than its wavelengths,
the substitution t → τ ≡ t − x/c (within the slowly evolving
wave approximation [47,48]) allows for reducing the wave
equation (3) to

∂EXUV

∂x
= −2π

c

∂PXUV

∂τ
. (4)

Finally, in an optically thin medium (when the rescattered
field remains much weaker than the incident one) the output
radiation transmitted through the medium of thickness L has
the form

EXUV(L,τ ) = Einc(τ ) + EScatt(L,τ ),

EScatt(L,τ ) = 2πL

c

dPXUV(τ )

dτ
, (5)

where EScatt(L,τ ) is the resonantly scattered XUV radiation
determined by the incident fields (1) and (2).

In a gas, PXUV(τ ) = NdXUV(τ ), where N is the concentra-
tion of atoms and dXUV(τ ) is the high-frequency part of the
dipole moment of an individual atom, d(τ ) = e〈z(τ )〉 [where
e is the electron charge and 〈z(τ )〉 is the expectation value of
the active atomic electron displacement along the polarization
direction of the field].

In order to get an ab initio solution for d(τ ), we numerically
solve the three-dimensional TDSE for an atom simultaneously
irradiated by the XUV and IR fields (1) and (2):

ih̄
∂

∂t
ψ = (H0 + V )ψ, (6)

where ψ is the wave function of the active electron, H0 =
− h̄2

2m
	 + U (�r) is the unperturbed atomic Hamiltonian (in the

case of atomic hydrogen, U (�r) = −e2/r corresponds to the

pure Coulomb potential), and V = e �EIR(t) · �r + e �EXUV(t) · �r
is the Hamiltonian of atom-field interaction. The solution is
obtained using the generalized pseudospectral method [49].
The high-frequency component of the dipole moment dXUV(τ )
is calculated by filtering out the low-frequency components of
the total dipole moment, d(τ ), at the frequencies of low-order
harmonics of the IR field and below. An additional filtering
is applied for the spectral components with photon energies
exceeding the atomic ionization potential, which accounts for
a strong photoabsorption of XUV radiation just above the
ionization potential.

In the following, the results of TDSE calculations are
compared to the analytical solution [36] derived for atomic
hydrogen exposed to XUV radiation, which is resonant to the
transition n = 1 ↔ n = 2 (where n is the principal quantum
number). The analytical solution takes into account the sub-
laser-cycle splitting of the excited energy level n = 2 due to the
linear Stark effect produced by the IR field, but neglects time
dependencies of the shift and broadening of the excited energy
level due to the quadratic Stark effect and the excited-state
ionization, respectively.

In order to analyze the discrepancies between the simplified
modeling and TDSE solution, a generalized analytical solution
is derived, which takes into account the interplay between
the Stark effect and excited-state ionization, as well as the
quadratic correction to the alternating-current (ac) linear
Stark effect in atomic hydrogen. The analytical solution
implies the approximation of slowly varying amplitudes:
F (τ ) = 1

2 F̃ (τ ) exp{−iω0τ } + c.c., | dF̃
dτ

| 
 ω0|F̃ |, where
F (τ ) = {EXUV(L,τ ), EScatt(L,τ ), PXUV(τ )}. Within such an
approximation, Eq. (5) takes the form

ẼXUV(L,τ ) = E0 + ẼScatt(L,τ ),

ẼScatt(L,τ ) = i
2πω0L

c
P̃XUV(τ ). (7)

The analytical solution for atomic hydrogen is derived
within the three-level model, which includes the ground energy
level n = 1 and the two sublevels of the first excited energy
level n = 2 selected and populated by the resonant XUV
radiation (1). The corresponding atomic states are |1〉 = |100〉,
|2〉 = (|200〉 + |210〉)/√2, and |3〉 = (|200〉 − |210〉)/√2
(numerals |nlm〉 label principal, orbital, and magnetic quantum
numbers, respectively). In the three-level approximation, the
nonresonant interaction of XUV radiation with the medium is
neglected, while the slowly varying amplitude of the resonant
polarization is given by

P̃XUV(τ ) = 2Ndtr[a21(τ ) − a31(τ )], (8)

where N is the concentration of atoms, dtr = 27erB/35 is the
dipole moment of the resonant transitions (e is the charge
of the electron; rB is the Bohr radius), and a21, a31 are the
slowly varying amplitudes of the atomic coherencies ρ21, ρ31

at the transitions |1〉 ↔ |2〉 and |1〉 ↔ |3〉, respectively. The
coherency amplitudes satisfy the equations

da21

dτ
+ {i[ω21(τ ) − ω0] + γ21(τ )}a21 = i

dtrE0

2h̄
,

da31

dτ
+ {i[ω31(τ ) − ω0] + γ31(τ )}a31 = −i

dtrE0

2h̄
, (9)
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where ω21(τ ), ω31(τ ) and γ21(τ ), γ31(τ ) are the instantaneous
frequencies and decoherence rates of the transitions |1〉↔|2〉
and |1〉↔|3〉, respectively, which vary in space and time due
to the sub-laser-cycle shift and broadening of the energy levels
|2〉 and |3〉 introduced by the IR field; ωs1(τ )=ω

(0)
s1 +	Es(τ )/h̄

and γs1(τ )=γ
(0)
s1 +w(s)

ion(τ )/2, where ω
(0)
s1 and γ

(0)
s1 are the

unperturbed frequency and decoherence rate of the transition
|1〉 ↔ |s〉, while 	Es(τ ) and w(s)

ion(τ ) are the instantaneous en-
ergy shift of the excited state |s〉 and the ionization rate from it;
h̄ is Planck’s constant. The perturbation of the ground state |1〉
by the laser field of intensity relevant to this study is negligible.

In order to find the generalized analytical solution, we use
the biharmonic approximation for the dependencies ωs1(τ ) and
γs1(τ ):

ωs1(τ ) = ω̄tr ∓ 	(1)
ω cos(�τ ) − 	(2)

ω cos(2�τ ), (10a)

γs1(τ ) = γ̄tr ± 	(1)
γ cos(�τ ) + 	(2)

γ cos(2�τ ), (10b)

where the upper and lower signs correspond to s = 2 and
s = 3, respectively. The values ω̄tr and γ̄tr characterize the
time-averaged position and width of the atomic resonances in
the presence of the IR field; 	(1)

ω and 	(2)
ω are amplitudes of

the sweeping of the transition frequencies due to the linear
and the quadratic Stark effect, respectively, while 	(1)

γ and
	(2)

γ are variations of ionization rates from the excited states
|2〉 and |3〉 at the fundamental and the doubled frequency of
the laser field (2). The values 	(1)

ω and 	(1)
γ are nonzero due to

an asymmetry of the states |2〉 and |3〉 of atomic hydrogen in
parabolic coordinates.

The parameters γ̄tr, 	(1)
γ , and 	(2)

γ of the decoherence rate
for each combination of intensity and wavelength of the IR
field were determined via ab initio solution of an independent
auxiliary problem. For this purpose, TDSE was solved for an
atom initially put into the resonant excited state and subjected
to the IR field of required intensity and wavelength. Then, the
norm of electron wave function in the vicinity of the atomic
core (inside a sphere with radius R = 25 atomic units) was
calculated numerically. As a result, the probability for an atom
to remain nonionized by the IR field was found as a function
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FIG. 1. Time dependencies of a probability for a hydrogen atom
initially excited into the state |2〉 or |3〉 to remain nonionized by
the monochromatic IR field of intensity IIR = 2.5×1012 W/cm2 and
wavelength λIR = 8 μm. The lower red curves correspond to the state
|2〉, while the upper blue curves characterize the state |3〉. The solid
curves are the results of ab initio solution of the TDSE, whereas the
dashed curves represent the approximation (10b).

of time. An example of such a calculation is shown in Fig. 1.
The parameters γ̄tr, 	(1)

γ , and 	(2)
γ were then found via fitting

the obtained time dependence by exp{∫ τ

0 γs1(τ ′)dτ ′}, where
γs1(τ ′) is given by Eq. (10b). The amplitude of the linear
Stark effect, 	(1)

ω , is calculated via the perturbation theory:
	(1)

ω = 3h̄
mee

EC (me is the electron mass); the time-averaged

transition frequency is ω̄tr = ω
(0)
21 − 	(2)

ω ; finally, the amplitude
of the quadratic Stark shift, 	(2)

ω , is chosen to provide the
best agreement between the generalized analytical solution
and the results of TDSE calculations for the output XUV
radiation. In the limit of low-frequency and low-intensity
modulating IR field, the values of 	(2)

ω determined in this way
are comparable to those predicted by the perturbation theory.
Thus, for a 10.65-μm IR field with intensity 1.4×1012 W/cm2,
we get 	(2)

ω = 0.46�, while the static perturbation theory gives
	(2)

ω = 0.52�. In the case of stronger and higher-frequency
IR fields, the perturbation theory overestimates the quadratic
Stark shift.

The steady-state solution of Eqs. (7)–(10) reads

ẼScatt(L,τ ) = −E0L
2πNd2

trω0

h̄c
exp

{(
iP (2)

ω − P (2)
γ

)
sin (2�τ )

}

×
∞∑

n,l,m,k=−∞
(i)m+kJn

(
P (1)

ω

)
Jl

(
P (2)

ω

)
Im

(
P (1)

γ

)
Ik

(
P (2)

γ

)
exp {−i2(l + k)�τ }

×
[

exp
{(

iP (1)
ω − P (1)

γ

)
sin (�τ ) − i(n + m)�τ

}
i(ω̄tr − ω0 − [(n + m) + 2(l + k)]�) + γ̄tr

+ exp
{−(

iP (1)
ω − P (1)

γ

)
sin (�τ ) + i(n + m)�τ

}
i{ω̄tr − ω0 + [(n + m) − 2(l + k)]�} + γ̄tr

]
, (11)

where Jk(x) and Ik(x) are the Bessel function of the first kind and the modified Bessel function of order k, respectively, and

P (1)
ω ≡ 	(1)

ω

�
, P (1)

γ ≡ 	(1)
γ

�
, P (2)

ω ≡ 	(2)
ω

2�
, P (2)

γ ≡ 	(2)
γ

2�
are the modulation indices.
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The Fourier decomposition of the resonantly scattered radiation (11) has a form

ẼScatt(L,τ ) = −E0L
2πNd2

trω0

h̄c

∞∑
n,l,m,k,
g,s,p,f =−∞

(i)m+k+s+f Jn

(
P (1)

ω

)
Jl

(
P (2)

ω

)
Jp

(
P (2)

ω

)
Im

(
P (1)

γ

)
Is

(
P (1)

γ

)
Ik

(
P (2)

γ

)
If

(
P (2)

γ

)

×
[

J(n+m)+2(l+k)−2(p+f )−(g+s)
(
P (1)

ω

)
i{ω̄tr − ω0 − [(n + m) + 2(l + k)]�} + γ̄tr

+ J(n+m)−2(l+k)+2(p+f )+(g−s)
(
P (1)

ω

)
i{ω̄tr − ω0 + [(n + m) − 2(l + k)]�} + γ̄tr

]
exp {−ig�τ }.

(12)

As mentioned above, along with the generalized solution (7), (11), and (12), the results of TDSE calculations are compared to the
simplified analytics derived previously [36] within the approximations P (2)

ω = P (1)
γ = P (2)

γ = 0, γ̄tr 
 �, and ω0 = ω̄tr + m∗�,
where m∗ = 0,±1,±2, . . .:

ẼScatt(L,τ ) = −E0LJm∗
(
P (1)

ω

)4πNd2
trω0

h̄сγ̄tr
exp {im∗�t} ×

{∑+∞
n=−∞ J2n

(
P (1)

ω

)
exp {−i2n�t}, m∗ = 2k∑+∞

n=−∞ J2n+1
(
P (1)

ω

)
exp {−i(2n + 1)�t}, m∗ = 2k + 1

. (13)

Due to its simplicity, the analytical solution (13) allows
us to determine the optimal conditions for ultrashort pulse
formation via the linear Stark effect in atomic hydrogen.
As shown in [36], the output XUV radiation represents a
train of bandwidth-limited pulses if (i) the incident radiation
is tuned to the time-averaged position of the atomic reso-
nance, ω0 = ω̄tr; (ii) the modulation index P (1)

ω satisfies the
inequality ν

(1)
0 < P (1)

ω < ν
(1)
2 , where ν

(1)
0

∼= 2.40 is the first
root of equation J0(ν) = 0 and ν

(1)
2

∼= 5.14 is the first root
of equation J2(ν) = 0; and (iii) the resonant component of
the output XUV radiation is attenuated to the level of the
generated sidebands. In Figs. 2–5 we compare the results of
both the generalized, (11) and (12), and the simplified, (13),
analytical solutions to the ab initio solutions of the TDSE
under these optimal conditions for different combinations of
intensity, IIR, and wavelength, λIR, of the IR field (2). The
analytically calculated envelope, (7) and (11), of the output
XUV radiation is slightly shifted along the time axis in order
to provide the best fit to the numerical results. This shift
originates from inertia of electronic response to the IR field.
The timing of pulses predicted by the analytical solution is
fully determined by time dependencies of frequencies and
decoherence rates of the resonant transitions |1〉 ↔ |2〉 and
|1〉 ↔ |3〉. Equations (10a) and (10b) assume that both the
frequencies and the decoherence rates reach their maximum
values at maxima of absolute value of the IR field strength.
This is correct for the linear Stark shifts but not exactly correct
for the decoherence rates. The resonant interaction between the
atoms and the XUV field decreases with decrease of an overlap
between the wave functions of the atomic ground state and of
the ionized electron. Therefore, the peak of the decoherence
rate is slightly delayed with respect to the peak of the
excited-state ionization rate (and the peak of IR field strength)
by a time interval needed for the electron to move away from
the nucleus by a distance equal to the average radius of its wave
function (which can be estimated on the basis of initial wave
function of the resonant excited state). In such a case, if there
were no Stark effect, the results of ab initio solution for the time
dependence of the output XUV intensity would be delayed
with respect to the analytical solution by this time interval,

which is not taken into account by Eq. (10b) but naturally
arises in numerical TDSE solution. However, as far as the
IR field intensity is below the threshold of rapid excited-state
ionization, the pulse shape is predominantly determined by
the linear Stark effect, which is instantaneous. For this reason,
in the case of low-intensity IR fields, the temporal shift, τ0,
between the analytical and numerical solutions for the output
XUV intensity which maximizes their overlap, is very small
(∼10−3 of the IR field cycle). With increasing intensity and
frequency of the IR field, the value of τ0 increases to ∼10−2

of the IR field cycle. In the TDSE calculations, we assume
the IR field in the form EIR(τ ) = EC(τ ) sin(�τ ), with the
slowly varying amplitude EC(τ ) = sin2(�τ/40) for 0 � τ �
20π/� and EC(τ ) = 1 for 20π/� < τ � 230π/�. The XUV
radiation has the form EXUV(τ ) = ẼXUV(τ ) sin[ω0(τ − τ0)],
where τ0 = 30π/� and ẼXUV(τ ) ≡ 0 for 0 � τ � 30π/�,
ẼXUV(τ ) = sin2[�(τ − τ0)/20] for 30π/� < τ � 40π/�,
ẼXUV(τ ) = 1 for 40π/� < τ � 220π/�, and ẼXUV(τ ) =
cos2[�(τ − 220π/�)/20] for 220π/� < τ � 230π/�. For
each combination of intensity and wavelength of the IR field,
the wavelength of XUV radiation, λXUV, is adjusted to the
Stark-shifted position of the atomic resonance.

In Fig. 2, we present the results for atomic hydro-
gen irradiated by the CO2-laser field with intensity IIR =
1.4×1012 W/cm2 and wavelength λIR = 10.65 μm, corre-
sponding to the modulation index value P (1)

ω = 4.45. These
are exactly the same parameters as in the original paper
[36]. The medium is simultaneously irradiated by the XUV
radiation with wavelength λXUV = 122.2 nm and intensity
IXUV = 2.2×108 W/cm2, resonantly exciting the atomic tran-
sition n = 1 ↔ n = 2. As seen from this figure (whose panels
(a) and (b) are remarkably similar to Figs. 3 and 4 of [36]), the
ab initio TDSE solution fully confirms the possibility of pulse
train formation. The pulses produced in this case are bandwidth
limited and have the duration τpulse = 2.7 fs and repetition
period T = 17.8 fs. The analytical solutions (11)–(13) are in
excellent agreement with each other and with the ab initio
TDSE solution both in time- and frequency-domain represen-
tations; see Figs. 2(a) and 2(b), respectively. This is what we
should actually expect, since for such parameters of the IR

023845-5



T. R. AKHMEDZHANOV et al. PHYSICAL REVIEW A 95, 023845 (2017)

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Time (fs)

O
ut

pu
t X

U
V

 in
te

ns
ity

(a
rb

. u
ni

ts
)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

S
pe

ct
ra

l a
m

pl
itu

de
s

(a
rb

. u
ni

ts
)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−pi

−3pi/4

−pi/2

−pi/4

 0

pi/4

pi/2

3pi/4

pi

Frequency, (ω−ω
0
)/Ω

IR

S
pe

ct
ra

l p
ha

se
s 

(r
ad

ia
ns

)

(b)

τ
pulse

(a)

T

= 2.7 (fs)

= 17.8 (fs)

FIG. 2. (a) Time dependence of intensity I ∼ |ẼXUV|2 of XUV radiation at the exit of an optically thin medium of atomic hydrogen
simultaneously irradiated by the CO2-laser field with intensity IIR = 1.4×1012 W/cm2 and wavelength λIR = 10.65 μm and the XUV radiation
with intensity IXUV = 2.2×108 W/cm2 and wavelength λXUV = 122.2 nm. The dimensionless parameters in analytical solution are P (1)

ω = 4.45,
P (2)

ω = 0.23, P (1)
γ = 0.05, P (2)

γ = 0.015, and γ̄tr = 0.04�. The dashed red curve and the solid green curve correspond to the analytical solutions
(11) and (13), respectively. The rapidly oscillating dash-dotted blue curve shows the numerical solution of the TDSE for the squared value of
the XUV field strength, |EXUV|2. (b) Fourier transform of the output XUV radiation corresponding to the time dependence in (a). The results
provided by the generalized analytical solution (12) for the amplitudes and phases of the spectral components are shown by red squares and blue
circles, while the predictions of the simplified analytical theory (13) for the spectral amplitudes and phases are plotted by black asterisks and
filled green circles. The lavender curve and cyan crosses show the ab initio solution of the TDSE for the amplitudes of the spectral components,
as well as their phases at the combinational frequencies, ω = ω0 + n�, n = 0, ±1, ±2, . . ., respectively. The resonant spectral component,
ω = ω0, of the output XUV radiation is attenuated to the level of the generated sidebands.

field the applicability conditions of Eq. (13) are well satisfied:
(i) the spectral lines of the resonant transitions are narrow with
respect to the laser frequency due to the very low excited-state
ionization rates; (ii) the sub-laser-cycle oscillations of the
quadratic Stark shift and the ionization rates are not important,
since their amplitudes are small compared to both the laser
frequency and the amplitude of linear Stark splitting; and (iii)
for the considered values of frequency and intensity of the IR
field, the nonadiabatic effects are negligible.

The duration of the bandwidth-limited pulses is inversely
proportional to their bandwidth. Therefore, according to (13),
for a fixed value of modulation index P (1)

ω the pulse duration
(as well as the repetition period) is inversely proportional to the
frequency of the IR field and proportional to its wavelength,
τpulse ∼ �−1 ∼ λIR. Let us further examine the possibilities
to shorten the pulses via the reduction of the wavelength
of the IR field. In the following, we consider the cases
of λIR = 8, 4, and 2 μm. In order to keep the modulation

index constant, P (1)
ω = 4.45, the intensity of the IR field

is chosen to increase inversely proportional to the square
of its wavelength, IIR ∼ λ−2

IR . Figures 3 and 4 correspond
to the IR field with wavelength λIR = 8 and 4 μm and
intensity IIR = 2.5×1012 and 1013 W/cm2, respectively. Due
to increasing time-averaged quadratic Stark shift of the excited
energy levels |2〉 and |3〉, the wavelength of the resonant XUV
radiation grows with increasing intensity of the IR field. For
instance, we have λXUV = 122.6 nm for the 8-μm IR field and
λXUV = 124.6 nm for the 4-μm IR field. The intensity of XUV
radiation is IXUV = 1.6×109 and 109 W/cm2, respectively
(it should be much lower than the intensity of the modulating
field and much higher than the intensity of its high-order
harmonics). In both cases, a train of pulses is produced at
the exit of the medium. It is worth noting that we regard the
parameter values as suitable for the pulse formation if the
peak intensity of spikes in between the pulses does not exceed
half peak intensity of the pulses. Certainly, the “suitability”
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FIG. 3. (a) Same as Fig. 2(a), but for IR field with intensity IIR = 2.5×1012 W/cm2 and wavelength λIR = 8 μm, and XUV radiation with
intensity IXUV = 1.6×109 W/cm2 and wavelength λXUV = 122.6 nm. The dimensionless parameters in analytical solutions are P (1)

ω = 4.45,
P (2)

ω = 0.32, P (1)
γ = 0.21, P (2)

γ = 0.074, and γ̄tr = 0.19�. (b) Fourier transform of the output XUV radiation corresponding to the time
dependence in (a). Designations are the same as in Fig. 2(b).
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FIG. 4. (a) Same as Fig. 2(a), but for IR field with intensity IIR = 1013 W/cm2 and wavelength λIR = 4 μm, and XUV radiation with intensity
IXUV = 109 W/cm2 and wavelength λXUV = 124.6 nm. The dimensionless parameters in analytical solutions are P (1)

ω = 4.45, P (2)
ω = 0.23,

P (1)
γ = 0.8, P (2)

γ = 0.6, and γ̄tr = 1.3�. (b) Fourier transform of the output XUV radiation corresponding to the time dependence in (a).
Designations are the same as in Fig. 2(b).

criterion can be defined in different ways depending on the
application of the pulses which one keeps in mind. In the case
of the 8-μm IR field, Fig. 3, the duration of pulses equals
τpulse = 2 fs and the repetition period is T = 13.3 fs, while for
the 4-μm IR field, Fig. 4, the pulse duration and repetition
period are τpulse = 1.1 fs (which corresponds to 2.6 cycles
of the carrier) and T = 6.7 fs, respectively. Accordingly, the
ab initio calculation results show the possibility of producing
nearly 1-fs few-cycle pulses via the linear Stark effect in
atomic hydrogen (reducing the ultimate pulse duration by a
factor of more than 2 compared to the results of [36]) using
IR fields with wavelength �4 μm. It is noteworthy that at the
cost of reducing the ratio of pulse repetition period to the pulse
duration, one is able to use a shorter wavelength IR field of
intensity IIR � 1013 W/cm2, corresponding to P (1)

ω > 2.4, for
the pulse formation. Experimentally, such an IR field can be
produced by an OPCPA laser system [50], while the resonant
XUV radiation can be generated via nonlinear upconversion
of a visible laser field [51,52]. Further reduction of the
pulse duration can be achieved via the linear Stark effect in
hydrogenlike ions [31,36]. As follows from similarity between
the hydrogenlike ions, using the ions with nucleus charge −eZ,
reducing the wavelengths of both the XUV radiation and the
IR field by a factor of Z2, and increasing the intensity of the
IR field by a factor of Z6 with respect to the case of atomic
hydrogen will result in the formation of pulses with Z2 times
shorter duration and repetition period. In particular, in the
case of Li2+ ions, Z = 3, exposed to the XUV radiation with
wavelength λXUV = 13.84 nm and the IR field with wavelength
λIR = 440 nm and intensity IIR = 7.3×1015 W/cm2, a train of
pulses will be produced with the same shape as in Fig. 4(a) but
with the pulse duration τpulse = 120 as and repetition period
T = 730 as.

With decreasing wavelength and increasing intensity of the
IR field, the results of ab initio calculations for atomic hydro-
gen increasingly deviate from the predictions of the simplified
analytical theory (13); see Figs. 2–4. However, these deviations
are basically reproduced by the generalized analytical solution
(11). Thus, they can be attributed to (i) ionization broadening
of the resonant transition lines, as well as (ii) sub-laser-cycle
oscillations of both the quadratic Stark shift of the excited

energy levels and ionization rates from them. The generalized
analytics shows that in the cases of 8- and 4-μm IR fields,
the distortions of the pulse shape predominantly originate
from the time-independent part of the excited-state ionization
rate, causing broadening of the resonant transition lines and
violation of the inequality γ̄tr 
 �. In the case of shorter
wavelength, λIR = 2 μm, and, respectively, higher intensity,
IIR = 4×1013 W/cm2, of the IR field, which is addressed in
Fig. 5 (the corresponding wavelength of the resonant XUV
radiation is λXUV = 133.4 nm; the XUV intensity is chosen
to be IXUV = 4×109 W/cm2), sub-laser-cycle oscillations of
ionization rate become quite important. As shown in [37], rapid
quasistatic ionization (which depopulates the resonant excited
state within each half cycle of the IR field) itself leads to the
transformation of XUV radiation into few-cycle pulses due to
the periodic switching of its resonant interaction with atoms on
and off twice within the IR field cycle. The intensity of the IR
field assumed in Fig. 5 is not yet enough for such an ionization
switching to occur. However, the peak excited-state ionization
rate already exceeds the amplitude of the linear Stark effect, so
that the simplified analytical solution (13) is not yet applicable,
and the two mechanisms of pulse formation compete with
each other, leading to beatings in the time dependence of the
output XUV intensity; see Fig. 5(a). At the same time, the
generalized analytical solution (11) and (12) remains valid
in this case, being in qualitative agreement with the results of
ab initio solution both in time domain, Fig. 5(a), and frequency
domain, Fig. 5(b).

In summary, the ab initio calculations show that intensities
of the IR field suitable for the ultrashort or few-cycle pulse
formation via the linear Stark effect are limited by the values
at which atomic ionization from the resonant excited state
becomes significant. Further increase of intensity of the IR field
leads to the dominating effect of the excited-state ionization on
the resonant atomic response and provides the conditions for
the few-cycle pulse formation due to the ionization-switching
mechanism [37]. As was previously shown, the ionization
switching can be implemented in arbitrary atomic gas. In the
following section, we consider this regime of pulse formation
in helium, which is more convenient for an experimental
implementation compared to atomic hydrogen.
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FIG. 5. (a) Same as Fig. 2(a), but for IR field with intensity IIR = 4×1013 W/cm2 and wavelength λIR = 2 μm, and XUV radiation with
intensity IXUV = 4×109 W/cm2 and wavelength λXUV = 133.4 nm. The dimensionless parameters in analytical solutions are P (1)

ω = 4.45,
P (2)

ω = 0.5, P (1)
γ = 1.9, P (2)

γ = 1.8, and γ̄tr = 3.8�. (b) Fourier transform of the output XUV radiation corresponding to the time dependence
in (a). Designations are the same as in Fig. 2(b).

III. ATTOSECOND PULSE FORMATION VIA
EXCITED-STATE IONIZATION IN HELIUM

In the case of helium, we use the unperturbed atomic
Hamiltonian from [53], which provides a relatively good
description of the lowest excited states of He in the single-
active-electron approximation.

The incident XUV radiation is tuned in resonance with
the unperturbed atomic transition 1s2 ↔ 1s2p. As shown in
[37], this choice of frequency of the XUV radiation is optimal
for attosecond pulse formation via ionization switching of its
resonant interaction with the atoms: The interaction is switched
on in the vicinity of zero crossings of the IR field strength,
when the atomic transition is nearly unperturbed, and switched
off the rest of the time, when the transition line is strongly
broadened due to rapid excited-state ionization. Similarly to
the case of hydrogen, in order to analyze the results of ab
initio calculations, we derive the generalized analytical theory
taking into account space-time dependencies of both the Stark
effect and excited-state ionization. However, in the case of
helium, it is considerably simpler: since the energy level 1s2p

is nondegenerate, the resonant atomic response is correctly
described within the two-level approximation, in which the
lower and upper energy levels correspond to the states |1〉= 1s2

and |2〉 = 1s2p, respectively. In such a case, the slowly varying
amplitude of the atomic polarization is given by

P̃ (τ ) = 2Ndtra21(τ ), (14)

and the amplitude of the atomic coherence satisfies the
equation

da21

dτ
+ {i[ω21(τ ) − ω0] + γ21(τ )}a21 = i

dtrE0

2h̄
. (15)

Since both |1〉 and |2〉 states possess a central symmetry,
the simplest approximation for the time dependencies of the
instantaneous frequency, ω21(τ ), and decoherence rate, γ21(τ ),
of the resonant transition is harmonic:

ω21(τ ) = ω̄tr + 	(2)
ω cos(2�τ ), (16a)

γ21(τ ) = γ̄tr + 	(2)
γ cos(2�τ ), (16b)

where ω̄tr = ω0
21 + 	(2)

ω and γ̄tr = γ 0
21 + 	(2)

γ . Similarly to the
case of atomic hydrogen, for each combination of intensity and
wavelength of the IR field, the values γ 0

21 and 	(2)
γ are found

via fitting to the results of the auxiliary TDSE calculation for
the time dependence of the probability for an atom, which
was initially excited into the state |2〉 and exposed to the
IR field, to remain nonionized. The fitting gives γ 0

21 = 0 in
all the cases. The amplitude of the quadratic Stark effect,
	(2)

ω , is chosen to provide the best agreement between the
time dependencies of the output XUV intensity calculated
analytically and numerically. The obtained values of 	(2)

ω are
comparable to the values of 	(2)

γ and are much smaller than
those predicted by the perturbation theory, similar to what has
been obtained in the previous studies of Stark effect in strong
fields [54,55].

The steady-state solution of Eqs. (7) and (14)–(16) has the form

ẼScatt(L,τ ) = −E0L
2πNd2

trω0

h̄c
× exp

{−(
iP (2)

ω + P (2)
γ

)
sin (2�τ )

} ∞∑
k,m=−∞

(i)mJk+m

(
P (2)

ω

)
Im

(
P (2)

γ

) exp {i2k�τ }
i(ω̄tr − ω0 + 2k�) + γ̄tr

,

(17)

where P (2)
ω ≡ 	(2)

ω /2� and P (2)
γ ≡ 	(2)

γ /2�.
The Fourier decomposition of (17) is

ẼScatt(L,τ ) = −E0L
2πNd2

trω0

h̄c

∞∑
k,n,l,m=−∞

(i)l+mJn+m−l−k

(
P (2)

ω

)
Jn

(
P (2)

ω

)
Il

(
P (2)

γ

)
Im

(
P (2)

γ

) exp {i2k�τ }
i[ω̄tr − ω0 + 2(n − l)�] + γ̄tr

. (18)
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Along with the generalized analytical solution (17) and (18), the results of TDSE calculations for helium are compared to
the previously derived solution [37], which neglects the Stark effect by assuming ω21(τ ) = ω̄tr and assumes a stepwise temporal
change of the excited-state ionization rate:

γ21(τ ) =
{
γ̄min, 0 � τ < 	tzero

γ̄max, 	tzero � τ < π/�
, γ21(τ + π/�) = γ21(τ ). (19)

The decoherence rate (19) possesses a half-IR-field-cycle
periodicity, taking the minimum value, γ̄min, near a zero
crossing of the IR field at τ = 	tzero/2 (which corresponds
to ϕ0 = [π − �	tzero]/2 in Eq. (2)) and the maximum value,
γ̄max, the rest of the time. In order to find the values γ̄min, γ̄max,
and 	tzero for each combination of intensity and wavelength
of the IR field, we perform the following steps: first, we find
the ratio γ̄max/γ̄min using the nonadiabatic tunneling ionization
rate [56] and calculate the time-averaged decoherence rate

γ̄av ≡ �
π

[γ̄min	tzero + γ̄max( π
�

− 	tzero)]. Then, we use the
exponential function exp(−2γ̄avτ ) for fitting to the results of
auxiliary TDSE calculation for the time dependence of the
probability for an atom in the state |2〉 to remain nonionized
under the action of the IR field. These steps allow us to
represent γ̄min and γ̄max as γ̄min = γ̄min(	tzero) and γ̄max =
γ̄max(	tzero), respectively. Finally, we choose 	tzero to provide
best agreement between the analytical and numerical results
for the time dependence of the output XUV intensity.

In such an approximation, the slowly varying amplitude of the resonantly scattered XUV radiation takes the form

ẼScatt(τ ) =
{

Ẽ
(1)
Scatt(τ ), 0 � τ < 	tzero

Ẽ
(2)
Scatt(τ ), 	tzero � τ < π/�

, ẼScatt(τ + π/�) = ẼScatt(τ ), (20)

Ẽ
(1)
Scatt(τ ) = C̃1 exp {(i	ω − γ̄min)τ } + D̃1,

Ẽ
(2)
Scatt(τ ) = C̃2 exp {(i	ω − γ̄max)(τ − 	tzero)} + D̃2, (21)

where 	ω ≡ ω0 − ω̄tr. The coefficients C̃1, C̃2 and D̃1, D̃2, in their turn, have the form

D̃1 = −E0L
2πNd2

trω0

h̄с(γ̄min − i	ω)
, D̃2 = −E0L

2πNd2
trω0

h̄с(γ̄max − i	ω)
, (22)

C̃1 = (D̃2 − D̃1)
exp{(i	ω − γ̄max)(π/� − 	tzero)} − 1

exp{(i	ω − γ̄max)π/�} exp{(γ̄max − γ̄min)	tzero} − 1
,

C̃2 = (D̃1 − D̃2)
exp{(i	ω − γ̄min)	tzero} − 1

exp{(i	ω − γ̄max)π/�} exp{(γ̄max − γ̄min)	tzero} − 1
. (23)

An analytical expression for the Fourier transform of the
solution (20)–(23) for the resonantly scattered radiation is
given in [37].

In the regime of rapid excited-state ionization, which
depopulates the resonant excited atomic state twice per IR-field
cycle, the generated XUV sidebands are in antiphase with
the incident XUV radiation and in phase with each other,
which corresponds to confinement of the resonant absorption
of the XUV radiation within extremely short time intervals
near zero crossings of the IR field [37]. In such a case,
the resonantly scattered XUV radiation (17), or (20)–(23),
itself represents a train of few-cycle pulses. Therefore, the
generation of attosecond pulses at the output of the medium can
be achieved via suppression of the central spectral component
of XUV radiation (at the frequency of the incident field), for
example, via its resonant absorption in an additional layer of
helium, which is not modulated by the IR field.

The results provided by both analytical solutions (17) and
(18), and (20)–(23), are compared in Figs. 6–10 to the ab initio
TDSE calculations for the helium. Timing of the analytically

calculated envelopes of the output XUV radiation is fitted
to the numerical solutions within a few percent of the laser
cycle. Similarly to the case of atomic hydrogen, this time
shifting originates from inertia of atomic response to the
IR field: The ionized electron continues to participate in the
intra-atomic processes while its wave function overlaps with
the atomic ground state. The TDSE calculations presented
in this section imply the IR field in the form EIR(τ ) =
EC(τ ) sin(�τ ), with EC(τ ) = sin2(�τ/40) for 0 � τ �
20π/� and EC(τ ) = 1 for 20π/� < τ � 90π/�. The XUV
radiation has the form EXUV(τ ) = ẼXUV(τ ) sin[ω0(τ − τ0)],
where τ0 = 30π/�, ẼXUV(τ ) ≡ 0 for 0 � τ � 30π/�,
ẼXUV(τ ) = sin2[�(τ − τ0)/20] for 30π/� < τ � 40π/�,
ẼXUV(τ ) = 1 for 40π/� < τ � 80π/�, and ẼXUV(τ ) =
cos2[�(τ − 80π/�)/20] for 80π/� < τ � 90π/�. The
wavelength and peak intensity of the incident XUV radiation
are λXUV = 58.4 nm and IXUV = 1011 W/cm2, respectively,
for all the plots.

Figure 6 represents the case of helium atoms simultaneously
irradiated by the resonant XUV radiation and the IR field with
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FIG. 6. (a) Time dependence of intensity of XUV radiation at the exit of an optically thin medium of helium irradiated by the IR field
with intensity IIR = 1.5×1014 W/cm2 and wavelength λIR = 4 μm, and the XUV radiation with intensity IXUV = 1011 W/cm2 and wavelength
λXUV = 58.4 nm. The incident spectral component of XUV radiation is suppressed. The dashed red curve and the solid green curve correspond
to the harmonic and steplike analytical solutions (17), and (20)–(23), respectively. The dimensionless parameters in analytical calculations are
P (2)

ω = 15, P (2)
γ = 11.5, γ̄min/� = 0.056, γ̄max/� = 2.7, and �	tzero = 0.2π . The rapidly oscillating dash-dotted blue curve is the numerical

solution of the TDSE for the squared value of the XUV field strength, |EXUV|2. (b) Fourier transform of the output XUV radiation corresponding
to the time dependence in (a). Red squares and blue circles are the amplitudes and phases of the spectral components calculated analytically via
the harmonic analytical solution (18). The corresponding results of the steplike analytical solution (20)–(23) are plotted by black asterisks and
green filled circles. The lavender curve and cyan crosses show the ab initio solution of the TDSE for the amplitudes of the spectral components,
as well as their phases at the combinational frequencies, ω = ω0 + n�, n = 0, ±1, ±2, . . ., respectively. The upper frequency limit corresponds
to the ionization potential of helium.

wavelength λIR = 4 μm and intensity IIR = 1.5×1014 W/cm2.
After suppression of the incident spectral component, the
output XUV radiation corresponds to a train of pulses with
duration τpulse = 600 as and repetition period T = 6.7 fs;
see Fig. 6(a). Both analytical solutions (17), and (20)–(23),
correctly describe the shape of the main pulse. However,
the generalized analytics (17) better reproduces the pedestal.
This is predominantly due to the fact that, for the assumed
strength of the IR field, ionization from the resonant excited
state is due to suppression of the atomic potential barrier
rather than tunneling through it. In such a case, the harmonic
approximation (16b) for the time dependence of the ionization
rate is more suitable than the step-function model (19), which
works better in the tunneling regime [57]. It is worth noting
that accounting for the quadratic Stark effect in the analytical
solution (17) and (18), for the resonantly scattered XUV
radiation in the presence of a rapidly ionizing IR field, as
applied in the present section, is not as critical as accounting
for time-dependent excited-state ionization in Sec. II. In
the former case, there is only a slight improvement of the

agreement with the TDSE calculations. Meanwhile, according
to the ab initio calculations, the intensity of the IR field
required for the pulse formation due to ionization switching
of the resonant interaction is one order of magnitude higher
than that estimated from the tunneling formula [27]. This
follows from the fact that the tunneling models overestimate
the ionization rate in the barrier-suppression regime [57,58].
As seen in Fig. 6(b), which plots the Fourier transform of
the output XUV radiation, for the chosen parameters of the
IR field, the generalized analytical solution (18) provides
good agreement with the numerical results both in time- and
frequency-domain representations.

Let us further examine the possibilities to reduce the pulse
duration via reducing the wavelength of the IR field (leading
to shrinking of the overall time scale) or via increasing
the intensity of the IR field (leading to the speedup of the
excited-state ionization). Figures 7 and 8 represent the case
of the helium atoms irradiated by the IR field with the same
intensity as in Fig. 6, IIR = 1.5×1014 W/cm2, but with shorter
wavelengths. The atoms are simultaneously exposed to the
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FIG. 7. (a) Same as Fig. 6(a), but for IR field with wavelength λIR = 2 μm. The dimensionless parameters in the analytical solutions are
P (2)

ω = 4.0, P (2)
γ = 4.6, γ̄min/� = 0.14, γ̄max/� = 1.5, and �	tzero = 0.25π . (b) Fourier transform of the output XUV radiation corresponding

to the time dependence in (a). Designations are the same as in Fig. 6(b).
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FIG. 8. (a) Same as Fig. 6(a), but for IR field with wavelength λIR = 1 μm. The dimensionless parameters in the analytical solutions are
P (2)

ω = 1.0, P (2)
γ = 1.2, γ̄min/� = 0.22, γ̄max/� = 0.88, and �	tzero = 0.4π . (b) Fourier transform of the output XUV radiation corresponding

to the time dependence in (a). Designations are the same as in Fig. 6(b).

resonant XUV radiation. Figure 7 corresponds to the IR field
with wavelength λIR = 2 μm. In this case, the output XUV
radiation has a form of a pulse train with pulse duration
τpulse = 500 as and repetition period T = 3.3 fs. As seen from
the comparison of Figs. 7 and 6, the twofold reduction of the
wavelength of the IR field expectedly leads to a proportional
reduction of the pulse repetition period. However, the duration
of the pulses is only slightly reduced. This is due to the fact
that the pulse duration is determined by the ionization-limited
lifetime of the resonant excited state |2〉, which approximately
equals 	tzero and is nearly the same for 2- and 4-μm IR fields
of the same intensity. In Fig. 8 we show the time dependence of
the intensity and the spectrum of the output XUV radiation for
the case of helium irradiated by the resonant XUV field and the
IR field with wavelength λIR = 1 μm. The resonant component
of the output XUV radiation is suppressed. For such a short
wavelength of the IR field, the pulse formation does not occur,
since the intensity of the IR field is not high enough to provide
complete atomic ionization from the resonant excited state
during the half cycle of the IR field (which is four times shorter
compared to the half cycle of the 4-μm IR field assumed in
Fig. 6). Correspondingly, ionization never switches off the
resonant interaction between the XUV field and the atoms, and
the necessary condition for pulse formation [37] is not met. As

follows from Figs. 7 and 8, for all the considered wavelengths
of the IR field, the analytical solutions (17) and (18), and
(20)–(23), are in rather good agreement with the results
of TDSE calculations. This is due to the quasistatic nature
of excited-state ionization in the barrier-suppression regime
[57]. However, the generalized solution (17) and (18) better
reproduces the results of ab initio calculations due to a proper
description of time dependence of the excited-state ionization
rate in the barrier-suppression regime and accounting for the
sub-laser-cycle quadratic Stark effect.

Figures 9 and 10 show the results of the study aimed to
examine the possibilities to reduce the pulse duration via
increasing the intensity of the IR field. The wavelength of
the IR field is fixed to λIR = 4 μm. Figure 9 corresponds to
the laser intensity IIR = 4×1014 W/cm2. As seen from the
comparison of this figure with Fig. 6, the increase of the IR
field intensity leads to a slight reduction of the pulse duration,
from τpulse = 600 as to τpulse = 550 as, and suppression of
the pulse pedestal. The reason for such a slow decrease of
the pulse duration with increasing laser-field intensity is that
the duration of pulses is predominantly determined by the
length of the time interval near zero crossing of the IR field
during which the ionization rate is negligible and the resonant
interaction occurs rather than by the peak ionization rate.
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FIG. 9. (a) Same as Fig. 6(a), but for IR field with intensity IIR = 4×1014 W/cm2. The dimensionless parameters in the analytical
solutions are P (2)

ω = 25, P (2)
γ = 20.7, γ̄min/� = 0.24, γ̄max/� = 6.2, and �	tzero = 0.16π . (b) Fourier transform of the output XUV radiation

corresponding to the time dependence in (a). Designations are the same as in Fig. 6(b). (i) Cyan crosses and (ii) dark blue pluses show the
results of the TDSE solution for the phases of spectral components at (i) the combinational frequencies, ω = ω0 + n�, n = 0,±1, ±2, . . .,
and (ii) the high-order harmonics of the IR field, ω = (2k + 1)�, k = 1, 2, . . ., respectively.
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to the time dependence in (a). Designations are the same as in Fig. 9(b).

With increasing intensity of the IR field, this time interval
is shortened quite slowly; therefore, the dependence of the
pulse duration on the laser intensity is weak. In Fig. 10 we
show the time dependence of intensity and the spectrum of
the output XUV radiation after suppression of its resonant
component for the case of the IR field with wavelength
λIR = 4 μm and intensity IIR = 8×1014 W/cm2. As follows
from Fig. 10(a), the duration of pulses produced from the
resonant radiation is reduced to τpulse = 400 as. However,
along with the pulses of resonantly scattered radiation, the
other spikes appear due to HHG of the modulating IR field.
Indeed, for the parameters of the XUV and IR fields related to
this case, there are two distinct groups of spectral components
of comparable amplitudes; see Fig. 10(b). The first group
corresponds to the combinational frequencies of the XUV
and IR fields, ω = ω0 + 2n�, n = ±1,±2, . . ., while the
second group is the high-order harmonics of the IR field,
ω = (2k + 1)�, k = ±1,±2, . . . Unless the depletion of the
ground state is considerable, the HHG yield is proportional to
the ground-state ionization rate and, thus, grows exponentially
with increasing IR field strength. Even a small increase in
laser intensity beyond the above-mentioned value will lead to
domination of the high-harmonic signal over the resonantly
scattered radiation. Thus, for the intensities of the incident
XUV radiation discussed here, the ultimate intensity of the
IR field suitable for few-cycle pulse formation from XUV
radiation via ionization switching of its resonant interaction
with atoms is limited to the value at which ionization from
the ground atomic state, leading to HHG of the IR field,
becomes significant. At the same time, as follows from the
results of calculations based on few-level and quasistatic
approximations, the ionization-switching mechanism works
even if the intensity of the incident XUV radiation reaches
a quarter intensity of the modulating IR field [40]. In such a
case, HHG via atomic ionization from the ground state does not
hamper sub-fs pulse formation from XUV radiation due to the
ionization-switching mechanism. Instead, ultimate capabilities
for the pulse formation are limited by depletion of the atomic
ground state through (i) direct ionization by the IR field and
(ii) resonant excitation by the XUV radiation followed by
excited-state ionization by the IR field.

In summary, based on the ab initio solution of the TDSE,
we have shown the possibility to produce trains of ∼500-as

pulses from the XUV radiation with wavelength 58.4 nm
via ionization switching of its resonant interaction with the
helium atoms dressed by the IR field with wavelength 2–4 μm
and intensity (1.5−4)×1014 W/cm2. Experimentally, the IR
field with these parameters can be generated by a parametric
laser system [50], while the resonant XUV radiation can be
produced, for example, via the resonantly enhanced HHG
of Ti:sapphire laser field in an InP plasma plume [23,25].
As discussed in [37,38], few-cycle pulse formation via
the ionization-switching mechanism can be implemented in
arbitrary atomic gas. In particular, TDSE calculations show
the possibility to produce pulses similar to those plotted in
Figs. 6–10 from XUV radiation with wavelength 121.6 nm in
atomic hydrogen dressed by the IR field with wavelength 4 μm
and intensity of the order of 1014 W/cm2. The pulses of shorter
duration can be produced using ions with higher ionization
potential from the ground state. It is worth noting that few-
cycle pulses similar to those discussed above can be produced
via the ionization-switching mechanism in media with lower
ionization potential also. In such a case, the carrier frequency
of the pulses can be considerably lower, which would make
them especially valuable for nonionizing steering and probing
transient physical, chemical, and biological intra-atomic and
intramolecular processes in various media.

IV. CONCLUSION

In the present paper, we have studied ultimate capabili-
ties for few-cycle pulse formation from XUV radiation via
the resonant interaction with IR-field-dressed atoms. This
study was carried out on the basis of a full time-dependent
Schrödinger equation. Taking into account all the multiphoton
processes in the considered systems in the single-active-
electron approximation, we have confirmed the possibilities
for few-femtosecond pulse formation via the linear Stark effect
in atomic hydrogen, as well as attosecond pulse formation
via quasistatic excited-state ionization in helium. We have
found the ultimate limitations on the parameters (the minimum
wavelength and the maximum intensity) of the IR field suitable
for the few-cycle pulse formation, as well as characteristics of
the produced pulses. Particularly, in the case of XUV pulse
formation via the linear Stark effect in atomic hydrogen, the
output pulses can be as short as 1 fs, which is two times
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shorter than predicted by the previous calculations based on
the three-level approximation [36]; the laser intensity can be
up to 1013 W/cm2, while the laser wavelength can be as short
as 4 μm. The ionization switching of the resonant interaction
in helium requires the laser intensity up to 4×1014 W/cm2,
whereas the laser wavelength can be as short as 2 μm; the
duration of output pulses is ∼500 as.

In order to analyze the results of ab initio calculations, we
derived the generalized analytical solution, which takes into
account the interplay between sub-IR-field-cycle variations of
position and width of the resonant atomic energy levels due
to the Stark effect and excited-state ionization, respectively.
The derived analytical solution is in good agreement with
the results of TDSE calculations both in the case of atomic
hydrogen in a relatively weak IR field and in the case of helium
in a strong IR field. Thus such a solution can be used for
the analysis of the various resonant phenomena in a system
of IR-field-dressed atoms. Based on a comparison of the
numerical and analytical solutions, we revealed the limitations
of the considered method for few-cycle pulse formation. In
particular, the possibility of shortening the pulses produced via
the linear Stark effect in atomic hydrogen by increasing the
intensity of the IR field is limited by the growing role of exited-
state ionization, which leads to a misalignment of phases of
the generated sidebands. The ultimate intensity of the IR field
suitable for attosecond pulse formation via rapid quasistatic
ionization from the resonant excited state of helium is limited
to a value at which atomic ionization from the ground state
becomes significant, entailing HHG and blurring the produced
pulses by the high-harmonic signal. To overcome both these
limitations and produce shorter pulses, we proposed the use
of the medium of hydrogenlike or heliumlike ions with higher

ionization potentials from both the ground and the excited
states. We also pointed out the possibility to produce few-cycle
pulses with lower carrier frequency, in a close proximity to
resonances of various atomic and molecular systems, using
media with lower ionization potential. The paper contains
accurate estimation of wavelengths and intensities of XUV
and IR fields suitable for experimental implementation of
the method. The proposed method provides a unique tool
for nonionizing steering of electronic processes inside atoms,
molecules, and solids at the few-femtosecond and attosecond
time scales, thus extending the capabilities of attosecond
science. Furthermore, the method is very promising for
transformation of the picosecond pulses produced by the x-ray
plasma lasers into subfemtosecond pulses, which could widely
extend the applications of such lasers for element selective
imaging of the fast dynamical processes in biochemistry and
material sciences.
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