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Robust force sensing for a free particle in a dissipative optomechanical system
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Sumei Huang1 and G. S. Agarwal2
1Room 105, Building 4, Erqu, Fuzhou Erhua Xincun, Fuzhou, Fujian 350011, China

2Institute for Quantum Science and Engineering and Department of Biological and Agricultural Engineering,
Texas A&M University, College Station, Texas 77845, USA
(Received 13 October 2016; published 27 February 2017)

We theoretically investigate optical detection of a weak classical force acting on a free particle in a dissipative
coupling optomechanical system with a degenerate parametric amplifier (PA). We show that the PA allows one to
achieve the force sensitivity far better than the standard quantum limit (SQL) over a broad range of the detection
frequencies. The improvement depends on the parametric gain and the driving power. Moreover, we discuss the
effects of the mechanical damping and the thermal noise on the force sensitivity. We find that the robustness
of the force sensitivity is much better than the SQL against the mechanical damping and the thermal noise is
achievable in the presence of the PA with a high parametric gain. For the temperature T = 1 K, the improvement
in sensitivity is better by a factor of about 7 when the driving power is set at a value corresponding to the SQL
with no PA.
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I. INTRODUCTION

The dissipative optomechanical coupling systems have
recently attracted considerable attention. The dissipative cou-
pling is characterized by the dependence of the cavity decay
rate on the displacement of the mechanical oscillator [1].
Several dissipative optomechanical systems have been demon-
strated experimentally; these include a microdisk resonator
coupled to a vibrating nanowaveguide [2], a Michelson-Sagnac
interferometer containing a moving membrane [3], and a
photonic crystal split-beam nanocavity [4,5]. The dissipative
coupling offers several advantages, for example, it has been
shown that the dissipative coupling can lead to near ground-
state cooling of the mechanical resonator in the unresolved
sideband limit [1,3,4,6–8] and the squeezing of the mechanical
oscillator [9–11]. A variety of other physical effects with
dissipative coupling have been discussed: the normal mode
splitting [12,13], the electromagnetically induced transparency
[13], the squeezing of the output light [14,15], and many others
[16,17]. An important application of the dissipative coupling
is in the sensitive detection of the force and torque [5,18].
Recently, the dissipative optomechanical coupling has been
shown to overcome the standard quantum limit (SQL) [18].
It has been found that the sensitivity for measurement of a
classical signal force acting on a free particle in a dissipative
optomechanical system is comparable with that in a dispersive
optomechanical system but has much wider measurement
bandwidth [18].

In an earlier paper the present authors had demonstrated
the great advantage of using a parametric amplifier (PA) in
the optomechanical cavity [19]. For example, it was shown
that the dispersive optomechanical coupling systems with
parametric amplification can aid in cooling the movable
mirror [19] and in observing the normal-mode splitting in the
coupling of the movable mirror and the output field [20]. Our
original suggestion [19] has been followed by many others
[21–24].

Guided by this wide range of new features when the PA is
in the cavity, we study the dissipative optomechanical system

with a degenerate PA. It is found that the PA greatly enlarges
the range of detection frequencies in which the force sensitivity
is better than the SQL, and largely improve the force sensitivity.
We further study the effects of the mechanical damping and
the mechanical thermal noise on the force sensitivity in the
absence and presence of the PA. We show that the detrimental
effects of the mechanical damping and the thermal noise on the
force sensitivity can be significantly suppressed in the presence
of the PA with a high parametric gain. For the temperature
T = 1 K, the improvement in the force sensitivity can be by a
factor of about 7 [25].

It is to be noted that the detection force using the
dispersive optomechanical system has a long history with
many pioneering contributions. To realize high sensitive force
measurements, many approaches have been proposed to reduce
quantum noise and surpass the SQL in the force measurement.
It has been shown that the force sensitivity can be improved
by using a squeezed vacuum [26,27], optomechanical velocity
measurement [28,29], Kerr media [30], a dual-mechanical-
resonator scheme [31,32], a signal-recycling mirror [33,34],
two-tone drives [35,36], a second, auxiliary optical cavity
coupled to the optomechanical cavity [37–39], or a mirror-in-
the-middle optomechanical system with two coupled cavity
modes [40]. There are also proposals combining optomechan-
ical systems with ultracold atoms [41,42]. However, on the
experimental side using ultracold atoms the SQL is still not
beaten [43].

The paper is organized as follows. In Sec. II, we introduce
the model, give the quantum Langevin equations and the
steady-state mean values, calculate the spectrum of fluctua-
tions in the generalized quadrature of the output light, give
the analytic expression for the force sensitivity, and find the
optimal quadrature angle for the maximal force sensitivity.
Then we analyze how the PA in the dissipative system affects
the force sensitivity. In Sec. III, we study the influences of
the mechanical damping and the thermal noise on the force
sensitivity with and without a PA in the dissipative system. In
Sec. IV, we summarize our main conclusions.
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II. MODEL-PARAMETRIC AMPLIFIER IN
AN OPTOMECHANICAL CAVITY WITH A

PARTICLE OF MASS m

We consider a degenerate PA in an optomechanical system
[18] where a free particle with mass m is dissipatively coupled
to a cavity field c with resonance frequency ωc. The cavity
field is driven by a strong coherent light with frequency ωl

and amplitude εl . The parametric amplifier is coupled to the
cavity mode. There is no parametric drive on the free particle.
For a free particle, the potential energy is zero, its momentum
and kinetic energy are conserved. In the degenerate PA, a
pump field with a frequency of 2ωl interacts with a second-
order nonlinear optical crystal, thus the output of the PA is at
frequency ωl . The Hamiltonian of the system in the rotating
frame at the input laser frequency ωl reads

H = h̄(ωc − ωl)c
†c + p2

2m
+ ih̄

√
2κ(q)[εl(c

† − c)

+ c†cin − c†inc] + ih̄G(c†2 − c2), (1)

where the photon decay rate is dependent on the displacement
q of the free particle, denoted by κ(q), p is the momentum of
the free particle, q and p operators satisfy the commutation
relation [q,p] = ih̄, εl is dependent on the laser power ℘

by εl =
√

℘

h̄ωl
. The cin is the input vacuum noise with zero

mean value. The G is the parametric gain of the PA, which is
proportional to the pump driving the PA. If the displacement
q of the free particle is very small, κ(q) ≈ κ0 + κcf q =
κ0(1 + ηq), where κ0 is the photon decay rate for q = 0, κcf

is the dissipative coupling constant between the cavity field
and the free particle, and η = κcf /κ0. The parameter η using
the realizable system of a Michelson-Sagnac interferometer
with a silicon nitride membrane [3] is 4.182×108 1

m [44].
Thus

√
2κ(q) ≈ √

2κ0(1 + η

2 q). In Eq. (1), the first two terms
are the free energies of the cavity field and the free particle,
respectively. The third term describes the couplings of the
cavity field with an external laser and the input vacuum noise
cin. The last term shows the interaction between the cavity
field and the PA. In the following, we consider the case that the
cavity mode is resonantly pumped by the input laser (ωc = ωl).
If there is an external weak force fex with zero mean value
acting on the free particle, we use Heisenberg’s equation of
motion to find the equations of motion for the system operators.
The equations of motion are given by

q̇ = p

m
,

ṗ = −
√

2κ0
η

2
ih̄[εl(c

† − c) + c†cin − c†inc] + fex,

ċ =
√

2κ0

(
1 + η

2
q

)
(εl + cin) + 2Gc† − κ0(1 + ηq)c. (2)

We assume that the steady-state displacement of the free
particle is qs = 0. In the steady state, q̇ = 0, ṗ = 0, ċ = 0,
we find the steady-state mean value ps of the momentum of
the free particle and the steady-state amplitude cs of the cavity
field

ps = 0, cs =
√

2κ0εl

κ0 − 2G
. (3)

We have to require G < κ0
2 to make sure that the system is

stable. Note that the equations of motion are nonlinear, which
can be linearized in the strong driving regime |cs | � 1. By
writing each operator in Eq. (2) as q = qs + δq, p = ps + δp,
c = cs + δc, where δq, δp, δc are the small fluctuation
operators with zero mean values, keeping the first order in
the fluctuations, we obtain the linearized equations for the
fluctuating operators

δq̇ = δp

m
,

δṗ = −
√

2κ0
η

2
ih̄[εl(δc

† − δc) + cs(cin − c†in)] + fex,

δċ = −κ0δc − (κ0 + 2G)
η

2
csδq + 2Gδc† +

√
2κ0cin. (4)

A. Fluctuations in the output field

By taking a Fourier transform f (t) = 1
2π

∫ +∞
−∞ f (ω)e−iωtdω

of all the operators and noise sources in Eq. (4), we obtain the
fluctuation of the cavity field in the frequency domain

δc(ω)

= 1

(κ0 − iω)2 − 4G2

[
−(κ0 − iω + 2G)(κ0 + 2G)

η

2
cs

× δq(ω) +
√

2κ0(κ0 − iω)cin(ω) + 2G
√

2κ0c
†
in(−ω)

]
,

(5)

where the position fluctuation of the free particle is given by

δq(ω) = ih̄η
√

κ0cs√
2mω2

4G − iω

κ0 − iω + 2G

× [cin(ω) − c†in(−ω)] + fex(ω)

−mω2
. (6)

The optical output field is related to the input field via the
standard input-output relation [45]

cout =
√

2κ(q)c − cin, (7)

the fluctuation of the output field can be written as

δcout(ω) =
√

2κ0δc(ω) +
√

2κ0
η

2
csδq(ω) − cin(ω). (8)

Substituting δc(ω) into δcout(ω), we have

δcout(ω) =
√

2κ0
η

2
cs

−iω − 4G

κ0 − iω − 2G
δq(ω)

+
[

2κ0(κ0 − iω)

(κ0 − iω)2 − 4G2
− 1

]
cin(ω)

+ 4Gκ0

(κ0 − iω)2 − 4G2
c†in(−ω). (9)

We note that in Ref. [18], the authors restrict the detection
range of frequencies to those much smaller than 2κ0. This is
because they were discussing a direct probe of the velocity
of the free particle. We are discussing the force sensitivity,
which is related to the time derivative of the momentum. We
do not need such a condition. For convenience, we introduce
the amplitude and phase quadratures of the input vacuum noise
as xin = 1√

2
(cin + c

†
in) and yin = 1

i
√

2
(cin − c

†
in), and introduce
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the amplitude and phase quadratures of the output field as
δxout = 1√

2
(δcout + δc

†
out) and δyout = 1

i
√

2
(δcout − δc

†
out). The

amplitude quadrature of the output field is found to be

δxout(ω) = 1√
2

[δcout(ω) + δc
†
out(−ω)]

= κ0 + 2G + iω

κ0 − 2G − iω

[
xin(ω) + K(ω)yin(ω)

+
√

2K(ω)u(ω)
fex(ω)

FSQL(ω)

]
, (10)

where

K(ω) = J κ2
0

(κ0 + 2G)2 + ω2

ω2 + 16G2

ω2
,

J = h̄η2c2
s

mκ0
,

u(ω) =
√

16G2 + ω2√
(κ0 + 2G)2 + ω2

κ0 + 2G − iω

ω + 4Gi
i,

FSQL(ω) =
√

2mh̄ω2, (11)

where K(ω) and J are dimensionless, J is proportional to
the power ℘ of the input laser, FSQL(ω) is the SQL for a
free particle’s sensitivity to a weak classical force [18], its
dimension is NHz−1/2. In Eq. (10), the first term is the photon
shot noise from the amplitude quadrature of the input vacuum
noise. The second term is the radiation back action noise from
the phase quadrature of the input vacuum noise, which is
proportional to the input laser power. The third term is from
the external weak force. Moreover, the phase quadrature of the
output field is found to be

δyout(ω) = 1

i
√

2
[δcout(ω) − δc

†
out(−ω)]

= κ0 − 2G + iω

κ0 + 2G − iω
yin(ω). (12)

It is found that the phase quadrature of the output field only
depends on the phase quadrature of the input vacuum noise. In
the absence of the PA (G = 0), Eqs. (10) and (12) are the same
as the results in Ref. [18]. We define an arbitrary quadrature of
the output field as δzout(ω) = δxout(ω) cos φ + δyout(ω) sin φ

with φ being the homodyne phase angle determined by the
local oscillator. Through calculations, we find

δzout(ω) = κ0 + 2G + iω

κ0 − 2G − iω

{
xin(ω) cos φ

+
[
K(ω) cos φ + 1

A(ω)
sin φ

]
yin(ω)

+
√

2K(ω)u(ω)
fex(ω)

FSQL(ω)
cos φ

}
, (13)

where A(ω) = (κ0+2G)2+ω2

(κ0−2G)2+ω2 . Here the quadrature δzout(ω) de-
pends on the amplitude quadrature of the input vacuum
noise, the phase quadrature of the input vacuum noise, and
the external force. Hence δzout(ω) contains information on
the weak force. So the weak force can be detected by

performing homodyne detection of the quadrature δzout(ω) of
the output field from the cavity [45]. We define the spectrum
of fluctuations in the quadrature δzout(ω) of the output
light as

1
2 [〈δzout(ω)δzout(
)〉 + 〈δzout(
)δzout(ω)〉]

= 2πSzout(ω)δ(ω + 
). (14)

With the help of the correlation functions of the input vacuum
noise

〈xin(ω)xin(
)〉 = 〈yin(ω)yin(
)〉 = 1

2
2πδ(ω + 
),

〈xin(ω)yin(
)〉 = −〈yin(ω)xin(
)〉 = i

2
2πδ(ω + 
), (15)

we obtain the following expression for the spectrum of the
output light

Szout(ω) = A(ω)

{
1

2
cos2 φ + 1

2

[
K(ω) cos φ + 1

A(ω)
sin φ

]2

+ 2K(ω) cos2 φ
Sex(ω)

F 2
SQL(ω)

}
, (16)

where 2πSex(ω)δ(ω + 
) = 〈fex(ω)fex(
)〉, and F 2
SQL(ω) is

the spectral density of the SQL for force at frequency ω.

B. Force sensitivity beyond the SQL with the PA

In this section, we demonstrate how the use of the PA in the
cavity can improve the force sensitivity far beyond the SQL
for operating parameters for which the sensitivity is at the
SQL in the absence of the PA. We denote the spectrum of the
output field without the external force fex acting on the free
particle as Sf lcut (ω), then the force sensitivity of the system is
determined by the quantity

R(ω) = Sfluct(ω)
∂Szout(ω)
∂Sex (ω)

= F 2
SQL(ω)

1

4K(ω)

{
1 +

[
K(ω)+ 1

A(ω)
tan φ

]2}
. (17)

The force sensitivity R(ω) has two contributions: the first term
is the contribution of the photon shot noise from the amplitude
quadrature of the input vacuum noise, which is inversely
proportional to the laser power ℘, the second term is the
contribution of the radiation back-action noise from the phase
quadrature of the input vacuum noise. We give a comparison
of the force sensitivity of the mechanical oscillator with the
free particle in the Appendix. It is found that the two agree well
if the detection frequency is much bigger than the mechanical
frequency ωm, which is much smaller than κ0. The dimension
of R(ω) is N2Hz−1. If the dimensionless quantity R(ω)

F 2
SQL(ω)

is

less than 1
2 , which is the spectral density of the vacuum state

(SQL), the SQL is beaten. We optimize the homodyne phase
φ so as to minimize R(ω). When the second term in R(ω) is
zero, we obtain the optimal phase

tan φopt = −A(ω)K(ω), (18)
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FIG. 1. The contour plot of K(ω) = 1/2 as functions of the
detection frequency ω/κ0 and the parametric gain G/κ0 when
J0 = 1/2.

the minimum value of R(ω) is found to be

R(ω)min = F 2
SQL(ω)

4K(ω)
, (19)

which corresponds to the maximal force sensitivity. For
convenience, we define

μ(ω) = R(ω)min

F 2
SQL(ω)

= 1

4K(ω)
, (20)

which is dimensionless. Note that μ(ω) is only dependent on
the photon shot noise. Hence, by choosing optimal homodyne
phase φopt, the contribution of the radiation backaction noise
from the phase quadrature of the input vacuum noise in R(ω)
can be totally eliminated. Note that A(ω) > 0 and K(ω) � 0,
thus tan φopt < 0, so the optimal phase φopt should be within
the range −π

2 < φopt � 0.
For convenience, J can be written as

J = h̄η2c2
s

mκ0
= J0

1(
1 − 2G

κ0

)2 . (21)

Without the PA (G = 0), J = J0 = h̄η2c2
s0

mκ0
, and cs0 =

√
2κ0εl

κ0
is

the steady-state amplitude of the cavity field without the PA. In

this case, A(ω) = 1, K(ω) = J0
κ2

0

κ2
0 +ω2 , tan φopt = −J0

κ2
0

κ2
0 +ω2 ,

μ(ω) = 1
4J0

(1 + ω2

κ2
0

). Here μ(ω) increases with ω, but the

detection frequency ω could not be zero, the minimum value of
μ(ω) is about 1

4J0
when ω/κ0 � 1. The effect of the parameter

J0 on the maximal force sensitivity for G = 0 has been
shown in Ref. [18]. Using the parameters η = 4.182×108 1

m ,
m = 100 ng, κ0 = 2π×1 MHz, the wavelength of the input
laser λ = 1064 nm, J0 = 1/2 requires rather large values
of the driving powers ℘ = 10 W [44]. Without the PA, the
minimum value of μ(ω) is about 1

2 , the force sensitivity is at
the SQL. With improved dissipative systems, one should be
able to reduce power levels as J0 scales as η2.

Figure 1 shows the contour plot ofK(ω) = 1/2 as functions
of the detection frequency ω/κ0 and the parametric gain G/κ0

FIG. 2. The force sensitivity beyond the SQL: the contour plot of
R(ω)

F 2
SQL

(ω)
of the force measurement as functions of the detection phase

φ/π and the detection frequency ω/κ0 for different parametric gains
G = 0 (top), G = 0.4κ0 (bottom) when J0 = 1/2.

when J0 = 1/2. This curve represents the SQL since μ(ω) =
1

4K(ω) = 1/2. It is seen that the detection frequency ω increases
with increasing the parametric gain G of the PA. This is an
advantage as one does not have to detect within the width of
the resonator.

The contour plot of R(ω)
F 2

SQL(ω)
as functions of the detection

phase φ/π and the detection frequency ω/κ0 for different
parametric gains is shown in Fig. 2 when J0 = 1/2. For
G = 0, the minimum value of R(ω)

F 2
SQL(ω)

is in the range of

0.5–0.6. For G = 0.4κ0, the minimum value of R(ω)
F 2

SQL(ω)
can

be less than 0.05. Thus, the PA greatly improves the force
sensitivity.

Figure 3 shows the contour plot of μ(ω) as functions of the
detection frequency ω/κ0 and the parametric gain G/κ0 when
J0 = 1/2. In the absence of the PA (G = 0), the maximal force
sensitivity is at the SQL when ω is close to zero. In the presence
of the PA, increasing the parametric gain G makes the maximal
force sensitivity better than the SQL achievable in a larger
frequency band. For example, when 0.28 � G/κ0 < 0.5, to
make the maximal force sensitivity μ(ω) less than 0.5, the
detection frequency can be in the range of 0 < ω/κ0 < 2.
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FIG. 3. The contour plot of μ(ω) as functions of the detection
frequency ω/κ0 and the parametric gain G/κ0 when J0 = 1/2.

Moreover, for G 	= 0, we simplify Eq. (20) as

μ(ω) = 1

4J0

(
1 − 2G

κ0

)2[(
1 + 2G

κ0

)2

+ ω2

κ2
0

]
ω2

ω2 + 16G2
.

(22)

Since G < κ0
2 , when ω/G � 1, μ(ω) � 1

4J0
. Thus, the min-

imum value of μ(ω) could be much smaller than that when
there is no PA in the cavity. However, now the result is very
sensitive to the damping and temperature of the particle. This
will be discussed in Sec. III.

III. FORCE SENSITIVITY OF A FREE PARTICLE
WITH DAMPING AND THERMAL FLUCTUATIONS

In practical situations, due to the interaction of the free
particle with a thermal environment, we need to take into
account the momentum damping and the thermal noise of the
free particle. In this case, the evolutions of the system operators
become

q̇ = p

m
,

ṗ = −
√

2κ0
η

2
ih̄[εl(c

†−c) +c†cin − c†inc] − γmp + ξ + fex,

ċ =
√

2κ0

(
1 + η

2
q

)
(εl + cin) + 2Gc† − κ0(1 + ηq)c, (23)

where γm is the mechanical damping rate of the free particle,
ξ is the thermal noise describing the coupling of the free
particle to the thermal environment; it has zero mean value.
It is assumed that the steady-state displacement qs of the free
particle is zero. The steady-state mean values of the operators
p and c are given by

ps = 0, cs =
√

2κ0εl

κ0 − 2G
. (24)

In the frequency domain, we obtain the fluctuation of the cavity
field

δc(ω)

= 1

(κ0 − iω)2 − 4G2

[
− (κ0 − iω + 2G)(κ0 + 2G)

η

2
cs

× δq(ω) +
√

2κ0(κ0 − iω)cin(ω) + 2G
√

2κ0c
†
in(−ω)

]
,

(25)

where the position fluctuation of the free particle is given by

δq(ω) = ih̄η
√

κ0cs√
2mω(ω + iγm)

4G − iω

κ0 − iω + 2G
[cin(ω)

− c†in(−ω)] + ξ (ω) + fex(ω)

−mω(ω + iγm)
. (26)

Then using the input-output relation [45], we obtain the
fluctuation of the output field

δcout(ω) =
√

2κ0
η

2
cs

−iω − 4G

κ0 − iω − 2G
δq(ω)

+
[

2κ0(κ0 − iω)

(κ0 − iω)2 − 4G2
− 1

]
cin(ω)

+ 4Gκ0

(κ0 − iω)2 − 4G2
c†in(−ω). (27)

The amplitude of the output cavity field is found to be

δxout(ω) = κ0 + 2G + iω

κ0 − 2G − iω

[
xin(ω) + Kn(ω)yin(ω)

+B(ω)u(ω)
ξ (ω)

FSQL(ω)
+ B(ω)u(ω)

fex(ω)

FSQL(ω)

]
,

(28)

where

B(ω) =
√

2Kn(ω)√
1 + i

γm

ω

,

Kn(ω) = J κ2
0

(κ0 + 2G)2 + ω2

ω2 + 16G2

ω(ω + iγm)
. (29)

Here Kn(ω) is dimensionless, and J , u(ω), and FSQL(ω) are
the same as those in Eq. (11). Moreover, we obtain the phase
quadrature of the output field

δyout(ω) = κ0 − 2G + iω

κ0 + 2G − iω
yin(ω). (30)

The generalized quadrature δzout(ω) of the output field is given
by

δzout(ω) = κ0 + 2G + iω

κ0 − 2G − iω

{
xin(ω) cos φ

+
[
Kn(ω) cos φ + 1

A(ω)
sin φ

]
yin(ω)

+B(ω)u(ω)
ξ (ω)

FSQL(ω)
cos φ

+B(ω)u(ω)
fex(ω)

FSQL(ω)
cos φ

}
, (31)
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where A(ω) is the same as that in Eq. (13). In Eq. (31), the
first two terms are from the amplitude and phase quadratures
of the input vacuum noise, respectively. The third term is from
the thermal force ξ (ω). The last term is from the external force
fex(ω). Using the correlation functions of the input vacuum
noise in Eq. (15) and the correlation function of the thermal
noise

〈ξ (ω)ξ (
)〉 = 4πmkBT γmδ(ω + 
), (32)

where kB is the Boltzmann constant, T is the temperature of
the environment, we obtain the spectrum of the output light

Szout(ω) = A(ω)

{
1

2
cos2 φ + 1

2

∣∣∣∣Kn(ω) cos φ + 1

A(ω)
sin φ

∣∣∣∣
2

+ |B(ω)|2 cos2 φ
2mkBT γm

F 2
SQL(ω)

+ |B(ω)|2 cos2 φ
Sex(ω)

F 2
SQL(ω)

}
. (33)

The force sensitivity of the system is determined by the
quantity

R(ω) = F 2
SQL(ω)

{
1

2|B(ω)|2 + 1

2|B(ω)|2
∣∣∣∣Kn(ω)

+ 1

A(ω)
tan φ

∣∣∣∣
2

+ kBT

h̄ω2
γm

}
. (34)

In Eq. (34), the first term is the contribution of the photon shot
noise from the amplitude quadrature of the input vacuum noise.
The second term is the contribution of the radiation backaction
noise from the phase quadrature of the input vacuum noise. The
third term is the contribution of the thermal noise. By choosing
the optimal homodyne phase

tan φopt = A(ω)

[
−Kn(ω)ω

ω − iγm

]
, (35)

where tan φopt is real although the right-hand side of Eq. (35)
looks complex, R(ω) takes the minimum value

R(ω)min = F 2
SQL(ω)

{
1

2|B(ω)|2 + 1

2|B(ω)|2 Kn(ω)

×Kn(−ω)
γ 2

m

ω2 + γ 2
m

+ kBT

h̄ω2
γm

}
. (36)

In Eq. (36), the second term is the contribution of the radiation
backaction noise, which is proportional to γ 2

m. Hence, when
the mechanical damping is considered, the contribution of
the radiation backaction noise can not be totally removed by
choosing the optimal homodyne phase. We takeJ0 = 1/2, and
γm/κ0 = 10−5.

A. Force sensitivity at zero temperature
but with damping included

First, we show how the mechanical damping affects the
force sensitivity when T = 0 K.

The contour plot of R(ω)
F 2

SQL(ω)
as functions of the detection

phase φ/π and the detection frequency ω/κ0 for different
parametric gains is shown in Fig. 4 when J0 = 1/2, γm/κ0 =

FIG. 4. The contour plot of R(ω)
F 2

SQL
(ω)

of the force measurement as

functions of the detection phase φ/π and the detection frequency
ω/κ0 for different parametric gains G = 0 (top), G = 0.4κ0 (bottom)
when J0 = 1/2, γm/κ0 = 10−5, and T = 0 K. Interestingly enough
increasing γm/κ0 to a value 10−2 does not produce any noticeable
change in this figure.

10−5, and T = 0 K. For G = 0, both the minimum values
of R(ω)

F 2
SQL(ω)

in Fig. 4 and Fig. 2 are in the range of 0.5–0.6.

For G = 0.4κ0, both the minimum values of R(ω)
F 2

SQL(ω)
in Fig. 4

and Fig. 2 are less than 0.05. Hence, there is no apparent
difference between the minimum values of R(ω)

F 2
SQL(ω)

with and

without the mechanical damping, thus the mechanical damping
has no apparent effect on the force sensitivity in the absence
or presence of the PA.

B. Robustness of the force sensitivity beyond the SQL
against the effect of the temperature

Next, we show how the thermal noise of the free particle
affects the force sensitivity. The contour plot of R(ω)

F 2
SQL(ω)

as functions of the detection phase φ/π and the detection
frequency ω/κ0 for different parametric gains is shown in
Fig. 5 when J0 = 1/2, γm/κ0 = 10−5, κ0 = 2π×1 MHz, and
T = 1 K. For G = 0, the minimum value of R(ω)

F 2
SQL(ω)

in Fig. 5

(T = 1 K) is in the range of 1.0–1.2, while the minimum value
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FIG. 5. The contour plot of R(ω)
F 2

SQL
(ω)

of the force measurement as

functions of the detection phase φ/π and the detection frequency
ω/κ0 for different parametric gains G = 0 (top), G = 0.4κ0 (bottom)
when J0 = 1/2, γm/κ0 = 10−5, κ0 = 2π×1 MHz, and T = 1 K.

of R(ω)
F 2

SQL(ω)
in Fig. 4 (T = 0 K) is in the range of 0.5–0.6. Hence,

the thermal noise decreases the force sensitivity significantly
in the absence of the PA, and is above the SQL. For G = 0.4κ0,
the minimum value of R(ω)

F 2
SQL(ω)

in Fig. 5 (T = 1 K) is in the

range of 0.1–0.15, while the minimum value of R(ω)
F 2

SQL(ω)
in Fig. 4

(T = 0 K) is less than 0.05. Thus, the thermal noise reduces
the force sensitivity in the presence of the PA with G = 0.4κ0.
Therefore, the influence of the thermal noise on the force
sensitivity of the system becomes smaller in the presence of
the PA with a higher parametric gain.

Figure 6 shows the contour plot of μ(ω) as functions of the
detection frequency ω/κ0 and the parametric gain G/κ0 when
J0 = 1/2, γm/κ0 = 10−5, κ0 = 2π×1 MHz, and T = 1 K. In
Fig. 6 (T = 1 K), it is seen that the maximal force sensitivity
μ(ω) less than 0.1 is possible to achieve when 0.426 � G/κ0 <

0.5 and 1.45 � ω/κ0 < 2. In Fig. 3 (γm = 0 and T = 0 K),
we note that the maximal force sensitivity μ(ω) less than 0.1
exists when 0 < G/κ0 < 0.5 and 0 < ω/κ0 < 2. Therefore,
the presence of the PA with a higher parametric gain makes the
maximal force sensitivity of the system become more robust
against the thermal environment. Furthermore, from Eq. (36),

FIG. 6. The contour plot of μ(ω) as functions of the detection
frequency ω/κ0 and the parametric gain G/κ0 when J0 = 1/2,
γm/κ0 = 10−5, κ0 = 2π×1 MHz, and T = 1 K.

the maximal force sensitivity μ(ω) can be expressed as

μ(ω) = 1

4J0

(
1 − 2G

κ0

)2 (κ0 + 2G)2 + ω2

κ2
0

ω2 + γ 2
m

ω2 + 16G2

+ J0

4

1(
1 − 2G

κ0

)2

κ2
0

(κ0 + 2G)2 + ω2

ω2 + 16G2

ω2 + γ 2
m

γ 2
m

ω2

+ kBT

h̄ω2
γm. (37)

For G = 0, Eq. (37) becomes

μ(ω) = 1

4J0

κ2
0 + ω2

κ2
0

ω2 + γ 2
m

ω2
+ J0

4

κ2
0

κ2
0 + ω2

ω2

ω2 + γ 2
m

γ 2
m

ω2

+ kBT

h̄ω2
γm. (38)

In view of the complexity of these expressions, we present in
Table I, the minimum value of the parameter μ(ω) for γm/κ0 =
10−5, κ0 = 2π×1 MHz, and J0 = 1/2, 1/10, 1/50. The great
advantage of using the PA is obvious. For J0 = 1/2 and

TABLE I. The minimum value of μ(ω) for γm/κ0 = 10−5, κ0 =
2π×1 MHz,J0 = 1/2, 1/10, 1/50, and the corresponding input laser
power ℘ = 10 W, 2 W, 0.4 W.

T 0 K 1 K

J0 = 1/2 G/κ0 0 0.46 0 0.46
ω/κ0 0.003 0.1 0.8 1.9

μ(ω)min 0.5 5.28×10−5 1.14 0.07

T 0 K 1 K

J0 = 1/10 G/κ0 0 0.46 0 0.46
ω/κ0 0.003 0.06 0.5 1.9

μ(ω)min 2.5 1×10−4 3.96 0.118

T 0 K 1 K

J0 = 1/50 G/κ0 0 0.46 0 0.46
ω/κ0 0.003 0.034 0.4 1.3

μ(ω)min 12.5 1.54×10−4 15.8 0.266
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TABLE II. The minimum value of μ(ω) for γm/κ0 = 10−3, κ0 =
2π×1 MHz, J0 = 1/10, 1/50, and the corresponding input laser
power ℘ = 2 W, 0.4 W.

T 10 mK

J0 = 1/10 G/κ0 0 0.46
ω/κ0 0.5 1.9

μ(ω)min 3.96 0.118
T 10 mK

J0 = 1/50 G/κ0 0 0.46
ω/κ0 0.36 1.3

μ(ω)min 15.73 0.266

T = 1 K, the PA can enhance the force sensitivity by a factor
of about 7 over the SQL. For T = 1 K, if we decrease the input
laser power so that the parameter J0 is 1

10 (power ℘ = 2 W) or
1

50 (power ℘ = 0.4 W), it is seen that the PA can still make the
force sensitivity below the SQL. Remarkably, Table I shows
that for a power level 0.4 W, we still can get an improvement
by a factor of about 2 below the SQL. As noted in Ref. [22] the
mechanical damping is a critical parameter, we have checked
how the results in Table I are affected by increasing γm by
two orders of magnitude. Interestingly enough, it is seen from
Table II that at 10 mK one can still get an improvement by a
factor of 2 over the SQL for the power ℘ = 0.4 W.

IV. CONCLUSIONS

In conclusion, we have investigated the sensitivity of the
force detection of the dissipative system with a PA. It is found
that the PA in the dissipative system makes the maximal force
sensitivity better than the SQL achievable in a wide frequency
band. Meanwhile, it is found that the PA largely enhances the
maximal force sensitivity. Moreover, increasing the parametric
gain G of the PA reduces the influences of the mechanical
damping and the thermal noise, resulting in a better force sen-
sitivity. The PA can improve the maximal force sensitivity by
a factor of about 7 for the temperature of the environment T =
1 K. This is for the power level corresponding to the SQL when
G = 0. The result obtained above is useful for ultrasensitive
detection of weak forces based on nanomechanical systems.
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APPENDIX: THE COMPARISON OF THE FORCE
SENSITIVITY OF A MECHANICAL OSCILLATOR

WITH A FREE PARTICLE

If the free particle is replaced by a mechanical oscillator
with effective mass m and resonance frequency ωm, the
Hamiltonian of the system in the rotating frame at the input
laser frequency ωl becomes

H = h̄(ωc − ωl)c
†c + p2

2m
+ 1

2
mω2

mq2

+ ih̄
√

2κ(q)[εl(c
† − c) + c†cin − c†inc]

+ ih̄G(c†2 − c2), (A1)

where q and p are the position and momentum operators of
the mechanical oscillator, respectively; they satisfy [q,p] =
ih̄. Through calculations, we find the force sensitivity of the
mechanical oscillator

Rmo(ω) = F 2
moSQL

1

umo(ω)umo(−ω)

1

4Kmo(ω)

×
{

1 +
[
Kmo(ω) + 1

A(ω)
tan φ

]2}
, (A2)

where

Kmo(ω) = J κ2
0

(κ0 + 2G)2 + ω2

ω2 + 16G2

ω2 − ω2
m

,

J = h̄η2c2
s

mκ0
,

FmoSQL =
√

2mh̄ω2
m,

umo(ω) =
√

16G2 + ω2√
(κ0 + 2G)2 + ω2

κ0 + 2G − iω

ω + 4Gi
i

× ωm√
ω2 − ω2

m

,

umo(ω)umo(−ω) = ω2
m

ω2 − ω2
m

,

A(ω) = (κ0 + 2G)2 + ω2

(κ0 − 2G)2 + ω2
. (A3)

When the second term in Rmo(ω) is zero, we obtain the
optimal phase tan φopt = −A(ω)Kmo(ω), the minimum value
of Rmo(ω) is found to be

Rmo(ω)min = F 2
moSQL

1

umo(ω)umo(−ω)

1

4Kmo(ω)
. (A4)

We have shown that the force sensitivity of the free particle is
given by

R(ω) = F 2
SQL(ω)

1

4K(ω)

{
1 +

[
K(ω) + 1

A(ω)
tan φ

]2}
,

(A5)

where

K(ω) = J κ2
0

(κ0 + 2G)2 + ω2

ω2 + 16G2

ω2
,

J = h̄η2c2
s

mκ0
,

FSQL(ω) =
√

2mh̄ω2,

A(ω) = (κ0 + 2G)2 + ω2

(κ0 − 2G)2 + ω2
. (A6)

When the second term in R(ω) is zero, we obtain the optimal
phase tan φopt = −A(ω)K(ω), the minimum value of R(ω) is
found to be

R(ω)min = F 2
SQL(ω)

4K(ω)
. (A7)
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It is noted that

Rmo(ω)min

R(ω)min
=

(
1 − ω2

m

ω2

)2

. (A8)

If ωm � ω, we obtain Rmo(ω)min
R(ω)min

≈ 1. If we choose ωm � κ0,

ω � ωm, but ω � 2κ0, then Rmo(ω)min
R(ω)min

≈ 1.
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