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Statistical properties of a free-electron laser revealed by Hanbury Brown–Twiss interferometry
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We present a comprehensive experimental analysis of statistical properties of the self-amplified spontaneous
emission free-electron laser (FEL) FLASH by means of Hanbury Brown and Twiss interferometry. The
experiments were performed at FEL wavelengths of 5.5, 13.4, and 20.8 nm. We determined the second-order
intensity correlation function for all wavelengths and different operation conditions of FLASH. In all experiments
a high degree of spatial coherence (above 50%) was obtained. Our analysis performed in spatial and spectral
domains provided us with the independent measurements of an average pulse duration of the FEL that were
below 60 fs. To explain the complicated behavior of the second-order intensity correlation function we developed
an advanced theoretical model that includes the presence of multiple beams and external positional jitter of the
FEL pulses. By this analysis we determined that in one of the experiments external positional jitter was about
25% of the beam size. We envision that methods developed in our study will be used widely for analysis and
diagnostics of FEL radiation.
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I. INTRODUCTION

X-ray free-electron lasers (XFELs) are presently the
brightest sources of x-ray radiation [1–3]. They find
applications in a wide range of fields: structural biology [4,5],
solid density plasma [6], studies of the local properties and
dynamics of matter under extreme conditions [7], ultrafast
photochemistry [8], atomic physics [9], condensed matter
physics [10–14], and many others. The unique combination
of femtosecond pulse duration, high brilliance, and degree
of coherence advances conventional x-ray methods and
gives access to new techniques that were not feasible
with previous x-ray facilities. A high degree of spatial
coherence in comparison with other x-ray sources is the key
property of the XFELs. X-ray scattering with highly coherent
illumination opens the possibility for high-resolution coherent
diffraction imaging for a wide range of systems [15–17].
However, insufficient coherence leads to decreased contrast
in coherent imaging technique, reduces the reconstructed
image resolution, and, in the worst case, makes it impossible
to retrieve the desired structural information [18–21].

From that perspective, a deep analysis and characterization
of statistical properties of FELs are extremely important tasks.
It is known that self-amplified spontaneous emission (SASE)
FELs, for which the amplification process starts from the shot
noise of the electron bunch, radiate as chaotic sources with high
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spatial coherence [22,23]. Longitudinal coherence of SASE
FEL radiation, which is slowly growing with the undulator
length, is typically much lower in comparison to the spatial
coherence [23]. A large variety of methods can be used to
determine transverse and longitudinal coherence properties of
x rays, such as measurements with double pinholes or arrays of
slits [24–26], Michelson-type interferometry [25,27,28], and
Hanbury Brown–Twiss (HBT) intensity interferometry [29]
(see for review [30]). Among these methods, HBT inter-
ferometry provides additional information on the second-
and higher-order statistical properties of FEL sources while
removing the need for additional optical devices.

Intensity interferometry, as introduced by Hanbury Brown
and Twiss [31,32], was a revolutionary experiment at the
time. Their measurements, seemingly showing a contradiction
between classical and quantum theories of light, led to the
development of quantum optics [33]. Since then, HBT inter-
ferometry has found applications in many areas of physics. For
example, it was used to probe Bose-Einstein condensates [34]
and to analyze nuclear scattering experiments [35]. Intensity-
intensity correlation measurements in the x-ray energy range
were first suggested to solve the phase problem in crystallog-
raphy [36], further developed conceptually [37,38], and finally
performed at synchrotron sources [39–42]. The correlation of
intensities at two points in space, expressed in terms of the
degree of second-order coherence, is particularly well suited
for interferometry at FEL sources [29,43]. The femtosecond
pulse duration of the FEL radiation allows elimination of
the necessity for a correlator device to perform coincidence
measurements. In comparison with Young’s interferometry,
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where the double-pinhole separation must be changed to
measure coherence between different spatial positions [24,25],
the HBT approach with a pixelated detector allows one to
measure the correlation function at a set of distances simulta-
neously. As soon as intensity and not amplitude correlations are
measured in an HBT experiment, this method is not sensitive
to phase fluctuations, which can significantly affect Young’s
or Michelson interferometry [44,45]. Importantly, the HBT
experiment provides the possibility of high-order statistical
analysis of FEL radiation properties.

Here we present a comprehensive analysis of the statistical
properties of FLASH FEL radiation in a nonlinear regime
of its operation. It is based on HBT interferometry experi-
ments performed at different FEL wavelengths and radiation
parameters. Conventional HBT theory assuming a single
distant incoherent source does not explain our experimental
results. We developed and advanced theoretical approach that
includes the effects of multiple secondary beams and external
positional jitter to explain observed experimental features.
These effects can be revealed only through intensity-intensity
interferometry.

II. THEORETICAL PRINCIPLES OF
INTENSITY-INTENSITY INTERFEROMETRY

The basic theory of optical coherence is the second-order
coherence theory, when the amplitudes of wave fields are cor-
related [44,45]. It provides an appropriate treatment for most
of the traditional interference phenomena, such as Young’s
double-pinhole or Michelson-type experiments. However, for
a full understanding of certain experimental results, the basic
coherence theory is not sufficient. For instance, the statistical
difference between a laser and coherent chaotic source can only
be revealed through a higher-order coherence theory [45]. In
this work we are mostly interested in the second-order intensity
correlations, which will be introduced now through a more
general concept of the fourth-order amplitude correlations.

Assuming a scalar field E(r,t), the cross-correlation func-
tion of fourth order can be defined as [45]

�(4)(r1,t1; . . . ; r4,t4)=〈E∗(r1,t1)E∗(r2,t2)E(r3,t3)E(r4,t4)〉,
(1)

where the angular brackets denote the ensemble average and r
and t are space and time coordinates, respectively. In an HBT
experiment, the intensities incoming from a distant source
(or several sources) are measured simultaneously at different
spatial positions (see Fig. 1). The measured intensity is an
integral of the instantaneous intensity I (r,t) = E∗(r,t)E(r,t)
over the detector time resolution. When HBT interferometry is
performed for stationary and ergodic sources such as stars [31],
the repeated measurements within a limited time window can
be used to calculate the ensemble average. At a free-electron
laser, which is a pulsed and therefore a nonstationary source,
the averaging is performed over different pulses.1 Since the
FEL pulse duration is much shorter than the currently available

1We assume here that all pulses are realizations of the same
statistical process.

FIG. 1. Different configuration of the sources. All sources are
chaotic extended sources at a large distance from the detector.
Intensity-intensity correlation is measured as a coincidence signal
at two pixels of the detector. (a) Single source. (b) Two sources
separated from each other. (c) Single source radiating in multiple
angular positions that results in multiple beam illumination at the
detector. (d) Single source with the angular jitter that results in an
extended illumination at the detector.

detector time resolution, we naturally get time-integrated
values of intensity

I (r) =
∫ ∞

−∞
I (r,t)dt =

∫ ∞

−∞
|E(r,t)|2dt, (2)

or in the space-frequency domain, defining E(r,t) =∫
E(r,ω) exp(iωt)dω/2π , where E(r,ω) is the Fourier

spectral component of the field E(r,t), we obtain

I (r) =
∫ ∞

−∞
|E(r,ω)|2 dω

2π
. (3)

In the case of radiation with a limited bandwidth, defined, for
example, by a monochromator, we can formally introduce the
complex transmittance function T (ω) and have for the intensity

I (r) =
∫ ∞

−∞
|T (ω)|2|E(r,ω)|2 dω

2π
. (4)

The second-order intensity correlation function can be now
defined as

g(2)(r1,r2) = 〈I (r1)I (r2)〉
〈I (r1)〉〈I (r2)〉 . (5)

We introduce also a spectral cross-correlation function in
the space-frequency domain [45]. Since we are only interested
in intensity correlations, we will further use the follow-
ing definition for the fourth-order spectral cross-correlation
function: W (4)(r1,ω1; r2,ω2)≡〈E∗(r1,ω1)E(r1,ω1)E∗(r2,ω2)
E(r2,ω2)〉. Now substituting Eq. (4) into g(2)(r1,r2) defined
by Eq. (5), we obtain

g(2)(r1,r2)

=
∫∫ ∞

−∞ |T (ω1)|2|T (ω2)|2W (4)(r1,ω1; r2,ω2)dω1dω2∫ ∞
−∞ |T (ω1)|2S(r1,ω1)dω1

∫ ∞
−∞ |T (ω2)|2S(r2,ω2)dω2

.

(6)
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Here we introduced the spectral density S(r,ω) =
W (2)(r,ω; r,ω), where the second-order spectral cross-
correlation function is defined as W (2)(r1,ω1; r2,ω2) =
〈E∗(r1,ω1)E(r2,ω2)〉.

First, we will describe the behavior of the g(2)(r1,r2)
function for a chaotic source. Radiation properties of such
a source can be sufficiently described in the framework of
Gaussian statistics [45]. Applying the Gaussian moment
theorem [45], we obtain W (4)(r1,ω1; r2,ω2) =
S(r1,ω1)S(r2,ω2) + |W (2)(r1,ω1; r2,ω2)|2. Substituting
this relation into Eq. (6), we can derive the expression for the
second-order intensity correlation function of the Gaussian
source as

g(2)(r1,r2)

=1+
∫∫ ∞

−∞ |T (ω1)|2|T (ω2)|2|W (2)(r1,ω1,r2,ω2)|2dω1dω2∫ ∞
−∞ |T (ω)|2S(r1,ω)dω

∫ ∞
−∞ |T (ω)|2S(r2,ω)dω

.

(7)

In the following we will consider the radiation
to be cross-spectrally pure [44,45]. For such radiation
the spectral cross-correlation function is separable into
its spatial and spectral components W (2)(r1,r2; ω1,ω2) =
J (r1,r2)W (ω1,ω2) and S(r,ω) = I (r)S(ω), respectively. Here
J (r1,r2) = 〈E∗(r1)E(r2)〉 is the mutual intensity [in this case
intensity I (r) = J (r,r)] and W (ω1,ω2) = 〈E∗(ω1)E(ω2)〉. In
this case the second-order correlation function defined in
Eq. (7) can be expressed as [29]

g(2)(r1,r2) = 1 + ζ2(Dω)|μ(r1,r2)|2. (8)

Here ζ2(Dω) is the contrast function that strongly depends on
the radiation frequency bandwidth Dω and is defined as

ζ2(Dω) =
∫∫ ∞

−∞ |T (ω1)|2|T (ω2)|2|W (ω1,ω2)|2dω1dω2(∫ ∞
−∞ |T (ω)|2S(ω)dω

)2 (9)

and μ(r1,r2) is the normalized spectral degree of coher-
ence [44]

μ(r1,r2) = J (r1,r2)√
I (r1)I (r2)

. (10)

It can be shown [38] that in the case of a stationary chaotic
beam ζ2(Dω) is determined by τc/T , where τc = 2π/Dω is
the coherence time and T is the pulse duration of the FEL
radiation. For such a beam the contrast function ζ2(Dω) is
inversely proportional to the number of longitudinal modes Mt

that is defined as Mt = T/τc. Notice also that for r1 = r2 = r,
g(2)(r,r) = 1 + ζ2(Dω) and does not depend on position r.

To characterize the global spatial coherence properties of
the FEL beam we also introduce the spatial degree of transverse

coherence ζs as [46,47]

ζs =
∫ |J (r1,r2)|2dr1dr2(∫

I (r)dr
)2

=
∫ |μ(r1,r2)|2I (r1)I (r2)dr1dr2(∫

I (r)dr
)2 . (11)

Using expression (8), we can determine degree of spatial
coherence through the second-order intensity correlation
function as

ζs = 1

ζ2(Dω)

∫
[g(2)(r1,r2) − 1]I (r1)I (r2)dr1dr2(∫

I (r)dr
)2 . (12)

To describe FEL statistical pulse properties with a simple
model we considered that the FEL beam spectral cross-
correlation function can be characterized in the framework
of the Gaussian Schell model (GSM) [48]

W (2)(x1,ω1; x2,ω2) = W0J (x1,x2)W (ω1,ω2), (13)

where W0 is the normalization constant and

J (x1,x2)= exp

[
−(x1−x0)2 + (x2−x0)2

4σ 2
x

− (x1−x2)2

2ξ 2
x

]
,

W (ω1,ω2)= exp

[
−(ω1−ω0)2−(ω2−ω0)2

4	2
− (ω1 − ω2)2

2	2
c

]
.

(14)

Here x0 is the position of the pulse center, σx is the beam
size, ξx is the transverse coherence length, ω0 is the central
pulse frequency, 	 is the spectral width, and 	c is the spectral
coherence width.

We further assume that the transmission function T (ω) is
described by a rectangular function

T (ω) =
{

1 if |ω| � Dω/2
0 if |ω| > Dω/2.

(15)

Substituting Eq. (15) into Eq. (9) with the assumption that the
monochromator bandwidth is much smaller than the original
pulse bandwidth, we obtain for the contrast function [29,44]

ζ2(Dω) =
√

π

DωT
erf(DωT ) + 1

(DωT )2
(e−(DωT )2 − 1), (16)

where erf(x) is the error function. In the limit DωT →
0 the function ζ2(Dω) approaches unity asymptotically as
1 − (DωT )2/6 and in the limit DωT → ∞ it goes to zero
as

√
π/DωT ∼ τc/T .

We will consider now a single extended source [see
Fig. 1(a)] in the frame of the GSM described by Eqs. (13)
and (14) and parameters listed in Table I as model I. Radiation
parameters were chosen to be close to the FLASH experimen-
tal parameters described further. In Figs. 2(a) and 2(b) cross-
correlation functions in spatial and spectral domains J (x1,x2)
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TABLE I. Beam parameters used in simulations.

Model Model I Model II Model III

Parameter

����������� Beam number 1 1 2 1 2

bandwidth Dω/ω 10−4 10−4 10−4 10−4 10−4

relative intensity 1 1 0.01 1 0.1
beam position x0 (mm) 0 0 0.6 0 −0.5
beam size (rms) σx (mm) 0.7 0.4 0.5 0.4 0.4
transverse coherence length ξx (mm) 1 0.6 3 0.8 0.8
central frequency ω0 (fs−1) 140 140 140 140 140
spectral width 	 (fs−1) 0.01 0.01 0.01 0.01 0.01
spectral coherence width 	c (fs−1) 0.007 0.0014 0.0028 0.008 0.014

and W (ω1,ω2) are shown, respectively. The intensity-intensity
correlation function g(2)(x1,x2) for such a beam is shown
in Fig. 2(c). Its cross section g(2)(x0 − 
x/2,x0 + 
x/2)
taken along the white diagonal line is connected according
to Eq. (8) to the square modulus of the spectral degree
of coherence |μ(x0 − 
x/2,x0 + 
x/2)|2 and is shown in
Fig. 2(d). It has a Gaussian shape with the given value of the
coherence length ξx = 1 mm. Here, as for any cross-spectrally
pure chaotic source, the function g(2)(x1,x2) is uniform along
the main diagonal x1 = x2 = x, which we will also call the
autocorrelation direction [see Fig. 2(d), inset].

There is also another case often discussed in the litera-
ture [35,49], that is, the case of two distant and independent
chaotic sources separated from each other [see Fig. 1(b)]. Such
a configuration of the sources can be also represented by two
independent GSM beams with a relative linear phase shift to

FIG. 2. Simulations of the intensity-intensity correlation function
for a single partially coherent GSM beam [see Fig. 1(a)] with param-
eters of the beam listed in Table I as model I. (a) Spatial part of the
spectral cross-correlation function J (x1,x2). (b) Spectral part of the
spectral cross-correlation function W (ω1,ω2). (c) Intensity-intensity
correlation function g(2)(x1,x2). (d) Intensity-intensity correlation
function values g(2)(
x) taken along the white diagonal line in (c).
The inset shows the autocorrelation function g(2)(x,x) taken along
the dark red diagonal line in (c).

each other

W (2)(x1,ω1; x2,ω2) = W
(2)
1 (x1,ω1; x2,ω2)

+W
(2)
2 (x1,ω1; x2,ω2),

J2(x1,x2) = J1(x1,x2)ei
kx (x2−x1),

W2(ω1,ω2) = W1(ω1,ω2), (17)

where 
kx is the magnitude of the phase shift and 
kx/kx

is the angular separation between these two sources in a
small-angle approximation. Substituting Eq. (17) into Eq. (7)
and taking into consideration the definition of the contrast
function ζ2(Dω) in Eq. (9), we obtain for the intensity-intensity
correlation function

g(2)(x1,x2) = 1 + ζ2(Dω)|μ(x1,x2)|2 cos2

[

kx(x2 − x1)

2

]
.

(18)

In Fig. 3(a) the second-order intensity correlation func-
tion g(2)(x1,x2) calculated according to Eq. (18) for two
beams with the same parameters as in Fig. 2 and 
kx =
5 mm−1 is shown. The intensity correlation function g(2)(x0 −

x/2,x0 + 
x/2) in this case has a characteristic oscilla-
tory behavior [see Fig. 3(b)]. It is important to note that
the oscillation of g(2)(x0 − 
x/2,x0 + 
x/2) is determined
mainly by the angular separation of two sources. While
an additional structure is clearly visible in g(2)(x1,x2), the

FIG. 3. Simulations of the intensity-intensity correlation function
for two identical partially coherent GSM beams separated from each
other [see Fig. 1(b)] with parameters of the beams listed in Table I
as model I. (a) Intensity-intensity correlation function g(2)(x1,x2). (b)
Intensity-intensity correlation function values g(2)(
x) taken along
the white diagonal line in (a). The inset shows the autocorrelation
function g(2)(x,x) taken along the dark red diagonal line in (a).
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TABLE II. FLASH and PG2 beamline parameters.

wavelength (nm) 5.5 13.4 20.8
photon energy (eV) 226 94 59
charge (nC) 0.6 0.3 0.2
pulse energy (μJ) 110 21 30–40
grating order 3 1 2
grating parameter cff 2 1.5 1.7
dispersion (eV/mm) 0.64 0.35 0.11
focus to detector distance (m) 3.3 1.6 2.5

normalized autocorrelation function g(2)(x,x) is still constant,
as demonstrated in the inset in Fig. 3(b).

III. EXPERIMENTAL CONDITIONS

The experiments were performed at FEL FLASH at DESY
in a deep saturation regime in the XUV energy range at three
wavelengths: 5.5, 13.4, and 20.8 nm (see Table II). The results
of the measurements at 5.5 nm were reported before [29]
and are presented here for completeness. All measurements
were carried out at the PG2 beamline [50,51]. A schematic
representation of the beamline is shown in Fig. 4. The beam
was focused at the position approximately 71.5 m downstream
from the undulator exit. A plane-grating monochromator
with a line density of 200 lines/mm was used to vary the
bandwidth of the incoming radiation. Monochromaticity of
the incoming beam can be conveniently varied by the size
of the monochromator exit slit. The values of the grating
parameter cff , diffraction grating orders, and corresponding
photon energy dispersion in the exit slit plane used in the
experiment are summarized in Table II.

An in-vacuum Andor Ikon CCD detector with 2048 × 2048
pixels 13.5 × 13.5 μm2 in size was used for intensity mea-
surements. Distances from the focus to detector were varied
between experiments (see Table II). FLASH was operated in a

FIG. 4. Schematic layout of the experiment. The FEL radiation
from the undulator is collimated at the mirror M1 and diffracted at
the grating. The monochromatized radiation is further transmitted
through the focusing mirrors M2 and M3 and the exit slit system.
Intensity profiles are measured at the detector positioned downstream
from the focal plane.

single bunch mode with a 10-Hz repetition rate. The detector
region of interest and binning in the vertical direction were
considered to allow a 10-Hz readout frequency. For the beam
attenuation a set of aluminium foil filters and additional silicon
nitride films 20 × 10 mm2 in size and varying thicknesses were
used in front of the detector. About 2 × 104 intensity profiles
were recorded for each monochromator setting. The vertical
direction was the dispersion direction of the monochromator
and the intensity profiles were projected on the horizontal
axis. The intensity correlation analysis was performed along
the horizontal direction.

Additional information was obtained from the spectrometer
detector positioned in the exit slit plane of the monochromator.
The spectrometer detector consisted of a scintillating screen
(YAG:Ce 0.2) and an intensified CCD (Andor iStar, DH740),
equipped with a lens. The effective pixel size of the detector in
the exit slit plane was 19.4 μm with the point spread function
estimated to be about two pixels [full width at half maximum
(FWHM)]. The detector was operated at a 10-Hz repetition
rate.

IV. RESULTS

A. Spatial correlation analysis

Averaged pulse intensities measured for different FLASH
wavelengths and projected on the horizontal direction are
presented in Fig. 5. The typical individual pulses are also
shown in Fig. 5. Visual inspection of individual pulses for
different modes of operation suggested that in most cases
one to two spatial modes were present in the FEL beam.
The average pulse intensity can be well represented by a
Gaussian fit for 13.4-nm radiation [see Fig. 5(b)]. For a
5.5-nm and especially a 20.8-nm wavelength a significant
rise of intensity on the beam shoulders can be observed [see
Figs. 5(a) and 5(c)]. The asymmetry of the average intensity
suggests inhomogeneity of the FEL radiation properties. The
average horizontal size (FWHM) of the beam was ranging
from about 200 μm to 800 μm depending on the experiment
(see Table III).

Normalized intensity-intensity correlation functions
g(2)(x1,x2) for all experiments at different bandwidths are
shown in Fig. 6. As can be clearly seen in this figure, the form
of the g(2)(x1,x2) function is quite complicated and is different
from what can be expected for a single Gaussian source (see
Fig. 2). The intensity correlation function g(2)(x1,x2) for
20.8-nm radiation [see Figs. 6(g)–6(i)] most closely resembles
the expected shape for a single chaotic source described
by the GSM (compare with Fig. 2). At the same time the
structure of g(2)(x1,x2) at 5.5 nm [Figs. 6(a)–6(c)] and 13.4
nm [Figs. 6(d)–6(f)] is more complicated and the presence
of several maxima for larger bandwidths along the diagonal
x2 = x1 can be observed (see also the insets in Fig. 7).

To determine the spatial coherence of the FLASH source at
different modes of operation we analyzed the diagonal cut
of the g(2)(x1,x2) function at the position of the intensity
maximum shown by the white diagonal lines in Fig. 6 and
presented in Fig. 7. According to Eq. (8), for a single chaotic
source these profiles are proportional to the square modulus of
the spectral degree of coherence |μ(x0 − 
x/2,x0 + 
x/2)|2,
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FIG. 5. Pulse intensity profiles for (a) 5.5-nm wavelength and 4 × 10−4 bandwidth, (b) 13.4-nm wavelength and 1.8 × 10−4 bandwidth,
and (c) 20.8-nm wavelength and 1.8 × 10−4 bandwidth. Blue (light gray) lines represent individual pulses, black thick lines are intensities
averaged over 2 × 104 pulses, and dashed red lines are Gaussian fits of a region near the averaged intensity maximum.

where x0 is the position of the intensity maximum. We fitted
all profiles with the Gaussian function 1 + ζ2 exp[−(
x/lc)2]
that provided the values of coherence length lc for different
bandwidths and wavelengths. We present mean values of the
coherence length for all three wavelengths in Table III. We
noticed that the best Gaussian fit for all measured separations

x was obtained for the wavelength of 20.8 nm [see Figs. 7(g)–
7(i)]. The coherence length for this wavelength practically did
not depend on the bandwidth value. Different behavior of the
intensity-intensity correlation function was observed at 5.5-nm
[Figs. 7(a)–7(c)] and 13.4-nm [Figs. 7(d)–7(f)] wavelengths at
large separations 
x. For example, for 5.5-nm radiation the
second maximum appears at larger bandwidths. This indicates
that at these conditions of FLASH operation we have at least
two radiating sources as shown in Figs. 1(b) and 3. At the
same time, for 13.4 nm we observed a constant background
appearing at large separations 
x.

A comparison of the coherence lengths with the intensity
beam size (see Table III) for corresponding experiments
showed that the coherence length was about twice as large
as the beam size for 5.5-nm radiation, about the same value
for 13.4 nm, and smaller than the beam size for the 20.8-nm
wavelength.2 This observation suggests that in the case of
5.5 nm FEL radiation was noticeably more coherent than in
the case of 20.8 nm.

As it follows from our analysis, the intensity-intensity
correlation function g(2)(x1,x2) shows strongly nonuniform
behavior (see Fig. 6). In such a situation the global degree of
spatial coherence defined in Eq. (11) is an adequate measure
of spatial coherence. To determine its values we performed
calculations according to Eq. (12). The degree of spatial
coherence as a function of coherence time is presented in Fig. 8
and mean values are provided in Table III. As one can see from
this figure that the degree of spatial coherence practically does
not depend on the value of coherence time (bandwidth). It is
especially high (above 80%) for 5.5- and 13.4-nm radiation and
drops to 50% at a 20.8-nm wavelength. We want to point out
that such high values of the degree of spatial coherence at these
radiation wavelengths can be observed only for FELs. They

2Notice that the coherence length is defined as a rms σ value of the
distribution and not its FWHM.

are about two orders of magnitude higher than for synchrotron
sources [26,42].

It can be clearly seen in Fig. 7 that the contrast values [which
are the maximum values of g(2)(
x) at 
x = 0] strongly
depend on the bandwidth.3 Variation of contrast ζ2(Dω) as a
function of coherence time for different wavelengths is shown
in Fig. 9. It displays a typical behavior, as described for a
chaotic source in Sec. II. For large values of coherence time
(τc 
 T ) it reaches a constant value close to unity, which
indicates that in this case we observe a single longitudinal
mode of FEL radiation. In the opposite limit of small values
of coherence time (τc � T ) it shows a linear dependence
(τc/T ). Fitting these curves with the theoretical function given
in Eq. (16) provided us with the averaged values of pulse
duration ranging from 20 to 60 fs (see Table III) for the
different experiments. We note here that in some cases the
contrast values do not reach the maximum value of one at
large coherence times [see, for example, Fig. 9(b)]. The reason
for that may be a more complicated pulse structure of FEL
radiation in deep saturation. This behavior of the contrast
function can be adequately accounted for by normalizing
Eq. (16) by a factor smaller than one. The values of pulse
duration obtained from the analysis of contrast values will be
compared in the following with the values obtained from the
correlation analysis in the frequency domain.

B. Spectral analysis

Typical single and average pulse spectra measured in
all three experiments are shown in Fig. 10. A longitudinal
mode structure is clearly visible in single-pulse spectral
intensity distributions at all wavelengths. Note that the largest
amount of these modes was observed at 13.4-nm wavelength,
which is predominantly due to the longer pulse duration in
this experiment. We can observe also that the modes are
overlapping, especially in the case of 13.4 nm, which is
consistent with the value of contrast not reaching unity in
Fig. 9. Our analysis has shown that the average spectrum was
very close to Gaussian, especially for 5.5 and 20.8 nm (see
Fig. 10). However, in the experiment at 13.4-nm wavelength,

3Additional variations in contrast may appear due to long-term
intensity drifts during the measurements. This can lead to an apparent
increase in a contrast (see Appendix A).
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FIG. 6. Intensity-intensity correlation functions g(2)(x1,x2). (a)–(c) Measurements at 5.5-nm wavelength and the bandwidth (a) 1.7 × 10−4,
(b) 8 × 10−4, and (c) 1.4 × 10−3. (d)–(f) Measurements at 13.4-nm wavelength and the bandwidth (d) 1.8 × 10−4, (e) 1.1 × 10−3, and (f)
1.8 × 10−3. (g)–(i) Measurements at 20.8-nm wavelength and the bandwidth (g) 9 × 10−5, (h) 5.6 × 10−4, and (i) 9 × 10−4. White diagonal
lines show the diagonal cross cut over the position of the maximum of intensity x1 + x2 = 0. Dark red diagonal lines show the autocorrelation
direction x1 = x2.

deviation of the average spectrum from the Gaussian becomes
noticeable at one of the shoulders of the spectrum.

It is possible to obtain an estimate of a pulse duration
from the analysis of a series of single-pulse spectra by the
method described in Refs. [29,52–54]. The intensity-intensity
correlation function in the spectral domain g(2)(ω1,ω2) can be
defined similarly to Eq. (5) as

g(2)(ω1,ω2) = 〈I (ω1 − ω0)I (ω2 − ω0)〉
〈I (ω1 − ω0)〉〈I (ω2 − ω0)〉 , (19)

where ω0 is the central frequency. Performing such an analysis
for all three wavelengths and considering on average 104

pulses, we determined the second-order correlation function
g(2)(
ω) as a function of frequency difference 
ω = ω2 − ω1

[see Figs. 11(a)–11(c)]. The second-order intensity correlation
function determined in this way was fitted by a Gaussian

TABLE III. Results of HBT measurements.

wavelength (nm) 5.5 13.4 20.8
average beam size (FWHM) (μm) 450 220 780
coherence length lc (μm) 930 240 590
degree of spatial coherence ζs 78% 85% 48%
pulse duration T (fs) from HBT measurements 31 61 21
pulse duration T (fs) from spectral measurements 27 55 27

function of the form [55]

g(2)(
ω) = 1 + exp(−
ω2σ 2
T ′). (20)

This procedure allowed us to estimate an average pulse
duration (FWHM) as T ′ = 2.355σT ′ [see the Gaussian fit
shown by thin dashed red lines in Figs. 11(a)–11(c)].

To determine the correct photon pulse duration from our
statistical analysis it is also necessary to take into account
the effect of the temporal energy chirp of the electron
bunch. Assuming that the energy chirp introduces a linear
chirp-correction factor [52] to the photon pulse duration T ′
determined by Eq. (20), we can retrieve a corrected photon
pulse duration T as

T ≈ T ′σ ′
ω/σω, (21)

where σω is the FEL gain bandwidth and σ ′
ω is the spectral

bandwidth of the FEL radiation. In our calculations the FEL
gain bandwidth was considered to be 4 × 10−3ω0 [56].

Pulse durations obtained by spectral analysis described
in this section for all wavelengths are given in Table III. A
comparison between the averaged pulse durations obtained
by this method and the one based on analysis of the spatial
intensity correlation functions described in the preceding
section shows good agreement.

Typical histograms of the pulse intensities for different
wavelengths are shown in Figs. 11(d)–11(f). Pulse intensities
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FIG. 7. Intensity-intensity correlation function values g(2)(
x) taken along the white diagonal lines in Fig. 6. The insets show the intensity
autocorrelation functions g(2)(x,x) taken along the dark red diagonal lines. (a)–(c) Measurements at 5.5-nm wavelength and the bandwidth (a)
1.7 × 10−4, (b) 8 × 10−4, and (c) 1.4 × 10−3. (d)–(f) Measurements at 13.4-nm wavelength and the bandwidth (d) 1.8 × 10−4, (e) 1.1 × 10−3,
and (f) 1.8 × 10−3. (g)–(i) Measurements at 20.8-nm wavelength and the bandwidth (g) 9 × 10−5, (h) 5.6 × 10−4, and (i) 9 × 10−4. Thin dashed
red lines represent the Gaussian fits.

were evaluated at a spectral position corresponding to a certain
frequency. The fitting performed with a Gamma function
gives the best results with 10.8 ± 0.4 modes for 5.5-nm,
16.4 ± 1.7 modes for 13.4-nm, and 4.2 ± 0.3 modes for
20.8-nm wavelengths, respectively. As mentioned in Sec. II,
the number of modes is inversely proportional to the contrast
value g(2)(
ω = 0). We observed similar behavior for FLASH
radiation with the number of modes obtained from the analysis
of the intensity histograms being very close to the inverse
contrast values determined by the spatial HBT analysis (see
the preceding section).

V. ADVANCED THEORETICAL MODEL

A comparison between experimental measurements of the
intensity-intensity correlation function g(2)(x1,x2) observed in
Fig. 6 and conventional theoretical predictions presented in
Figs. 2 and 3 shows a significant difference. To explain this
difference, an advanced theoretical model is necessary. In the
following we introduce two models that consider multiple
independent beams and positional beam jitter in intensity-
intensity interferometry. The situation with the multiple beams
at the detector position could appear, for example, if a

FIG. 8. Degree of spatial coherence as a function of coherence time determined from Eq. (12) at (a) 5.5-nm, (b) 13.4-nm, and (c) 20.8-nm
wavelength.
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FIG. 9. Contrast values as a function of coherence time at (a) 5.5-nm, (b) 13.4-nm, and (c) 20.8-nm wavelength. Black dots represent
experimental points. Errors are calculated as a standard deviation of the contrast in the 1σ region of intensity. The red line is a fit according to
Eq. (16), normalized to the maximum contrast value.

distant source radiates in different well-defined directions [see
Fig. 1(c)]. The case of external positional jitter corresponds
to the situation of a distant source radiating randomly in
different directions [see Fig. 1(d)]. In this section we will
derive a theoretical foundation for these two models and in
the following section we will compare theoretical predictions
with the experimental results.

A. Multiple independent beams

According to the superposition principle for N electric
fields with the amplitudes Ei(r,ω), the total field amplitude
is

E�(r,ω) =
N∑

i=1

Ei(r,ω). (22)

We assume in the following that all beams are chaotic
and obey Gaussian statistics; then the total wave field
E�(r,ω) also obeys Gaussian statistics [44,45]. As
such, we can apply the Gaussian moment theorem
to the total field and obtain, similarly to Sec. II, an
expression for the fourth-order spectral cross-correlation
function W

(4)
� (r1,r2; ω1,ω2) = S�(r1,ω1)S�(r2,ω2) +

|W (2)
� (r1,ω1; r2,ω2)|2, where W

(2)
� (r1,ω1; r2,ω2)

= 〈E∗
�(r1,ω1)E�(r2,ω2)〉 is the second-order spectral

cross-correlation function of the total beam and
S�(r,ω) = W

(2)
� (r,ω; r,ω) is the corresponding spectral

density. Substituting this expression into Eq. (6), we obtain
for the intensity-intensity correlation function g

(2)
� (r1,r2) in

the case of multiple beams

g
(2)
� (r1,r2)

=1+
∫∫ ∞

−∞ |T (ω1)|2|T (ω2)|2|W (2)
� (r1,ω1; r2,ω2)|2dω1dω2∫ ∞

−∞ |T (ω)|2S�(r1,ω)dω
∫ ∞
−∞ |T (ω)|2S�(r2,ω)dω

.

(23)

If all beams are statistically independent from each other
and cross-spectral pure, the total spectral cross-correlation
function W

(2)
� (r1,ω1; r2,ω2) and spectral density S�(r,ω) can

be expressed as

W
(2)
� (r1,ω1; r2,ω2) =

N∑
i=1

W
(2)
i (r1,ω1; r2,ω2)

=
N∑

i=1

Ji(r1,r2)Wi(ω1,ω2), (24)

S�(r,ω) =
N∑

i=1

Si(r,ω) =
N∑

i=1

Ii(r)Si(ω). (25)

Substituting these expressions into Eq. (23), we obtain for the
intensity-intensity correlation function

g
(2)
� (r1,r2) = 1 +

∑N
i,j=1 Ji(r1,r2)J ∗

j (r1,r2)
∫∫ ∞

−∞ |T (ω1)|2|T (ω2)|2Wi(ω1,ω2)W ∗
j (ω1,ω2)dω1dω2∑N

k,l=1 Ik(r1)Il(r2)
∫ ∞
−∞ |T (ω1)|2Sk(ω1)dω1

∫ ∞
−∞ |T (ω2)|2Sl(ω2)dω2

. (26)

This expression will be used further in simulations. In general,
it cannot be reduced to a form similar to Eq. (8) with
separated spatial and spectral components. However, we can
now consider two particular cases where such separation can
be performed.

It is possible to obtain expressions similar to Eq. (8) if either
the spectral or spatial characteristics of each beam are the same.
In the first case Wi(ω1,ω2) ≡ W (ω1,ω2) and Si(ω) ≡ S(ω) and
Eq. (26) reduces to

g
(2)
� (r1,r2) = 1 + ζ2(Dω)|μ�(r1,r2)|2, (27)

where ζ2(Dω) is defined as in Eq. (9) and

|μ�(r1,r2)|2 =
∑N

i,j=1 Ji(r1,r2)J ∗
j (r1,r2)∑N

i,j=1 Ii(r1)Ij (r2)
. (28)

In this case it is easy to see that autocorrelation function
g(2)(r,r) will be constant, similar to a single chaotic beam
[see Eq. (8)]

g
(2)
� (r,r) = 1 + ζ2(Dω)

∑N
i,j=1 |Ii(r)Ij (r)|∑N
i,j=1 Ii(r)Ij (r)

= 1 + ζ2(Dω).

(29)
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FIG. 10. Spectral measurements performed at the PG2 monochromator at (a) 5.5-nm, (b) 13.4-nm, and (c) 20.8-nm wavelength. The blue
(light gray) line is a spectrum of a typical single pulse, the black thick line is the average spectrum, and the dashed red line is a Gaussian fit to
the average spectrum. Black dotted windows depict the bandwidth corresponding to the maximum exit slit opening in each experiment.

We assume now that spatial statistical properties of all beams are the same, Ji(r1,r2) ≡ J (r1,r2) and Si(r) ≡ S(r), but spectral
properties are different. Then again the intensity-intensity correlation function has the form of Eq. (8),

g(2)(r1,r2) = 1 + ζ2,�(Dω)|μ(r1,r2)|2, (30)

where the cross-spectral density function μ(r1,r2) is defined as in Eq. (10) and the contrast is equal to

ζ2,�(Dω) =
∑N

i,j=1

∫∫ ∞
−∞ |T (ω1)|2|T (ω2)|2Wi(ω1,ω2)W ∗

j (ω1,ω2)dω1dω2∑N
i,j=1

∫ ∞
−∞ |T (ω1)|2Si(ω1)dω1

∫ ∞
−∞ |T (ω2)|2Sj (ω2)dω2

. (31)

Note that autocorrelation function g(2)(r,r) in this case is again
constant. Therefore, we can conclude that spatial inhomogene-
ity in the intensity-intensity correlation function g(2)(r1,r2)
may appear only if both spatial and spectral properties of
different beams are different.

B. Positional jitter

For a SASE FEL, the intensity of each pulse is a random
realization of the spatial modes, which leads to the jitter of
the center of mass of the intensity distribution from pulse to
pulse. This we will call an intrinsic jitter. The FEL operation or
beamline instabilities may introduce an additional positional
jitter to the pulse, which could affect the pulse intensity
distribution. This we will call an external positional jitter. It is
extremely important and challenging to distinguish between
these two effects and, as we will show here, it can be
accomplished by the HBT analysis.

We assume here that each pulse at the detector position is
randomly shifted by some distance a, which is described by the
probability distribution p(a). Note that, by definition, this jitter
is statistically independent from the statistical distribution of
the pulse intensity I (r). It can be shown (see Appendix B)
that the average intensity distribution due to an external jitter
〈Ijit (r − a)〉 has the form

〈Ijit (r − a)〉 = p(r) ∗ 〈I (r)〉, (32)

where ∗ is a convolution operator. This can be interpreted as a
broadening of the intensity due to the external positional jitter.

According to Eq. (5), the intensity-intensity correlation
function g

(2)
jit (r1,r2) in this case will be modified to the form

g
(2)
jit (r1,r2) = 〈Ijit (r1 − a)Ijit (r2 − a)〉

〈Ijit (r1 − a)〉〈Ijit (r2 − a)〉 . (33)

It can be further expressed as (see Appendix B)

g
(2)
jit (r1,r2) = p(r1)δ(r2 − r1) ∗ 〈I (r1)I (r2)〉

[p(r1) ∗ 〈I (r1)〉][p(r2) ∗ 〈I (r2)〉]

= [p(r1)δ(r2 − r1)] ∗ [g(2)(r1,r2)〈I (r1)〉〈I (r2)〉]
[p(r1) ∗ 〈I (r1)〉][p(r2) ∗ 〈I (r2)〉] ,

(34)

where δ(x) is the delta function. By this we express the
intensity-intensity correlation function affected by an external
jitter g

(2)
jit (r1,r2) through the correlation function g(2)(r1,r2)

without jitter.
The autocorrelation function can be derived from Eq. (34)

as

g
(2)
jit (r,r) = p(r) ∗ 〈I 2(r)〉

[p(r) ∗ 〈I (r)〉]2
. (35)

As it follows from these results, an external jitter could
significantly change the statistics of the measured pulses. If
the original intensity distribution obeys Gaussian statistics,
as it follows from Eqs. (34) and (35), it is not necessarily
the case if an external jitter is present. This means also that
expression (8) is no longer valid in this situation.

Equations (34) and (35) are quite general; below we
will estimate the effect of jitter on the intensity-intensity
autocorrelation function in the one-dimensional case (see
Appendix B). We will assume that the intrinsic autocorrelation
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FIG. 11. (a)–(c) Second-order intensity-intensity correlation
function g(2)(
ω) in the frequency domain at (a) 5.5-nm, (b) 13.4-nm,
and (c) 20.8-nm wavelength. The thin dashed red line is a fit by a
Gaussian function. (d)–(f) Histogram of intensity at a fixed position
on the spectrometer at (d) 5.5-nm, (e) 13.4-nm, and (f) 20.8-nm
wavelength. The red line is a fit by a Gamma distribution with a
corresponding number of modes.

function without jitter is a constant g
(2)
0 (x,x) = g

(2)
0 , as it is the

case for a single chaotic source (see Fig. 2). We will consider
also that both the average intensity profile of the radiation
〈I (x)〉 and positional jitter p(ax) are described by a normal
distribution with the corresponding rms values σI and σjit . Un-
der these conditions we can determine the intensity-intensity
autocorrelation function with jitter as (see Appendix B)

g
(2)
jit (x,x) = g

(2)
0

1 + k2

√
1 + 2k2

exp

[
x2

2�2

]
, (36)

where �2 = σ 2
I (1 + k2)(1 + 2k2)/2k2 and k = σjit /σI . This

expression shows that the jitter has a minimum effect on
the contrast near the central intensity position, however, the
contrast grows exponentially at larger deviations from the
center of the beam in the case of external positional jitter.

VI. DISCUSSION

In this section we will apply the models of multiple beams
and positional jitter developed in the preceding section to
explain most of the observed features of the intensity-intensity
correlation function g(2)(x1,x2).

FIG. 12. Results of simulations for two cases of independent
beams shown in Table I as (a)–(c) model II and (d)–(f) model III. (a)
and (d) Intensity, (b) and (e) intensity-intensity correlation function
g(2)(x1,x2), and (c) and (f) values of g(2)(
x) taken along the white
diagonal lines in (b) and (e). The insets in (c) and (f) show the
autocorrelation function g(2)(x,x) taken along the dark red diagonal
lines in (b) and (e).

A. Multiple beams

Two different examples of spatial inhomogeneities in the
intensity-intensity correlation function g(2)(x1,x2) are shown
in Figs. 6(b) and 6(c) and Figs. 6(g)–6(i), respectively. In the
first case, large values of the correlation function are observed
in the quadrant x1 > 0,x2 > 0. In the second, g(2)(x1,x2) is
more homogeneous along the direction x2 = x1, however its
values are slightly varying.

To simulate such behavior of the intensity correlation
function we applied multiple-beam model developed in the
preceding section. We considered two GSM beams described
by Eqs. (13) and (14) with the parameters listed in Table I
and called models II and III. Model II is characterized by a
comparably large separation between two beams, as well as
a strong difference in the beam relative intensity and values
of the coherence length. In model III, both beams are also
separated by about the same distance but have similar values
of the coherence length. In both models the spectral coherence
width 	c of both beams is different.

Simulations were performed using the general equa-
tion (26). The results of these simulations are shown in
Fig. 12. As can be clearly seen from this figure, they reproduce
well our experimental results shown in Fig. 6. Model II
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[Figs. 12(a)–12(c)] gives similar results to those obtained
in Figs. 6(b) and 6(c) and model III [Figs. 12(d)–12(f)]
reproduces experimental results shown in Figs. 6(g)–6(i). For
example, we see that the autocorrelation function [shown in
the insets of Figs. 12(b) and 12(d)] is inhomogeneous. We
also observe a certain narrowing of the intensity correlation
function between two beams that effectively decreases the
coherence length in this region [see Figs. 12(b) and 12(e)].
Far away from the region where beams overlap characteristics
of the beams coincide with their original values. As such, we
can explain inhomogeneities observed in our analysis by the
presence of multiple beams measured on the detector. Here we
do not discuss the physical origin of these beams. It can be
due to lasing of different parts of the electron bunch or due to
rescattering by the optical elements present in the beamline.
A more detailed investigation of these effects is beyond the
scope of the present paper.

B. Positional jitter

Another feature clearly visible in our measurements at
13.4-nm wavelength [see Figs. 6(e) and 6(f)] is the presence
of two symmetrical maxima of about the same magnitude
along the diagonal x2 = x1. Such behavior of the g(2)(x1,x2)
function can be explained by the positional jitter of the beam.
We demonstrate this by performing simulations with different
levels of the positional jitter according to Eq. (34) as shown
in Fig. 13. Beam parameters were considered to be the same
as described in Table I as model I. The positional jitter was
described by the normal probability distribution with the
value of the parameter k: k = 0.1 in Figs. 13(a) and 13(b)
and k = 0.2 in Fig. 13(c) and 13(d). In these figures we
observe an exponential growth of the autocorrelation function
g(2)(x,x) along the main diagonal x2 = x1 in accordance with
Eq. (36) [see the insets in Figs. 13(b) and 13(d)]. At the
same time the values of the second-order intensity correlation
function g(2)(
x) become smaller than unity in the direction
along the diagonal x2 = −x1 [see Figs. 13(b) and 13(d)]. It
should be noted that the values of the correlation function
g(2)(x1,x2) near intensity maxima [g(2)(0,0) in Fig. 13] are
not significantly distorted. This is because the fluctuations of
intensity introduced by the jitter at this point are smaller in
comparison to the values of the intensity.

In our experiments we did not observe such strong
exponential growth of the g(2)(x,x) function but rather the
presence of two maxima [see Figs. 6(e) and 6(f)]. To simulate
our experimental results we added random noise with the
dispersion value of 0.1% of the maximum intensity to
the intensity distribution with the jitter value k = 0.2 (see
Appendix C). The results of these simulations are presented
in Fig. 13(e). A comparison of our experimental results in
Figs. 6(e) and 6(f) and the results of these simulations shows
that we can reproduce the main features observed in the
experiment. By fitting the autocorrelation function g(2)(x,x)
near the center of the beam in Figs. 6(e) and 6(f) with
Eq. (36), we obtained an estimate of the positional jitter in
our experiment to be about 25% of the beam size (parameter
k ≈ 0.25).

FIG. 13. (a) and (c) Intensity-intensity correlation function
g(2)(x1,x2) with different values of the positional jitter calculated
according to Eq. (34). The ratio of the positional jitter to the size of the
beam was (a) k = 0.1 and (c) k = 0.2. (b) and (d) Intensity-intensity
correlation function g(2)(
x) taken along the dark red lines in (a)
and (c). The insets show the corresponding autocorrelation functions
g(2)(x,x) taken along the dark red diagonal lines. (e) and (f) Same
simulations as in (c) and (d) with an additional random noise in the
intensity distribution with the dispersion value of 0.1%. Statistical
properties of the beam were the same as listed in Table I as model I.

VII. SUMMARY

In summary, we performed HBT interferometry measure-
ments at FLASH. We determined the second-order intensity
correlation function at the wavelengths of 5.5, 13.4, and
20.8 nm and different operation conditions of the FEL. In all
measurements we obtained a high degree of spatial coherence
that was above 50%. This is about two orders of magnitude
higher than at any synchrotron source in the same energy
range. From our statistical measurements we also extracted an
average pulse duration that was below 60 fs. These results were
compared with the measurements of the second-order correla-
tion function in the spectral domain that provided independent
measurements of the pulse durations. Both approaches showed
close agreement between two methods.

Our results also revealed that the second-order intensity
correlation function of FLASH radiation is strongly inhomo-
geneous and its behavior could not be explained by radiation
coming from a single distant extended source. We developed
advanced theoretical models, which included a multiple-beam
model and external positional jitter, to account for these effects.
By performing simulations we could reproduce the behavior
of the second-order intensity correlation function observed
in the experiment. The developed approach allowed us to
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estimate the magnitude of the external positional jitter, which
was about 25% of the beam size in the experiment at a 13.4-nm
wavelength.

The obtained results demonstrate that the HBT interferom-
etry is a very sensitive method for the FEL beam statistical
characterization. A simple experimental setup allows us to
perform measurements of the second-order intensity correla-
tion function in parallel with the main experiment, which will
be especially useful for the experiments performed in the gas
phase, or diluted targets. Such on-line measurements will allow
us to monitor FEL operation and provide important feedback
for the machine operation and could potentially become a
sensitive diagnostic tool of the FEL performance.

Even more thrilling is that our measurements demonstrated
a high degree of spatial coherence of the FEL radiation, which
could potentially lead to a completely new avenue in the field of
quantum optics. This could lead to quantum optics experiments
such as the exploration of nonclassical states of light [57],
superresolution and quantum imaging experiments [58,59], or
ghost imaging experiments [60,61] at the FEL sources. As it
was shown in our work, by sufficient monochromatization, a
single longitudinal mode of FEL radiation or Fourier limited
pulses with high photon flux can be achieved. This in turn is an
important prerequisite for a new class of light phase-sensitive
experiments such as coherent and phase control interferometry
with attosecond precision [62,63]. Finally, we foresee that
HBT interferometry will become an important diagnostic and
analytical tool for FEL sources.
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and R. Röhlsberger for the measurements of the second-order
intensity correlation function at the 13.4-nm wavelength of
FLASH during a joint experiment. We thank E. Weckert
for helpful discussions and support of the project. We thank
S. Serkez and E. Saldin for fruitful discussions concerning
FEL physics. We are grateful to the FLASH scientific and
technical staff for making the experiment possible. This work
was partially supported by the Virtual Institute VH-VI-403 of
the Helmholtz Association.

APPENDIX A: INTENSITY DRIFTS DURING
THE MEASUREMENTS

Long-term intensity drifts during the experiment could also
effect the value of the measured contrast. FLASH intensity
drifts during one of the experiments are shown in Fig. 14. Such
drifts introduce additional error in the second-order intensity
correlation function, since our assumption that each pulse is
a different realization of the SASE statistical distribution is
violated in this case.

APPENDIX B: POSITIONAL JITTER

Hanbury Brown–Twiss interferometry at FELs involves
averaging at least over several thousand pulses. For a chaotic
source, the intensity center of mass changes its position from
pulse to pulse. In addition to that, external vibrations can
introduce external positional jitter to the pulse, which can only

FIG. 14. Drift of the relative intensity averaged over 100 pulses
during the run.

be distinguished from the natural jitter of the chaotic radiation
by statistical analysis. In the following we will describe
the effect the external jitter has on the intensity-intensity
correlation function g(2)(r1,r2).

Let us assume that every pulse is randomly shifted by some
distance a, which is described by the probability distribution
p(a). Notice that, by definition, this jitter is statistically
independent from the statistical distribution of pulse intensity
I (r). The intensity-intensity correlation function g(2)(r1,r2)
will then be, following from Eq. (5),

g
(2)
jit (r1,r2) = 〈Ijit (r1 − a)Ijit (r2 − a)〉

〈Ijit (r1 − a)〉〈Ijit (r2 − a)〉 . (B1)

Let us first calculate the average intensity 〈Ijit (r − a)〉. We
can express

〈Ijit (r − a)〉 = 〈F−1[F (Ijit (r − a))]〉
= 〈F−1[e−iqaF (I (r))]〉, (B2)

where F is the Fourier transform. We assume here
that the Fourier transform is of the form F (f (r)) =
1/(2π )n

∫
e−iqrf (r)dr. Since jitter is statistically independent

from I (r), we derive

〈Ijit (r − a)〉 = F−1[〈e−iqa〉F (〈I (r)〉)]. (B3)

We note here that by definition of the Fourier transform,
〈eiqa〉 = (2π )n/2F−1[p(a)](q). Using the convolution theorem
for the Fourier transform [64], we obtain

〈Ijit (r − a)〉 = 1

(2π )n/2
F−1{(2π )n/2F−1[p(−a)]} ∗

×F−1[F (〈I (r)〉)] = p(r) ∗ 〈I (r)〉. (B4)

Again, ∗ denotes convolution. As expected, the average
intensity is smeared by the positional jitter. Performing the
same operations on 〈Ijit (r1 − a)Ijit (r2 − a)〉, we obtain

〈Ijit (r1−a)Ijit (r2 − a)〉=〈F−1[e−i(q1+q2)aF (I (r1)I (r2))]〉
=F−1[〈e−i(q1+q2)a〉F (〈I (r1)I (r2)〉)],

(B5)
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and using the convolution theorem again,

〈Ijit (r1 − a)Ijit (r2 − a)〉

= 1

(2π )n
F−1{

√
2π

n
F−1

q1+q2
[p(−a)]} ∗ F−1[F (〈I (r1)I (r2)〉)]

=p(r1)δ(r2 − r1) ∗ 〈I (r1)I (r2)〉. (B6)

Now we can write the expression for intensity-intensity
correlation function g

(2)
jit (r1,r2),

g
(2)
jit (r1,r2) = p(r1)δ(r2 − r1) ∗ 〈I (r1)I (r2)〉

[p(r1) ∗ 〈I (r1)〉] · [p(r2) ∗ 〈I (r2)〉] . (B7)

Equation (B7) could be also presented in an integral form as

g
(2)
jit (r1,r2)

=
∫

p(r)〈I (r1 − r)I (r2 − r)〉dr( ∫
p(r)〈I (r1 − r)〉dr

)( ∫
p(r)〈I (r2 − r)〉dr

) .

(B8)

The autocorrelation function can be derived from Eq. (B7) as

g
(2)
jit (r,r) = p(r) ∗ 〈I 2(r)〉

[p(r) ∗ 〈I (r)〉]2
. (B9)

As an example we can estimate how the intensity-intensity
autocorrelation function will look in the one-dimensional case
with jitter. Let us assume a Gaussian intensity profile 〈I (x)〉
and Gaussian jitter probability distribution p(ax),

〈I (x)〉 = I0e
−x2/2σ 2

I , (B10)

p(ax) = 1√
2πσjit

e−a2
x/2σ 2

jit . (B11)

We will also assume that the intrinsic autocorrelation function
is a constant g(2)(x,x) = g

(2)
0 , as it is the case for a single

chaotic source. Then 〈I 2(x)〉 = g
(2)
0 〈I (x)〉2 by definition of

g(2)(x,x). Substituting this relation as well as Eqs. (B10)
and (B11) into Eq. (B9), we immediately obtain

g
(2)
jit (x,x) =

√
2πσjitg

(2)
0

e−x2/2σ 2
jit ∗ e−x2/σ 2

I

[e−x2/2σ 2
jit ∗ e−x2/2σ 2

I ]2
. (B12)

Using the well-known fact that the convolution of two
normalized Gaussian functions with the rms values σ1 and
σ2 is a normalized Gaussian function with the rms value
σ =

√
σ 2

1 + σ 2
2 (see, for example, [65]), we finally obtain for

the intensity-intensity autocorrelation function with jitter

g
(2)
jit (x,x) = g

(2)
0

1 + k2

√
1 + 2k2

exp

[
x2

2�2

]
, (B13)

where �2 = σ 2
I (1 + k2)(1 + 2k2)/2k2 and k = σjit /σI .

APPENDIX C: EFFECTS OF THE BACKGROUND NOISE

The intensity-intensity correlation function g(2)(x1,x2) in
the region of low-intensity values can be affected by the
background noise. We assume that the total intensity can be
represented as

I (x) = I0(x) + IB(x), (C1)

where I0(x) is the intensity of the beam and IB(x) is the
background intensity. We assume also that the background
signal is statistically independent from the beam intensity
fluctuations. For the background fluctuations we consider
that

〈IB(x)〉 = C, (C2)

〈IB(x1)IB(x2)〉 = C2(1 + δx1,x2 ), (C3)

where C � max(I0) and the background signal is not signifi-
cant in the center of the beam.

Substituting Eq. (C1) in the general expression for the
second-order intensity correlation function

g(2)(x1,x2) = 〈I (x1)I (x2)〉
〈I (x1)〉〈I (x2)〉 , (C4)

we will determine how additional background could influence
measured values of the second-order intensity correlation
function. The same procedure can be done for the beams in
the presence of jitter described in Appendix B. In this case
correlation functions in the presence of jitter will be modified
according to

〈I (x)〉jit = p(x) ∗ 〈I (x)〉, (C5)

〈I (x1)I (x2)〉jit = p(x1)δ(x2 − x1) ∗ 〈I (x1)I (x2)〉. (C6)

Substituting here values of intensity I (x) in the presence of
noise as given in Eq. (C1), we will obtain the final result.
This approach was used in simulations of the second-order
correlation function in the presence of jitter and background
noise presented in Figs. 13(e) and 13(f).
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