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Condensation of thresholds in multimode microlasers
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We show from ab initio laser theory that by choosing an appropriate spatial pump profile, many different
spatial modes of a typical microlaser can be turned on at the same pump energy, substantially increasing the
number N of simultaneous lasing modes. The optimal pump profile can be obtained simply from knowledge of
the space-dependent saturated gain profile when the system is uniformly pumped up to the N th modal threshold.
We test this general result by applying it to a two-dimensional diffusive random laser and a microdisk laser.
Achieving highly multimode lasing at reasonable pump powers is useful for reducing the spatial coherence of
laser sources, making them suitable for use in speckle-free imaging and other applications.
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The laser is a well-studied driven-dissipative nonlinear
system, and many aspects of the theory are well understood and
tested experimentally [1,2]. In the past two decades, however,
many new laser cavity designs have been introduced, both
to study novel optical physics and in the search for efficient,
on-chip microscale sources [3–5]. Unlike macroscopic laser
cavities, where cavity design and intracavity components
can be used to control the number of lasing modes, for
microlasers modal control is less straightforward; moreover
until recently there was no convenient theoretical approach to
determining the number of lasing modes and their thresholds.
Despite these challenges, modal control in microlasers offers
a unique opportunity in regard to recent breakthroughs in
speckle-free imaging [6–8]. While single-mode lasing is
desirable in many applications, highly multimode lasing with
spatially uncorrelated phases is a very convenient mechanism
for reducing the spatial coherence of a bright laser source,
allowing lasers to be used in full-field imaging microscopy
and other applications requiring intense speckle-free sources.
Compared with traditional low spatial coherence sources such
as thermal lamps and light-emitting diodes, highly multimode
lasers offer the advantage of higher power per mode, improved
collection efficiency, and easier spectral control.

As has been known for some time [2,9], for essentially
all microlasers, multimode lasing is stable due to spatial
hole-burning: Different spatial modes use distinct regions
of the gain medium and can reach the lasing threshold
(modal gain equals loss) at different pump strengths, despite
saturation of the gain by modes which turn on earlier. In
addition, the large free spectral range in microlasers prevents
population dynamics from effectively driving multimode laser
instabilities. The modal thresholds of lasers in the absence
of saturation are determined by two factors: the quality (Q)
factor of the mode in the passive cavity, and the modal overlap
with the gain medium, both spatially and spectrally. Previous
work on achieving highly multimode lasing in microlasers
has focused on passive cavity engineering to create many
modes with similar Q factors, using, for example, random
lasers [10] and chaotic lasers [11]. This approach, however,
usually leads to relatively low Q factors and high thresholds.
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In this work we propose to exploit the spatial degrees of
freedom of the pump to achieve highly multimode lasing in
microlasers, which can be applied to both high-Q and low-Q
cavities without spoiling their quality factors. The spatial pump
profile can be controlled through spatial light modulators [12],
phase masks, or eventually by multiple electrical contacts
[13–15], and such an approach has been used empirically to
achieve single-mode lasing [16–18] and directional emission
[19,20]. In contrast to these works using trial-and-error
optimization to achieve modal control, here we show the
existence of pump profiles leading to highly multimode lasing
analytically, using steady-state ab initio laser theory (SALT),
a recently developed approach to predict the modal behavior in
complex microlaser geometries with arbitrary pump profiles.
SALT reduces the semiclassical laser equations to a set of
time-independent self-consistent nonlinear wave equations
that include the spatial hole burning effect exactly. The SALT
equations accurately find the solutions of the full semiclas-
sical laser equations for nonuniformly pumped multimode
microlasers [21–25], and they have been used to predict new
phenomena, such as re-entrant lasing near exceptional points
[26], which have since been observed [27,28]; hence SALT
(and approximations to it) have been used to study numerically
modal control through variation of the pump profile. However,
due to the nonlinearity of the equations there have been no
rigorous analytic results to guide these studies.

Here we present a very surprising result of this type. Sup-
pose a laser cavity is pumped with some trial pump profile (e.g.,
uniform in space), and as the pump power increases, N � 1
modes turn on at thresholds D

(μ)
0 (μ = 1,2, . . . N). We show

that for any such trial profile there exists a refined pump profile
which will cause all N modes to turn on at the same “master
threshold” Dm, where D

(1)
0 < Dm < D

(N)
0 . Above Dm typi-

cally many more modes will lase for the same pump power as
with the trial pump profile. We also show that this approach can
be effective even given practical constraints on pump control.

Before going into the proof of threshold condensation and
relevant examples, we note that degenerate thresholds arising
from symmetry are well-known, e.g., counterpropagating
modes in ring or disk lasers. However, this case is only a
pairwise degeneracy, and it is usually lifted by the nonlinearity,
which randomly locks into one of the two possible states
[29–31]. There are also degenerate macroscopic cavity designs
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which have many modes with the same threshold. Here, as
noted, we are focusing on microlasers which can have any
cavity design which supports many modes at high pump, and
our approach requires no symmetry at all, nor any simple
relationship among the condensed modes.

To understand why such a master threshold should exist,
note that the pumped laser cavity itself is performing an
optimization: As the pump increases, modes at different
frequencies have different access to the gain, and all those
which eventually lase have managed to balance gain and
loss through positive feedback. However in the nonlinear
steady state, the lasing modes do not respond simply to the
pump profile imposed externally; instead they respond to the
saturated gain profile, which is strongly affected by the spatial
variation and relative intensities of each mode. Hence if one
imposes an external pump at low power (so no modes lase)
which follows spatially the saturated gain profile and simply
increases the total pump power with this profile, at some power
level all the modes will balance gain and loss with the now
unsaturated gain susceptibility and start lasing together.

We now show that this simple argument is rigorously correct
using the SALT equations [21–25], which find the steady-state
solutions of the semiclassical Maxwell-Bloch equations [1,2]
and N -level generalization thereof. SALT assumes a stationary
population inversion in the gain medium (see the discussion
in Ref. [32]), which requires that the relaxation rate of the
gain medium γ‖ be small compared to the dephasing rate of
the polarization γ⊥ and the free spectral range of the laser,
both satisfied for most microlasers. The high accuracy of
SALT in this regime has been verified by comparing with
time-dependent FDTD simulations [32–35]. Although SALT,
as well as the Maxwell-Bloch equations, treats homogeneously
broadened gain media by construction, there is evidence that
it applies qualitatively to certain inhomogeneously broadened
gain media as well, such as InAs quantum dots lasers [18].

The SALT equations for the steady-state lasing modes
�μ(�r; D0) (μ = 1, . . . ,N) and their frequencies �μ take the
form [32],

[
∇ × ∇ − [εc(�r) + εg(�r; D0)]

�2
μ

c2

]
�μ(�r; D0) = 0, (1)

where c is the speed of light in vacuum and εc(�r) is the
passive part of the cavity dielectric function independent of the
pump strength D0. The electric field �μ(�r; D0) is expressed
in dimensionless form, measured in units ec = h̄

√
γ‖γ⊥/2g

where g is the dipole matrix element of the lasing transition.
The equations are to be solved with purely outgoing boundary
conditions, and below the first threshold D

(1)
0 no solutions

exist. Nontrivial solutions �μ(�r; D0) appear and increase in
amplitude above each threshold D

(μ)
0 , and each �μ(�r; D0)

oscillates at a real-valued lasing frequency �μ, which in
general varies with D0.

Each mode interacts with itself and the other lasing modes
via nonlinear gain saturation, which appears in the “active”
part of the dielectric function and takes the form [24]:

εg(�r; D0) = γ⊥
�μ − ωa + iγ⊥

D0f0(�r)

1+ ∑N
ν=1 �ν |�ν(�r; D0)|2 . (2)

ωa here is the atomic transition frequency, �ν ≡ γ 2
⊥/[γ 2

⊥ +
(�ν − ωa)2] is the Lorentzian gain curve evaluated at �ν ,
and f0(�r) � 0 is the externally imposed spatial profile of the
pump, which we normalize by

∫
cavity f0(�r)d�r = S, where S =∫

cavity d�r is the area of the cavity in two dimensions. As noted,
the saturated gain profile depends strongly on the amplitude,
spatial variation, and frequency of the lasing modes, with the
highest amplitude modes causing the most saturation.

Now consider f0(�r), as the “pilot” profile we wish to refine
to cause all of the modes up to a target number Nt to lase at the
same threshold. This trial problem for �μ(�r; D0),�μ up to the
Nt th threshold Dt can be solved either by expanding �μ(�r; D0)
in a complete, biorthogonal, and frequency-depedent basis
(i.e., the constant flux states [22]) and solving a set of nonlinear
equations for the expansion coefficients and �μ, or by a direct
nonlinear numerical solver based on the Newton-Raphson
algorithm [32]. As noted, for those Nt modes the saturated
gain profile balances gain and loss. Hence we take our refined
pump profile to be proportional to the saturated gain profile,

fm(�r; Dt ) = C(Dt )f0(�r)

1 + ∑Nt

μ=1 �μ|�μ(�r; Dt )|2
, (3)

where C(Dt ) is a constant determined by the normalization∫
cavity fm(�r; Dt )d�r = S. After replacing f0(�r) by fm(�r; Dt ) in

Eqs. (1) and (2), we insist that the unsaturated susceptibility
with the new profile be identical to the saturated susceptibility
of the original pilot problem at Dt . This requires that the
appropriate pump value for the refined problem be

Dm = Dt

C(Dt )
, (4)

which uniquely determines a master threshold, at which all Nt

modes turn on under the new pump profile. At Dm all the lasing
modes have the same spatial pattern and frequency as in the
trial problem. This construction was first noted in passing in
Ref. [36], and it relies on the fact that the SALT equations are
homogeneous nonlinear differential equations. To exemplify
this construction in a much simpler case, we discuss its analog
using a nonlinear matrix problem in Appendix A.

The above result on threshold condensation is exact for
the SALT equations, and therefore applies to many lasers,
particularly microlasers as noted above. However, while this
result rigorously proves that all Nt modes are at threshold at
Dm, it does not prove that above Dm, all modes are lasing,
and below Dm none are. It is possible in principle that one
or more of the modes have turned on at a lower pump value,
acquired a negative slope before Dm, and stop lasing at Dm,
which would be their “off threshold”. However, while negative
power slope due to modal interactions is possible, it requires
special relationships between the modal profiles and lasing
frequencies and typically also some optimization of the pump
profile [35]. Since the modes involved here are arbitrary and
the pump profile has been set by the requirement of degeneracy,
it is highly unlikely that negative power slopes will occur at or
near Dm (see Appendix B).

As a first demonstration of threshold condensation follow-
ing this construction, we show in Fig. 1 the condensation of
Nt = 6 modes in a two-dimensional (2D) diffusive random
laser [21,37–39], calculated via SALT. [For 2D geometries
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FIG. 1. Condensation of multiple thresholds in a 2D random laser.
(a) Modal intensity Iμ ≡ ∫

cavity |�μ(�r; D0)|2d�r/S as a function of
pump power D0 with uniform pumping. (Inset) A disk pump of radius
R over an aggregate of scatterers with refractive index n = 1.2. The
background index is 1. The gain medium is characterized by ωaR/c =
30 and γ⊥R/c = 1. (b) Simultaneous onset of six modes above
Dm = 1.17D

(1)
0 with the refined pump profile fm(�r; Dt = 1.48D

(1)
0 ).

An additional mode (thin gray line) also turns on in the range of
pump power shown. (Inset) Refined pump profile and its color scale.
(c) The lasing frequencies of the six modes in (a) at Dt are shown by
filled circles, where the trajectories of the corresponding QB modes
end up as the pump power increases from 0 (squares) to the master
threshold Dm with the refined pump profile. The trajectories of six
other QB modes that have not reached their thresholds are also shown
(thin gray lines). The horizontal line indicates the threshold condition
Im[�μR/c] = 0. (d) Dm as a function of Dt . Filled circles show the
values of Dm when Nt increases by 1, and open circles show the
threshold of this new mode with uniform pumping. Two pairs of such
values for Nt = 6 and 9 are enclosed by boxes.

the vector equation (1) reduces to a nonlinear Helmholtz form
[24]]. Using a uniform pilot pump profile f0(�r) = 1, we ramp
up the pump power until six modes are lasing [see Fig. 1(a)].
Expressed in terms of the first threshold D

(1)
0 , the thresholds

of the other five modes are 1.18, 1.27, 1.34, 1.35, and 1.48.
Now using Dt = 1.48D

(1)
0 and the corresponding saturated

gain profile fm(�r; Dt ) as the refined pump profile, we find that
the master threshold is given by Dm = 1.17D

(1)
0 . At this pump

value only one mode lases with uniform pumping, while with
the refined pump there are now six [see Fig. 1(b)]. As a separate
verification, we plot the trajectories of the corresponding
resonance poles [quasibound (QB) mode frequencies] with
increasing pump strength in Fig. 1(c); the pump value at which
a pole first reaches the real axis denotes the lasing threshold
[24], and here all six poles reach the real axis simultaneously.

The same procedure can be applied to a larger target number
of lasing modes in the same laser. For example, for this
random laser the ninth mode starts lasing at D

(9)
0 = 1.81D

(1)
0

with uniform pumping. Now using this different value as
Dt , and the different saturated gain profile as the refined
pump profile, the master threshold is given by Dm = 1.20D

(1)
0 ,

a value where there are only two modes lasing with uniform
pumping, whereas now there are nine. Strikingly, the master
threshold increases much more slowly with Nt than does the
Nt th threshold with uniform pumping [see Fig. 1(d)]. For
example, Dm only increases by 0.03D

(1)
0 when Nt increases

from 6 to 9, while the difference between the sixth and ninth
thresholds with uniform pumping is 0.33D

(1)
0 .

The reason for this behavior is as follows: The ratio of Dm

and Dt is given by the normalization constant C(Dt ) [Eq. (4)].
By integrating both sides of Eq. (3) and using the normalization
of fm(�r; Dt ), we find

C(Dt )
−1 =

∫
cavity

f0(�r) d�r
1 + ∑Nt

μ=1 �μ|�μ(�r; Dt )|2
. (5)

On average, the saturation term in the denominator in-
creases linearly with pump, so that (averaging over space)∑Nt

μ=1 �μIμ(Dt ) ≈ aDt/D
(1)
0 − b, [where Iμ(Dt ) ≡ ∫

cavity

|�μ(�r; Dt )|2d�r/S]. Thus Dm ≈ Dt/[1 − b + aDt/D
(1)
0 ] →

D
(1)
0 /a, when the pump power Dt � D

(1)
0 , indicating that Dm

remains of order D
(1)
0 even when Dt becomes very large.

The asymptote of Dm in Fig. 1(d) is captured well by this
approximation (1.16D

(1)
0 ; marked by the star), using a = 0.86

extracted from the modal intensities in Fig. 1(a).
The saturated gain profile used to generate the refined

pump typically varies on the scale of the wavelength of light
in the cavity, whereas approaches to shape the pump profile
mentioned in the introduction will have limited resolution due
to the diffraction limit, carrier diffusion, and other effects. In
addition, the saturated gain profile is typically not directly
measurable but must be calculated from some model of the
cavity, and will be subject to corresponding inaccuracies. Thus
there will be limits on our ability to generate the ideal pump
profile leading to exact degeneracy. To estimate this effect,
we perform a Gaussian smoothing of the refined pump profile
used in Fig. 1:

f̄m(�r; Dt ) = C̄(Dt )

2πσ 2

∫
cavity

fm( �ς ; Dt ) e
− (�r−�ς)2

2σ2 d �ς, (6)

where C̄(Dt ) is a normalization constant similar to C(Dt ). We
note that a quite noticeable reduction of pump details already
takes place at σ = R/40 [compare the insets in Figs. 1(b) and
2(b)]. Nevertheless, we still find a significant enhancement of
multimode lasing [see Fig. 2(b)]: While the sixth threshold
is now at 1.27D

(1)
0 and higher than the master threshold

(1.17D
(1)
0 ), it is still much lower than its value with uniform

pumping (1.48D
(1)
0 ). D

(1)
0 here refers the first threshold under

the pilot pump profile.
In addition, we can perform further optimization by treating

the refined pump profile itself as a variational function,
and using the intensities in the denominator of Eq. (3) as
variational parameters to compensate much of the threshold
splitting. For example, the dominant effect of pump smearing
in Fig. 2(a) is a much lower threshold of mode 1. To
reverse this change, we increase the suppression of mode 1 in
the refined pump profile (before smearing) by increasing the
intensity |�1(�r; Dt )|2 [and I1(Dt )]. Due to cross-saturation,
this treatment also changes the thresholds of the other modes
but typically to a lesser extent. Hence by adjusting each modal
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FIG. 2. Effect of a deviated pump profile and its correction. (a)
Filled diamonds: lifting of the sixfold threshold degeneracy (filled
circles) in Fig. 1(b) due to a Gaussian smoothing of the refined
pump profile with σ = R/40 [see inset in (b)]. Open symbols
show an additional mode (mode 7). Connected black triangles:
restoration to a quasidegeneracy after an “error correction” procedure
with modal-intensity changes �I1−7(Dt ) = 0.82,0.01,0.25,0.08,

− 0.05, − 0.10,0.13. Modal interactions under the smeared pump
profiles are neglected in calculating the degeneracy-lifted thresholds
D(u)

m but included in (b) and (c). (b) Modal intensity Iμ as a function
of pump power D0 with f̄m(�r; Dt ) before “error correction”. (c) Same
as (b) but after “error correction”.

intensity in the appropriate direction to compensate its splitting
due to smearing, quasidegeneracy can be restored as shown
in Figs. 2(a) and 2(c). Note that the quasidegenerate master
threshold after “error correction” is given by D̄m ≈ 1.15D

(1)
0 ,

which is even lower than the degenerate one. This illustrates
the point that Dm is not a lower bound on the pump value
where Nt modes can lase, but it is an excellent starting point
for optimization.

As a final example, we apply the threshold condensation
procedure to a microdisk laser (see Fig. 3), a well-studied

FIG. 3. Condensation of multiple thresholds in a microdisk laser
of radius R. (a) Modal intensity Iμ as a function of pump power D0

with a ring-shaped pilot pump profile (inset). The 16th mode starts
lasing at D0 = 1.83D

(1)
0 , and γ⊥R/c = 0.5 is used. (b) Simultaneous

onset of all 16 modes above Dm = 1.08D
(1)
0 with the refined pump

profile fm(�r; Dt = 1.83D
(1)
0 ). The 3D rendering of the latter is shown

as the inset, one quarter of which is removed to show its radial profile.

multimode microlaser of technological interest. We choose
a high index contrast typical of semiconducting devices
although we assume an atomiclike gain medium (e.g., quan-
tum dots). The relevant electromagnetic modes are high-Q
whispering-gallery modes (WGMs), confined by near total
internal reflection. For the reason discussed already in the
introduction, we only consider WGMs of one symmetry, e.g.,
the clockwise rotation (positive azimuthal quantum number
m), which preserves the rotational symmetry of the system
when gain saturation is considered. With n = 3.3 + 10−4i and
ωaR/c = 30, this microdisk laser supports WGMs of m up to
100. It is natural here to choose a nonuniform pilot profile, and
we take a ring-shaped pump profile [f0(�r) = 0 for r < R/3].
With this choice the first mode has m = 80 and the 16th mode
of m = 37 starts lasing at D

(16)
0 = 1.83D

(1)
0 [see Fig. 3(a)].

Using this pump value as Dt , the master threshold occurs
at Dm = 1.08D

(1)
0 , beyond which all 16 modes start lasing

simultaneously [see Fig. 3(b)].
In summary, we have shown that the spatial hole-burning

nonlinearity of a laser can be utilized to refine the pump
profile, resulting in the simultaneous lasing of many modes
at relatively low pump power. This analytic property of the
lasing equations is a consequence of their nature as a set
of homogeneous nonlinear differential equations, which is
independent of the laser cavity itself. Therefore, this approach
can be used as a guide to find spatial profiles leading to control
of multimode lasing properties, for both high-Q and low-Q
cavities, even if there are limitations on the spatial precision
or resolution of the pump profile as illustrated in Fig. 2. For a
stable pump source, its temporal fluctuation, even if noticeable,
has a time scale longer than the laser dynamics. Then the
laser can be viewed as subjected to multiple realizations of
a spatial noise sequentially. For each instance the effect of
the noise is captured by what we have discussed in Fig. 2,
and as a function of time we may see lasing of different
subgroups of the intended modes. Nevertheless, this “subgroup
hopping” does not impose a problem for our purpose of
speckle-free imaging, since we only require a large group of
modes lasing simultaneously (that have uncorrelated phases),
without requiring constant lasing of a particular group of
modes.

L.G. acknowledges partial support by PSC-CUNY under
Grant No. 68698-0046 and NSF under Grant No. DMR-
1506987. H.C. acknowledges support by NSF under Grant No.
DMR-1205307. A.D.S. acknowledge support by NSF under
Grant No. DMR-1307632.

APPENDIX A: NONLINEAR MATRIX MODEL

To exemplify the construction of the refined pump profile
in a much simpler setting, here we consider the following
nonlinear matrix problem:(

1 + D0fa

1+Ia
−1

−1 1 + D0fb

1+Ib

)(
a

b

)
= 0, Ia(b) = a2(b2). (A1)

Here f = (fa,fb) resembles the pump profile and the
fractions Da ≡ D0fa/(1 + Ia),Db ≡ D0fb/(1 + Ib) resemble
the saturated gain profile. With a uniform “pump profile”
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fa = fb = 1 and at “pump strength” D0 = 4, we find a = (1 +√
5)/2, b = (1 − √

5)/2 give a nonlinear solution of the matrix
problem above, resulting in a saturated “gain profile” Da =
4/[1 + (

√
5 + 1)2/4] ≡ da and Db = 4/[1 + (

√
5 − 1)2/4] ≡

da . Now if we choose a new “pump profile” f = (da,db) ≡ fm,
we immediately find that(

a

b

)
=

(
1 + √

5

1 − √
5

)
ε (A2)

is a solution of Eq. (A1) at D0 = 1 ≡ Dm, when ε → 0. This
solution indicates that Dm is the threshold of the “laser” with
the new “pump profile” fm.

We note that this simplified example differs from the
SALT equations in the main text in two important aspects.
First, it is a “single-mode” model, where Ia,b represents the
intensity of this mode at two different locations. Second, we
did not normalize fm and hence the value of Dm cannot be
compared directly with the threshold with uniform pumping.
Nevertheless, the essential feature of this simplified example is
exactly the same as that in the main text, where we have a set of
homogeneous nonlinear equations and take the saturated “gain
profile” at a certain pump strength with uniform pumping to
be the pump profile in a second setup, resulting in a laser at its
threshold.

APPENDIX B: NEGATIVE POWER SLOPE
AT THE MASTER THRESHOLD

With a refined pump profile fm(�r; Dt ), we have shown in
the main text that all Nt modes lase simultaneously once the
pump power is increased beyond the resulting master threshold
Dm. There are two rare scenarios where this behavior breaks
down, with one or more of the Nt mode suppressed beyond
Dm. We discuss these two scenarios in this appendix.

The first scenario in which one or more of the Nt modes
could in principle be suppressed beyond their condensed
threshold Dm is a linear effect, where the trajectory of the
corresponding quasibound mode frequency �μ(D0) crosses
the real axis at D0 = Dm from above. This behavior is caused
by an exceptional point [26,40,41], and such an �μ(D0) has
another crossing with the real axis at a lower pump power (see
the schematics in Fig. 4). We have not found a case where
this rare scenario takes place, which requires fine tuning of
the system parameters close to an exceptional point.

FIG. 4. Schematics showing that the master threshold in principle
can be where a mode is turned off instead of turned on. Dm in this
case is the “on” threshold of modes 2 and 3 and “off” threshold of
mode 1.

The second scenario is a nonlinear effect. It occurs if the
onset of mode competition above Dm would lead to a negative
power slope of one or more modes. To study this scenario
analytically, we assume the cavity has a high-Q factor and
consider first the Nt = 2 case for simplicity. For a high-Q
cavity SALT can be approximated by a simple set of intensity
equations [24], which take the following form here:

D0

Dm

− 1 = χ11I1 + χ12I2 = χ22I2 + χ21I1. (B1)

Although Iμ ≡ �μ| ∫cavity fm(�r)�μ(�r; D0)2d�r/S| is defined
differently from the modal intensity Iμ introduced in the
main text, they are proportional to each other in a high-Q
cavity, and the normalized spatial mode profile ϕμ(�r) =
�μ(�r; D0)

√
�μ/Iμ is approximately real and varies lit-

tle above threshold. χμν = | ∫cavity fm(�r)ϕμ(�r)2|ϕν(�r)|2d�r/S|
gives the self-interaction coefficients when μ = ν and the

FIG. 5. Mode suppression beyond the master threshold in a
microdisk laser (a)–(c) and an aperiodic laser (d)–(f). (a) and
(d) Modal intensity Iμ as a function of pump power D0 with
uniform pumping. Both cases feature an interaction-induced mode
switching (IMS), for the first and second modes, respectively. The
arrows point to their negative power slopes at Dt = 2.29D

(1)
0 in

(a) and Dt = 2.38D
(1)
0 in (c). (Insets) Schematics of a microdisk

laser with nc = 2 + 0.01i, ωaR/c = 4.83, and γ⊥R/c = 1 in (a)
and an aperiodic laser with dielectric layers of nc = 1.5 (in air),
ωaR/c = 122.51, and γ⊥R/c = 17.46 in (d). (b) and (e) Im[�μR/c]
as a function D0 with the refined pump profile fm(�r; Dt ). Nt = 2,3
and Dm/D

(1)
0 = 1.54,1.37 in (b) and (e), respectively. (c) and (f) Same

as (a) and (d) but with their respective fm(�r; Dt ).
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cross-interaction coefficients when μ �= ν, and we note that
χ21 ≈ χ12 holds in a high-Q cavity. It is straightforward to see
that a negative power slope for either I1 or I2 requires

χ22 − χ12

χ11 − χ21
= I1

I2
< 0. (B2)

In other words, the cross-interaction coefficients χ12,χ21 need
to be larger than one of the self-interaction coefficients and
smaller than the other. This condition is again very rare in a
high-Q cavity which features χ11,χ22 � χ12,χ21 in general;
only recently was the condition (B2) reported that leads
to interaction-induced mode switching (IMS) [35]. Using
the multimode form of Eq. (B1), the criterion (B2) can be
generalized to Nt > 2 cases straightforwardly, i.e.,

Iμ ∝
Nt∑

ν=1

[χ−1]μν < 0, (B3)

for one or more of the Nt modes, where χ−1 is the inverse
matrix of χ .

In Fig. 5 we apply the condensation procedure to the
microdisk laser studied in Ref. [35] that exhibits IMS: The
second mode turns on at D

(2)
0 = 2.21D

(1)
0 before it switches

off the first mode via a negative power slope at D0 = 2.41D
(1)
0

[see Fig. 5(a)]. We choose Dt = 2.29D
(1)
0 in the cross-over

region, which leads to Dm = 1.54D
(1)
0 . As Fig. 5(b) shows,

�1,2 reach the real axis simultaneously as the pump power is
ramped up to Dm with the pump profile fm(�r; Dt ). But as soon
as D0 goes beyond Dm, �1 is forced into the lower half of
the complex plane again due to mode competition, leading to
single-mode lasing of the second mode only [see Fig. 5(c)].

FIG. 6. Condensation of multiple thresholds in a 2D random laser.
(a) Modal intensity Iμ as a function of pump power D0 with uniform
pumping. The arrow points to the negative power slope of the fifth
mode at Dt = 1.48D

(1)
0 chosen for Nt = 6. (Inset) Schematics of the

2D random laser. The parameters are the same as in Fig. 1 of the main
text except for a different disorder of scatterers. (b) Simultaneous
onset of all six modes above Dm = 1.35D

(1)
0 with the refined pump

profile fm(�r; Dt ). The latter is shown in the inset with its color scale.

While Eq. (B1) and the criterion (B3) do not apply
to low-Q cavities, the correlation between IMS and the
suppression of certain mode(s) beyond Dm still seems to
hold. In Figs. 5(d)–5(f) we show such an example in a
one-dimensional aperiodic cavity. The second mode exhibits
a negative power slope after the onset of the third mode
at D0 = 1.66D

(1)
0 , and it is switched off at D0 = 2.73D

(1)
0 .

When taking any pump value in this range as Dt , we find that
the second mode is suppressed beyond Dm with the refined
pump profile fm(�r; Dt ).

We note that IMS does not only feature a negative power
slope; this negative power slope must be induced suddenly by
the onset of a new lasing mode. If the negative power slope is
due to mode mixing [21], we find that all Nt modes still lase
simultaneously above Dm. One example is shown in Fig. 6 for
a 2D random laser.
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[28] B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M.
Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang,

Loss-induced suppression and revival of lasing, Science 346,
328 (2014).

[29] Q.-T. Cao, H. Wang, C.-H. Dong, H. Jing, R.-S. Liu, X. Chen,
L. Ge, Q. Gong, and Y.-F. Xiao, Experimental Demonstra-
tion of Spontaneous Chirality in a Nonlinear Microresonator,
Phys. Rev. Lett. 118, 033901 (2017).

[30] L. Del Bino, J. M. Silver, S. L. Stebbings, and P. DelHaye,
Symmetry breaking of counter-propagating light in a nonlinear
resonator, arXiv:1607.01194.

[31] S. Burkhardt, M. Liertzer, D. O. Krimer, and S. Rotter, Steady-
state ab initio laser theory for lasers with fully or nearly
degenerate resonator modes, Phys. Rev. A 92, 013847 (2015).

[32] S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, L. Ge, K. G. Makris,
A. D. Stone, J. M. Melenk, S. G. Johnson, and S. Rotter, Scalable
numerical approach for the steady-state ab initio laser theory,
Phys. Rev. A 90, 023816 (2014).

[33] L. Ge, R. J. Tandy, A. D. Stone, and H. E. Türeci, Quantitative
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