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Spatiotemporal extreme events in a laser with a saturable absorber
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We study extreme events occurring in the transverse (x,y) section of the field emitted by a broad-area
semiconductor laser with a saturable absorber. The spatiotemporal events on which we perform the statistical
analysis are identified as maxima of the field intensity in the three-dimensional space (x,y,t). We identify regions
in the parameter space where extreme events are more likely to occur and we study the connection of those extreme
events with the cavity solitons that are known to exist in the same system, both stationary and self-pulsing.
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I. INTRODUCTION

In recent years, extreme events in optics have been attracting
a lot of interest, originating from the seminal paper by Solli
et al. [1], due to the well-known analogy between optics and
hydrodynamics, where rogue wave formation and prediction
is a priority field of investigations. A huge literature has been
blooming in many different optical systems (for a review, see
Refs. [2–4] and references therein). Even if optical fibers
and fiber lasers are systems of choice for the analysis of
optical rogue waves due to their natural longitudinal extension
(see, for instance, Refs. [5–7] for the conservative case and
Refs. [8–12] for dissipative rogue waves in resonator or
laser devices), semiconductor systems have also emerged as
experimentally convenient test beds for the analysis of extreme
phenomena. For instance, low-dimensional semiconductor
systems in which the wave envelope is severely constrained by
boundary conditions served to demonstrate that the emergence
of rogue events can be associated with an external crisis
in a chaotic regime [13,14], thus showing the deterministic
character of these extreme events. This deterministic nature
was also revealed on the analysis of delayed feedback semi-
conductor laser, where the effect of increased noise reduces
the probability of rogue waves by preventing the dynamics to
approach in phase space the narrow path leading to extreme
pulses [15].

Very recently, extreme events were studied both experi-
mentally and numerically [16] in the intensity emitted by a
monolithic broad-area vertical cavity surface-emitting laser
(VCSEL) with a saturable absorber with a linear pump (which
reduces to one the transverse dimensions), and spatiotemporal
chaos is claimed to be at the dynamical origin of extreme
events.

Here we show numerical results about extreme events
occurring in the field intensity emitted by a monolithic broad-
area VCSEL with an intracavity saturable absorber [17–21],
as the one used in the experiments on cavity solitons [16,22].

We show that, below the lasing threshold, the system may
present multiple stable solutions, such as stationary cavity
solitons, oscillating or chaotic solitons and a global turbulent
solution where the light intensity oscillates aperiodically in
space and time, together with the trivial nonlasing solution.
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The turbulent solution survives above threshold, where it is
the only attractor of the system. When the system is emitting
on the turbulent state, we perform a statistical treatment on
the full set of three-dimensional (3D) data of field intensity
as a function of space and time. In contrast with previous
literature about optical rogue waves in spatially extended
systems [16,23–26], we developed a numerical method for the
individuation of the spatiotemporal maxima of the transverse
field intensity in which each maximum appearing in the space
profile is counted as an “event” only when its peak intensity
reaches the maximum value also in time. This method allows a
comparison, for example, with the hydrodynamical definition
of “significant wave height,” corresponding to the mean value
of the wave height (from trough to crest) of the highest third
of the waves.

A comparison with the existing methods of statistical
analysis of extreme events in other transverse systems has
been also developed.

In conservative systems and propagative geometry, the
rogue wave phenomenon has often been related to known
solutions of the nonlinear Schrödinger (NLS) equation such
as Akhmediev breathers or Peregrine solitons [3,5,7,27].
However, recent measurements in nonlinear optical fiber have
indicated that rogue waves may differ significantly from these
analytic solutions [28]. In the present case of a dissipative
system, dissipative solitons are attractors of the dynamics and
their signature in phase space might be expected to play the role
in the formation of rogue waves. For this reason, we studied
the relationship between the spatial size of the rogue waves
and that of the stationary solitons and between the temporal
behavior of the rogue waves and that of the oscillating solitons.
We also found correlations among the probability of observing
rogue waves and the different stability domains of the solitons.

We believe that our system, being intrinsically two di-
mensional, may give some precious insights on the focusing
mechanisms giving rise to rogue wave (RW) formation in
oceans, mechanisms that could be absent in one-dimensional
systems such as fibers, where optical rogue waves are mostly
studied.

In Sec. II we recall the dynamical equations that we
use to describe a semiconductor laser with an intracavity
saturable absorber, while in Sec. III we present our method for
the selection of spatiotemporal maxima and define different
thresholds for extreme events. In Sec. IV we analyze the
dependence of the probability of extreme events on the laser
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FIG. 1. A scheme of the system in study: a broad–area VCSEL
with an intracavity saturable absorber. The spatiotemporal profile of
the emitted light is analyzed.

parameters and compare our results with those that would
be obtained with the usual method of RW analysis based on
total intensity distribution I (x,y,t) [23–26]. Finally, in Sec. V
we analyze the spatial and temporal profiles of the intensity
or carrier active and passive populations in the presence of
extreme events and we compare them with cavity solitons,
both stationary and self-pulsing.

II. THE MODEL

We consider a monolithic broad-area VCSEL (Vertical
Cavity Surface Emitting Laser) with an intracavity saturable
absorber (see Fig. 1), described by the following set of
equations [17,18]:

Ḟ = [(1 − iα)D + (1 − iβ)d − 1 + (δ + i)∇2
⊥]F,

Ḋ = b[μ − D(1 + |F |2) − BD2], (1)

ḋ = rb[−γ − d(1 + s|F |2) − Bd2],

where F is the slowly varying amplitude of the electric field,
D (d) is the population variable related to the carrier density
in the active (passive) material, μ (γ ) is the pump (absorption)
parameter, α (β) is the linewidth enhancement factor of the
active (passive) material, b and r are, respectively, the ratio
of the photon to the carrier lifetime in the amplifier and the
ratio of the carrier lifetimes in the amplifier to the one of
the absorber, B is the coefficient of radiative recombination,
assumed identical for simplicity in the two materials, s is the
saturation parameter, and δ is a diffusion coefficient for the
electric field that accounts phenomenologically for the finite
linewidth of gain.

Dynamical equations are integrated via a split-step method
with periodic boundary conditions. Time is scaled to the
photon lifetime (≈10 ps) and space is scaled to the diffraction
length (≈4 μm) [29]. For a more detailed definition of all these
parameters see Ref. [20].

In Ref. [21] it was shown that, for a large region of the
parameter space, a spatiotemporal turbulent state coexists
below the laser threshold with the nonlasing solution, the
stationary cavity solitons and possibly with localized chaotic
states (chaotic solitons). Conversely, above the laser threshold,

FIG. 2. Homogenous stationary solution for the system (1)
(dashed black line), stationary cavity soliton branch (blue line and
triangles), time-averaged maximum intensity of the turbulent state
(orange line and squares) and of chaotic solitons (green line and
circles), as a function of μ. Other parameters are r = 1, b =
0.01, α = 2, β = 1, γ = 2, s = 1, B = 0.1, δ = 0.01. The laser
threshold is at μth = 5.18.

where the nonlasing solution becomes unstable, the extended
spatiotemporal turbulent state is the only possible solution of
the equations. Throughout all the paper we study the behavior
of the system in such a turbulent state, both below and above
the lasing threshold.

The time-averaged maximum intensity of the turbulent state
is displayed in Fig. 2 as a function of μ, where for comparison
we also show the intensity of the unstable homogeneous
stationary solution, the maximum intensity of the stationary
cavity solitons and the time-averaged maximum intensity of
chaotic solitons: the turbulent branch lies well above the
other curves. Typical spatial profiles of the turbulent state are
displayed in Figs. 3(a) and 4.

FIG. 3. (a) Snapshot of the transverse profile of the field intensity
and (b) corresponding Fourier spectrum (in logarithmic scale) for the
turbulent solution, for μ = 5 and r = 1.
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FIG. 4. Method for the individuation of the spatiotemporal
maxima. (a)–(c) three successive snapshots (separated by 9 ps) of a
zoom on the field intensity transverse profile in the turbulent regime,
for μ = 5 and r = 1. The red circles indicate the spatiotemporal
maxima detected with our method. Not all the spatial maxima have
a circle in the image; each local spatial maximum (see, for example,
the one indicated by the arrows) is followed during its time evolution:
when its intensity is (a) still growing or (c) is diminishing in time
(green arrows), it is not selected. The “event” is counted only when
the local spatial maximum reaches its maximum value in time [panel
(b), orange arrow].

For most of the simulations shown here (unless stated oth-
erwise), we used the same set of parameters as in Refs. [19,21],
in particular we set b = 0.01, α = 2, β = 1, γ = 2, s = 1,

B = 0.1, and varied r and μ as control parameters.
With respect to Refs. [19,21] we set here δ = 0.01 instead

of zero, which amounts to having a complex coefficient in
front of the Laplacian, which accounts for both diffraction
and diffusion of the electric field. The additional diffusive
term, which accounts for the finite-gain linewidth, has been
introduced phenomenologically, although a detailed derivation
can be found in Ref. [30] for a two-level system and in
Ref. [31] for a VCSEL. With our scaling of time to the photon
lifetime τp the frequencies of the transverse modes are of
order 1. Assuming a Lorentzian gain curve of actual width
1/τg and scaled width τp/τg , the diffusion coefficient is of
order (τg/τp)2. Therefore, our choice δ = 0.01 amounts to
assuming that the gain linewidth is one order of magnitude
larger than the cavity linewidth.

Such a diffusive term is basically irrelevant as long as
one deals with localized structures such as the stationary,
oscillating or chaotic solitons of Ref. [21] but it must be
introduced in presence of an extended turbulent state because
it acts as a filter for high spatial frequencies and prevents the
formation of filaments. Without that term the spatial structures
contract rapidly and become very narrow intensity peaks with
a flat Fourier spectrum, because energy is transported from
the most unstable (low) wave vectors to the higher ones.
Such narrow peaks cannot be sufficiently sampled over the
numerical grid, and the occurrence of this self-collapse makes
the simulations unreliable.

The stabilizing effect of the field diffusion term can be
appreciated in the snapshot of the (transverse) spatial optical

Fourier spectrum of the electric field, shown in Fig. 3(b). The
spectrum is broad, showing the repartition of energy on many
different spatial scales, but the size remains finite, and self-
collapse is avoided.

III. EXTREME EVENTS

The method that we adopted to select the spatiotemporal
maxima is a nontrivial extension of a method introduced in
Refs. [3,11] in the case of (1D + 1) dimensions. It is illustrated
in Fig. 4. The local spatial maximum indicated by the green and
orange arrows is not selected as long as it is growing in time
and neither it is selected when its intensity is diminishing:
it is selected only at the precise instant when it reaches its
maximum in time (orange arrow). This procedure is applied to
each local maximum of the spatial pattern throughout all the
duration of the simulation: all the red circles in Fig. 4 indicate
spatiotemporal maxima detected with this method.

The statistical analysis is done on all the spatiotemporal
maxima recorded in this way during simulations lasting 25 ns,
where we register one image of the transverse intensity
distribution every ps, while the integration time step is 100
fs. The spatial size of the integration window is 256 × 256
pixels, corresponding to about 256 × 256 μm2 (the spatial
step used being 0.25).

We used three different definitions for the threshold that
determines whether an event may be regarded as extreme.

Threshold 1. The mean intensity, averaged on every point of
the transverse plane and every instant in time, plus eight times
the standard deviation. This is the definition most commonly
used for studying optical rogue waves in spatially extended
systems [23–26].

Threshold 2. Two times the significant wave height Hs ,
defined as the average of the highest third of the spatiotemporal
maxima values. This is the typical hydrodynamic definition
and allows us to get rid of a possible global increase of the
average value, which would not correspond to a freak wave.
Note that, due to the large number of very low-intensity peaks,
which would make the treatment and data analysis uselessly
time consuming, we computed the significant wave height
Hs excluding events whose height is smaller than a given
threshold, which is about 0.5. This cut makes more stringent
the criterion for the definition of extreme events. The typical
number of remaining “events” detected during a simulation is
around 6 × 105.

Threshold 3. Average of spatiotemporal maxima values plus
eight times the standard deviation. This is a new definition,
proper to our method and it is, by far, the most stringent
one. We decided to introduce this third threshold because it
is the equivalent of threshold 1, most commonly used, but it
is most appropriate for our numerical data, representing the
spatiotemporal maxima obtained with our method.

IV. DEPENDENCE ON LASER PARAMETERS

We performed numerical simulations for different values
of the control parameters μ (pump parameter) and r (ratio of
carrier lifetimes) to determine under which conditions rogue
waves are more likely to be observed in an experiment. As
indicators for the rogue nature of the data we used (i) the
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FIG. 5. Density plots showing (a) fraction of rogue events using
threshold 1 and (b) kurtosis of the total intensity probability density
function (PDF) after subtracting the kurtosis of a negative exponential
PDF (Kexp = 9), as a function of the parameters r and μ.

ratio of the number of extreme events (identified according to
the three thresholds defined above) to all the spatiotemporal
maxima, and (ii) the kurtosis of the data distribution, which is
the ratio of the fourth moment about the mean to the square of
the variance.

We display the results of the simulations via color scale
density plots of the two indicators. Figure 5 refers to the
statistics made on all the intensity values and shows the fraction
of rogue waves according to threshold 1 [Fig. 5(a)] and the
kurtosis of the probability density function (PDF) [Fig. 5(b)]
with respect to that of a negative exponential

1

〈I 〉 exp

(
− I

〈I 〉
)

, (2)

which is the PDF corresponding to a Gaussian statistics on the
field amplitude.

Figure 6 refers to the statistics made only on the spatiotem-
poral maxima and shows the fraction of rogue waves according
to thresholds 2 [Fig. 6(a)] and 3 [Fig. 6(b)] and the kurtosis of
Imax [Fig. 6(c)].

All these data plots are visually similar, showing a typical
structure for the maximum extreme events probability placed
approximately at the left boundary of the turbulent branch, but
with some small differences that are peculiar to the different
quantity in study.

Figures 7(a) and 7(b) show two sections of Figs. 6(b)
and 6(c) for fixed μ = 5 (below the laser threshold) and
variable r [Fig. 7(a)] and for fixed r = 2.2 and variable
μ [Fig. 7(b)]. Both indicators show a rapid increase in
correspondence with the maxima shown in the density plots.

We can therefore conclude that rogue waves are most
probable for low pump μ, below the laser threshold, where
the turbulent state coexists with the nonlasing solution and the
localized structures, and for high values of r , corresponding to
a fast absorber which favors a Q-switching-like behavior [21].

Figure 8(a) shows the probability density function (PDF)
of the spatiotemporal maxima for μ = 7 and r = 2.5, i.e., for
a set of parameters for which the simulations show that the
probability of extreme events is small.

The three vertical dashed lines indicate the three threshold
defined above. While according to threshold 1 and 2 there is a
considerable number of extreme events, only very few events
lie beyond threshold 3.

FIG. 6. Density plots showing (a) fraction of rogue events using
threshold 2 and (b) threshold 3, and (c) kurtosis of the PDF of the
spatiotemporal maxima as a function of parameters r and μ (as a
reference, for a Gaussian distribution KGauss = 3).

In Fig. 8(a) we can observe that the distribution of the
spatiotemporal maxima can be compared with a Weibull
distribution (even if our data present a slightly less rapidly

FIG. 7. Fraction of rogue waves according to threshold definition
3 (light blue, right vertical axis) and kurtosis of the PDF of the
spatiotemporal maxima (blue, left vertical axis), (a) as a function of
r for μ = 5 and (b) as a function of μ for r = 2.2.
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FIG. 8. (a) PDF of all the spatiotemporal maxima detected with
our method during a numerical simulation lasting 25 ns, for μ = 7 and
r = 2.5. The green and magenta lines are respectively the Gumbel and
Weibull distributions computed from the mean and standard deviation
of the data. The three vertical dashed lines indicate three different
definitions of rogue wave thresholds, defined in the text as thresholds
1, 2, and 3 (see the legend, and the text). (b) PDF of all the values
explored by the intensity during the entire simulation in each point of
the transverse plane. Black dashed vertical line shows threshold for
rogue waves [same as threshold 1 in panel (a)].

decaying tail)

k

λ

(
Imax

λ

)k−1

exp

[
−

(
Imax

λ

)k
]
, (3)

with k and λ parameters directly computed from the data
(mean value, standard deviation etc.). The Weibull distribution
characterizes the deviation from a negative exponential (k = 1)
or a Rayleigh distribution (k = 0): in particular in this case we
find k ≈ 1.52. Furthermore, the data follow well the behavior
predicted by extreme value theory [32], in particular the
Gumbel distribution

1

β
exp {−[z + exp (−z)]}, z = Imax − 〈Imax〉

β
+ γ, (4)

with γ being Euler’s constant and β being the parameter
computed from the data (mean value, standard deviation, etc.).

Figure 8(b) shows instead the PDF of all the intensity values
which displays a small but clear deviation from the negative
exponential PDF computed on the average of the data (solid
red line).

Figure 9 is the same as Fig. 8 but for a most favorable case
(μ = 5 and r = 2.4) for RW existence. Here the approximation

FIG. 9. (a), (b) Same plots as in Fig. 8, but for μ = 5 and r = 2.4.
The presence of very heavy tails is clearly visible, and RWs exist
according to all the threshold definitions.

of the PDF of the spatiotemporal maxima through the Gumbel
and Weibull distribution is not accurate anymore. We observe
that a large number of extreme events exists according to all
three thresholds.

Also, Fig. 9(b) shows a more pronounced deviation from
the negative exponential than Fig. 8(b).

When looking at the temporal evolution of the spatial
intensity profile I (x,y), one can observe that in this case the
turbulent state shows a global superimposed rather regular
oscillation between almost null intensity and a maximum
intensity, as clearly shown in Fig. 10, where we plotted the
temporal evolution of the spatial averaged field intensity. This
is probably a residual effect of the Q-switching instability that
affects the system for high values of r , both in the plane-wave

FIG. 10. Temporal evolution of the spatially averaged intensity
for the same simulation as in Fig. 9.
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case, where the dependence on (x,y) of the electric field is
neglected, and in presence of cavity solitons.

We can compare our results with those of Ref. [16]. In
both cases rogue waves appear to be related to spatiotemporal
complexity, but in Ref. [16] the proportion of RW and the
excess kurtosis of the data distribution seem to increase (at
least for a large set of the pump values above threshold) when
the pump μ is increased, in contrast with our results, where
both indicators decrease.

It is important to remark that, in Ref. [16], the data analyzed
are those of the mean intensity, averaged over the spatial
integration window, which can present a completely different
behavior with respect to the local intensity. For instance, in
a situation such as that of Fig. 9, where our RW indicators
calculated on the spatiotemporal maxima are largest, the mean
intensity is conversely very well behaved, as shown in Fig. 10.
A statistic analysis made on the spatially averaged intensity
would probably show no trace of extreme events in this case.

To substantiate this interpretation we performed a new
set of numerical simulations using the same parameters as
in Ref. [16]; that is, r = 1, b = 0.005, α = 2, β = 0, γ =
0.5, s = 10, B = 0, δ = 0.01, and performed the statistical
analysis of the spatiotemporal maxima obtained with our
method. In Fig. 11(a) we show the stationary homogeneous

FIG. 11. (a) Unstable stationary homogeneous solution (black
dashed line) and turbulent branch (red line with symbols) for
the parameters r = 1, b = 0.005, α = 2, β = 0, γ = 0.5, s = 10,

B = 0, δ = 0.01. The laser threshold is at μth = 1.5 (b) Kurtosis of
the PDF of the spatiotemporal maxima (blue, left axis) and fraction
of rogue events using threshold definition 3 (light blue, right axis) as
a function of parameter μ, for simulations lasting 25 ns.

solution and the turbulent branch, while in Fig. 11(b) the
Kurtosis of the PDF and the RW fraction are shown as a
function of the pump parameter μ (same as in Fig. 7). The
same behavior as for all the other examples shown in this
paper is present here: the maximum probability of extreme
events occurs for low pump values; that is, at the left boundary
of the turbulent branch, in contrast with the results of Ref. [16].

V. SPATIAL AND TEMPORAL PROFILES

Once observed the presence of rogue waves in the system
under analysis, we studied the spatial and temporal profiles of
the rogue waves detected during the numerical simulations.

In Fig. 12 we show an example of a RW and its spatial
and temporal profiles for the field intensity (solid red line)
and the carrier populations in the active (dotted blue line)
and passive (dash dotted yellow line) media. For the sake
of simplicity, we limited the spatial analysis to the x and y

FIG. 12. (a) Example of a rogue wave in the transverse plane and
(b) its temporal and (c) spatial profiles, shown for the variables I

(solid red line), D (dotted blue line), and d (dash dotted yellow line).
Parameters are μ = 4.8, r = 2.2.
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FIG. 13. Comparison with cavity solitons. (a) Comparison of the
spatial profile of a stationary cavity soliton (dash dotted green line)
and that of a RW (solid blue line) for μ = 5, r = 1. Comparison
of the (b) spatial and (c) temporal profiles of a self-pulsing cavity
soliton (dash-dotted red line) and those of a RW (solid blue line), for
μ = 5, r = 1.75. The profiles are normalized to the peak intensity
value.

axes. The temporal profile is given by the values registered
throughout the simulation in the spatial point where the rogue
wave is detected. From the spatial and temporal profiles it is
possible to get the typical full width at half maximum (FWHM)
detected during each simulation. The typical FWHM in time
is 16 ps and the typical FWHM in space is 6 μm: as we

noticed, these values remain almost constant throughout all
the different simulations (performed with different values of μ

and r), suggesting that there is a typical spatial and temporal
size for this kind of phenomena.

In Fig. 13(a) we present a comparison between the spatial
profile of a rogue wave (solid blue line) and a stationary cavity
soliton (dash dotted green line), obtained in a parameter region
where they coexist (here, μ = 5, r = 1), while in Figs. 13(b)
and 13(c) we compare both the spatial and temporal profiles of
a RW (solid blue line) and a self-pulsing cavity soliton (dash
dotted red line), for μ = 5 and r = 1.75.

The very similar spatial and temporal shapes seem to
indicate the same generating mechanisms for cavity solitons
and RWs, and that the RW occurrence may be related to the
existence of the dissipative soliton attractor in a very close
parameter range.

As for the spatial profile, the generating mechanism is
related to the modulational instability of the homogeneous
stationary solution, whose spatial scale is ruled by the
diffraction length (depending, in turn, on the cavity length and
on the wavelength of the light). Conversely, for the temporal
profile, this generating mechanism is connected to the Hopf
instability affecting the stationary solution (homogeneous and
cavity solitons), giving rise to the well-known phenomenon of
Q switching in the plane-wave case.

Due to the spatial and temporal scales of extreme events ob-
served here we believe that point-like measurements covering
variable areas from 104 down to 36 μm2 with 35 GHz detection
bandwidth should enable the observation of the phenomena we
report here.

VI. CONCLUSIONS

We analyzed a model for a monolithic broad-area VCSEL
with an intracavity saturable absorber and introduced a method
to define and statistically analyze the “events,” that is, the
spatiotemporal maxima occurring in the transverse profile of
the field intensity.

We have shown numerically the existence of rogue waves
in this system according to different possible definitions and
analyzing different RW indicators, and we showed the best
parameter choice to observe them. Furthermore, from a study
of the temporal and spatial profiles, we have determined the
typical temporal and spatial size (FWHM) expected for such
extreme events. Although extreme events and cavity solitons
are different objects in our system, we have shown that their
scaled profile is very similar and that the set of parameters
more suitable for finding extreme events is compatible with
that of stationary and oscillating solitons.

As suggested in Ref. [33] for a similar system, we believe
that two-dimensional spatial effects play a crucial role in the
formation of extreme events.

The same kind of analysis can be applied to different optical
systems such as spatially extended, injected semiconductor
lasers, such as coherently injected broad-area VCSELs [34,35]
and macroscopic semiconductor ring lasers with coherent
injection [36,37], and these works are in progress.

A future aim of the work presented here is the investigation
of the predictability of rogue waves both in time and space;
for example, by checking if the shape of the field intensity
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versus space or time presents some regularities approaching
a rogue wave, a development that would be very interesting
especially in the framework of the hydrodynamical analogy.

The identification of some typical temporal or spatial shape as
a precursor of the rogue wave would allow us to predict it and
reduce the possible damages caused to ships or coasts.
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