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Bad cavity lasers are experiencing renewed interest in the context of active optical frequency standards,
due to their enhanced robustness against fluctuations of the laser cavity. The gain medium would consist of
narrow-linewidth atoms, either trapped inside the cavity or intersecting the cavity mode dynamically. A series of
effects like the atoms finite velocity distribution, atomic interactions, or interactions of realistic multilevel atoms
with auxiliary or stray fields can lead to an inhomogeneous broadening of the atomic gain profile. This causes
the emergence of unstable regimes of laser operation, characterized by complex temporal patterns of the field
amplitude. We study the steady-state solutions and their stability for the metrology-relevant case of a bad cavity
laser with spin-1/2 atoms, such as 171Yb, interacting with an external magnetic field. For the stability analysis,
we present an efficient method, which can be applied to a broad class of single-mode bad cavity lasers with
inhomogeneously broadened multilevel atoms acting as a gain medium.
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I. INTRODUCTION

The bad cavity laser is a laser configuration where the
linewidth of the cavity mode is spectrally broader than the gain
profile of the active medium. The output frequency emitted
by such a laser is determined primarily by the properties
of the gain medium; it is rather robust to mechanical or
thermal fluctuations of the cavity. This opens the possibility
to create a highly stable source of radiation, an active optical
frequency standard using narrow-line transition atoms as a
gain medium. Such standards have been proposed by several
authors recently [1–5]. Theoretical estimates [2] show that a
bad cavity laser using 106 alkali-earth atoms confined within an
optical lattice potential can reach a linewidth down to 1 mHz.
This is more than 1 order of magnitude narrower than what can
be realized with the best modern macroscopic resonators [6–8].
The development of an active optical frequency standards
would be of great relevance for quantum metrology and further
applications. To date, such a standard has not been realized
mainly due to technical challenges [9]; however, a series of
proof-of-principle experiments has been performed [10–16].

To realize an ultrastable bad cavity laser, the active atoms
must be confined to the Lamb–Dicke regime to avoid Doppler
and recoil shifts. This confinement may be realized with optical
lattice potentials formed by counterpropagating laser beams
at the so-called “magic” wavelength, where the upper and
lower lasing states experience the same light shift [17]. These
light shifts depend on the polarization of the trapping fields
and can be controlled to a certain extent only. Fortunately,
for 3

P0 → 1S0 transitions in Sr and other alkali-earth atoms,
Zn, Cd, Hg, and Yb, this polarization dependence is weak
enough, and the relative light shift can be controlled to a high
level of precision. Still, active atoms must be continuously
repumped to the upper lasing state [2,18], and special measures
to compensate atom losses from the optical lattice potential
must be implemented [9,19].
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A less complex but presumably also less precise optical
frequency standard based on continuously pumped active
atoms, contained in a thermal vapor cell, placed inside a
bad cavity, has been proposed in Refs. [4,5,20,21]. Such a
system may be realized as a transportable unit for metrology
applications outside the physics laboratory.

In both proposed systems and in other possible implemen-
tations of bad cavity lasers, inhomogeneous broadening of
the gain profile may occur; for example, through the spatial
inhomogeneity of the light shifts caused by the pumping
lasers, density- or lattice-induced shifts in trapped atoms, and
other possible mechanisms. Additionally, considering a gain
medium formed by real multilevel atoms, the lasing states may
be split in energy, for example, due to the Zeeman effect.

These broadenings and splittings may considerably alter the
properties of the output laser radiation, such as the power and
the linewidth. Moreover, they may drastically change the char-
acter of lasing. Particularly, the inhomogeneous broadening fa-
cilitates transition to the so-called unstable regime [22], where
the amplitude of the output laser radiation exhibits strong
temporal variations [23,24]. It can be accompanied by a sig-
nificant enhancement of phase fluctuations. Phase locking of a
secondary laser to such an unstable source will require special
efforts, if possible at all. The development of novel active opti-
cal frequency standards must hence include a stability analysis.

This paper is dedicated to the theoretical study of the
influence of inhomogeneous broadening on the output power
and stability of single-frequency and zero-field solutions of
a single-mode bad cavity laser where the gain atoms have
split lasing states. In Sec. II we introduce an efficient method
for the stability analysis applicable to a broad spectrum of
systems described by the semiclassical (mean-field) equations.
In Sec. III, we investigate the simplest realistic example of a
bad cavity laser with multilevel atoms; namely the optical
lattice laser with a π -polarized laser mode, where both lasing
states of the active atoms have total angular momentum
F = 1/2. Such a configuration can be realized, for example,
with 199Hg and 171Yb atoms. We specify our generic semi-
classical model introduced in Sec. II for such a system, study
the dependence of the attainable steady-state output power,
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and investigate the stability of these steady-state solutions for
various inhomogeneous linewidths and differential Zeeman
splittings of the lasing transitions. In Sec. IV we review the
main results obtained in Sec. III and discuss possible practical
implementations of bad cavity lasers with simultaneous lasing
on different transitions interacting with the same cavity
mode, as well as the bad cavity lasers with inhomogeneously
broadened gain. In the conclusion we resume and discuss the
main results of the study.

II. GENERAL MODEL AND METHOD OF
STABILITY ANALYSIS

In this section we construct a generic form of the semi-
classical equations describing the single-mode laser with a
gain consisting of multilevel atoms and present our method
for the stability analysis of the steady-state solutions of these
equations.

There are three main approaches to the analysis of laser
stability. The first one is the sideband approach [25–27], where
the Maxwell–Bloch equations, describing the laser, are Fourier
transformed. Instability takes place, if a side mode has a net
gain exceeding its losses. The second approach, the linear
stability analysis (LSA), is based on constructing a matrix
of Maxwell–Bloch equations linearized near the steady-state
solution, and verifying that no eigenvalue of this matrix has a
positive real part. It has been shown in Refs. [28–30] that the
LSA and the sideband approach are formally equivalent. The
third approach is based on the direct numerical simulation of
the Maxwell–Bloch equations [31]. It allows us to study the
temporal behavior of the laser field amplitude, polarization of
the gain medium, and other parameters, but requires extensive
computational resources.

The stability analysis can be performed analytically in
some particular cases, such as lasers with active two-level
atoms with Lorentzian and Gaussian broadening profiles [28–
30], gas lasers with active two-level atoms and a saturable
absorber [32], four-level lasers with pump modulation [33],
and a few other examples. However, an analytic treat-
ment becomes infeasible for more realistic models of the
active medium involving the full atomic level structure,
the sideband structure of the optical lattice potential, var-
ious inhomogeneous effects, etc. In such cases, the stabil-
ity analysis has to be performed numerically. A straight-
forward application of the LSA approach is to partition
the gain profile into a finite number of bins, replacing
the continuous distribution of atomic frequencies by a discrete
one, to linearize the respective set of equations near the
steady-state solution, and to calculate the eigenvalues of the
matrix of this linearized system numerically. This partitioning
should obviously be fine enough to avoid numerical artifacts.
The computational cost of the eigenvalue problem (for the
desired precision) generally scales cubically with the number
of partitions, which makes the procedure very time consum-
ing, especially for complex multilevel atoms and significant
inhomogeneous broadening.

A considerable reduction of the computation cost may be
attained if one focuses on the search for the rightmost eigenval-
ues instead of all eigenvalues. This search may be performed,
for example, with the help of the Arnoldi algorithm with the

Caley transform or Chebyshev iteration [34]. We should note,
however, that these methods should be implemented with care,
to avoid too slow convergence and/or missing the rightmost
eigenvalue.

In this paper we propose an alternative method, which also
does not require solving the complete eigenvalue problem
for the linearized system. As will be shown, its computation
cost is linear in the number of iterations. In Sec. II A we
introduce the basic assumptions and derive a very generic form
of the semiclassical equations describing the dynamics of the
single-mode laser. In Sec. II B we describe the essence of the
method. In Sec. II C we discuss some details of its practical
implementation.

A. Basic assumptions and general form of
semiclassical equations

We consider an ensemble of N pumped (inverted) atoms
interacting with a single cavity mode. We suppose that these
atoms are confined in space (for example, in an optical lattice
potential, or in a solid-state matrix), or the cavity field and
pumping fields are running waves, and recoil effects can be
neglected. Also we neglect dipole-dipole interaction between
the atoms, as well as their collective coupling to the bath modes
(the role of these effects on the dynamics of the bad cavity
optical lattice laser has been considered in Refs. [35,36]).
These assumptions, together with a resonance approximation,
allow us to eliminate the explicit temporal dependence from
the Hamiltonian by transformation into the respective rotating
frame. Then one can write the master equation describing the
evolution of the system as

dρ̂

dt
= − i

h̄
[Ĥ0,ρ̂] + ˆ̂Lc[ρ̂] +

∑
j

ˆ̂Lj [ρ̂], (1)

where the Liouvillian ˆ̂Lj describes the relaxation of the j th
atom,

ˆ̂Lc[ρ̂] = −κ

2
[ĉ+ĉ ρ̂ + ρ̂ ĉ+ĉ − 2 ĉ ρ̂ ĉ+] (2)

describes the relaxation of the cavity field, and the Hamiltonian
Ĥ0 may be presented as

Ĥ0 = Ĥ0
c +

N∑
j=1

Ĥ(j )
a,0 +

N∑
j=1

Ĥ(j )
af . (3)

Here the sums are taken over individual atoms, the first term
Ĥ0

c = h̄ωc ĉ+ĉ corresponds to the eigenenergy of the cavity
mode, the second term is a sum of single-atom Hamiltonians
Ĥ(j )

a,0 (which may include interactions with pumping fields,

if relevant), and the last term is a sum of Hamiltonians Ĥ(j )
af

describing the interaction of ith atom with the cavity field:

Ĥ(j )
af = h̄

2

∑
g,e

(
�j

geĉ
+σ̂ j

ge + �j ∗
ge σ̂ j

egĉ
)
, (4)

where the sum is taken over sublevels |gj 〉 and |ej 〉 of the lower
and upper lasing states pertaining to the j th atom, respectively,
σ̂

j
xy = |xj 〉〈yj |, and �

j
ge is the coupling strength between the

gth lower and eth upper lasing states of the j th atom and the
cavity field.
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Applying a unitary transformation Û = exp[−iωt(ĉ+ĉ +∑
j,e σ̂

j
ee)] and introducing the field detuning δ = ωc − ω, we

transform the Hamiltonian (3) into the form

Ĥ = Û+Ĥ0Û − ih̄ Û+ ∂Û

∂t
= Ĥc +

∑
j

(
Ĥ(j )

a + Ĥ(j )
af

)
, (5)

where

Ĥc = h̄δ ĉ+ĉ, (6)

Ĥ(j )
a = Ĥ(j )

a,0 − h̄(ωc − δ)
∑

e

σ̂ j
ee. (7)

Note that the transformation (5) does not modify the form of
the Hamiltonians Ĥ(j )

af .
Now we can write the equations of motion for the relevant

expectation values of the atomic and the field operators by
using 〈 ˙̂O〉 = Tr[ ˙̂ρ Ô]. In this paper we use the semiclassical
approximation, where the atom-field correlators are factorized,
i.e., 〈σ̂ j

xy ĉ〉 is replaced by 〈σ̂ j
xy〉〈ĉ〉, etc. By using the normal-

ization condition
∑

x〈σ j
xx〉 = 1, we can represent the set of

equations for atomic and field expectation values in matrix
form:

d〈ĉ〉
dt

= −
(κ

2
+ iδ

)
〈ĉ〉 +

∑
j

Ḡ′(j ) · 〈σ̂ j 〉, (8)

d〈ĉ+〉
dt

= −
(κ

2
− iδ

)
〈ĉ+〉 +

∑
j

Ḡ′′(j ) · 〈σ̂ j 〉, (9)

d〈σ̂ j 〉
dt

= A(j )(δ,〈ĉ〉,〈ĉ+〉) · 〈σ̂ j 〉 + B̄(j )(〈ĉ〉,〈ĉ+〉). (10)

Here column and row vectors are indicated by an overline
(in particular, 〈σ̂ j 〉 denotes the column vector constructed
on expectations 〈σ̂ j

xy〉 of single-atom operators), matrices are
denoted by double-barred letters, the group of equations for
〈σ̂ j

xy〉 at specific j is represented as a set of linear differential
equations with matrix A(j ) and a constant term B̄(j ) appearing
due to the normalization condition, row vectors Ḡ′(j ) and Ḡ′′(j )

are defined by

Ḡ′(j ) · 〈σ̂ j 〉 = − i

2

∑
g,e

�j
ge

〈
σ̂ j

ge

〉
, (11)

Ḡ′′(j ) · 〈σ̂ j 〉 = i

2

∑
g,e

�j ∗
ge

〈
σ̂ j

eg

〉
, (12)

and “·” denotes an ordinary dot product. The matrices A(j ) and
the vectors B̄(j ) depend on 〈ĉ〉 and 〈ĉ+〉 linearly:

A(j ) = A(j )
0 + 〈ĉ〉D′(j ) + 〈ĉ+〉D′′(j ), (13)

B̄(j ) = B̄
(j )
0 + 〈ĉ〉β̄ ′(j ) + 〈ĉ+〉β̄ ′′(j ). (14)

Thus, under the assumptions mentioned in the beginning of
this section, the semiclassical equations describing the laser
dynamics may be presented in the form (8)–(10), where A(j )

and B̄(j ) have the form (13) and (14), respectively.

B. Linearization and stability analysis

Suppose we find a steady-state solution of Eqs. (8)–
(10), i.e., the values of δ, 〈ĉ〉cw = E, 〈ĉ+〉cw = E∗, and
〈σ̂ j 〉cw = S̄j so that, when substituted into the right part of
Eqs. (8)–(10), we obtain zeros. We now add small perturba-
tions ε = 〈ĉ〉 − E, ε∗ = 〈ĉ+〉 − E∗, and χ̄ j = 〈σ̂ j 〉 − S̄j to
the steady-state values of the field and atomic variables. The
linearized equations for these perturbations are

dε

dt
= −

(κ

2
+ iδ

)
ε +

∑
j

Ḡ′(j ) · χ̄ j , (15)

dε∗

dt
= −

(κ

2
− iδ

)
ε∗ +

∑
j

Ḡ′′(j ) · χ̄ j , (16)

dχ̄j

dt
= A(j ) · χ̄ j + (D(j ) ′ · S̄j + β̄ ′(j ))ε

+ (Dj ′′ · S̄j + β̄ ′′(j ))ε∗. (17)

It is convenient to introduce the matrices

K =
(

−( κ
2 + iδ

)
0

0 −( κ
2 − iδ

)
)

, (18)

G(j ) =
(

Ḡ′(j )

Ḡ′′(j )

)
, (19)

D(j ) = (Dj ′ · S̄j + β̄ ′(j ) ,D′′(j ) · S̄j + β̄ ′′(j )), (20)

and the column vector

Ē =
(

ε

ε∗

)
. (21)

Then Eqs. (15)–(17) may be written in matrix form as

dX̄

dt
= L · X̄, (22)

where the vector X̄ and matrix L can be written in block form
as

X̄ =

⎡
⎢⎢⎢⎣

Ē
χ̄1

...
χ̄N

⎤
⎥⎥⎥⎦, L =

⎡
⎢⎢⎢⎢⎣

K G(1) . . . G(N)

D(1) A(1) . . . 0
...

... . . .
...

D(N) 0 . . . A(N)

⎤
⎥⎥⎥⎥⎦.

(23)

To perform the linear stability analysis, it is necessary
to check whether the matrix L has any eigenvalue with a
positive real part. Note that the matrix L has a so-called
block arrowhead structure. Using a well-known theorem about
determinants of block matrices [37]∣∣∣∣A B

C D

∣∣∣∣ = |D| |A − B · D−1 · C|, (24)

we represent the characteristic polynomial |λI − L| of the
matrix L as

|λI − L| = D(λ) |λI − K|
N∏

j=1

|λI − A(j )|, (25)
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FIG. 1. Illustration of the stability analysis by means of tracing
the variation of arg (D(λ)). Left panel shows λ complex plane with
roots (red dots) and poles (blue diamonds) of the function D(λ) (26),
and the contour over which to trace the phase (thick green curve). Inset
shows a scaled view of the region around the point λ = 0. Right panel
shows the dependence of arg(D) on Im(λ) along the contour. Here
two eigenvalues have positive real parts (which indicates instability),
and the change of the phase over the contour is equal to −4π .

where I is an identity matrix of the necessary dimension, and

D(λ) = |λI − K −∑N
j=1 G

(j ) · (λI − A(j ))−1 · D(j )|
|λI − K| . (26)

The function D(λ) is the cornerstone of our method for the
linear stability analysis. First, as one may see from Eq. (25),
D(λ) is a rational function of λ, whose numerator is the
characteristic polynomial of L, and the denominator is the
characteristic polynomial of the matrix L′ obtained from L by
removal of the nondiagonal blocks. The matrix L′ describes
the dynamics of the damped atoms in a given external field, and
the dynamics of the damped field in the medium with a given
polarization. The steady-state solutions of the corresponding
equations are always stable; therefore, all the eigenvalues of
the matrix L′ [which are the poles of D(λ)] have negative
real parts. Both the numerator and denominator of D(λ) are
polynomials of the same degree in λ.

To check the laser stability, it is necessary to trace the
variation of arg (D(λ)) over the imaginary axis. This variation
is zero if all the roots of D(λ) are located in the left semiplane,
or divisible by 2π if there are some roots are in the right
semiplane. Note that, for a nonzero steady-state solution, the
point λ = 0 is an eigenvalue ofL corresponding to the arbitrary
choice of the phase of the laser field. This point should be
encircled by a small counterclockwise semicircle, as shown in
Fig. 1, or by some equivalent contour.

C. Practical implementation

Tracing the arg D(λ) along the contour shown in Fig. 1
allows us to perform the linear stability analysis without
explicit calculation of eigenvalues of the matrixL. Usually, the
sum over individual atoms should be replaced by an integration
over the distributions of the corresponding varying parameters
of the atomic ensemble:

D(λ) = |λI − K|−1

∣∣∣∣λI − K −
∫

G(�j ) · [λI − A(�j )]−1

·D(�j )
dN

d�j

d�j

∣∣∣∣, (27)

where dN
d�j

is the distribution of the atoms over the varying

parameter �j . Here we introduced G(�j ) = G(j ), D(�j ) =
D(j ), A(�j ) = A(j ). For some simple systems and special pro-
files of inhomogeneous broadening, the integration in Eq. (27)
may be performed analytically. In Appendix B we implement
such an analytical treatment for the stability analysis of a bad
cavity optical lattice laser with inhomogeneously broadened,
incoherently pumped two-level atoms.

More complex systems, such as multilevel atoms, require
numerical integration. It means that the atomic ensemble must
be partitioned into n groups, within one group all parameters
of the atoms are assumed equal, and the integration is replaced
by summing over these partitions:

D(λ) =
∣∣λI − K −∑n

k=1 NkG(k) · (λI − A(k))−1 · D(k)
∣∣[(

κ
2 + λ

)2 + δ2
] ,

(28)

where Nk is the number of atoms within the kth group. The
partitioning must be fine enough to avoid unphysical artifacts.
It means that the eigenvalues and eigenvectors of the matrices
A(j ), characterizing individual atoms, as well as the matrices
G(j ) and D(j ), should not differ significantly within one group.
For an inhomogeneously broadened atomic ensemble (where
the parameter �j is a detuning of the lasing transition and
the individual atoms) that means that the inhomogeneous
broadening within a single partition should be smaller than
its homogeneous broadening.

To trace the phase of D(λ), it is necessary to calculate it
in different points of the contour. To reduce the amount of
calculations, it is convenient to perform once the eigendecom-
position of the matrices A(k), when possible:

A(k) = Q(k)E(k)Q(k)−1, (29)

where E(k) is a diagonal matrix with eigenvalues of A(k) on the
main diagonal, and Q(k) is a square matrix whose columns are
the eigenvectors of A(k). Then one can calculate matrices

F(k) = G(k) · Q(k), H(k) = Q(k)−1 · D(k). (30)

These matrices should be calculated once for every group of
atoms and must be kept in memory. Then

D(λ) =
∣∣λI − K −∑n

k=1 NkF(k) · (λI − E(k))−1 · H(k)
∣∣[(

κ
2 + λ

)2 + δ2
] .

(31)

The computational cost of standard eigenvalue solvers (for
example, reduction to a Hessenberg matrix and iterative QR

decomposition) scales as the cube of the number of rows of
the matrix, therefore the computational cost to evaluate all the
matrices F(k), E(k), and H(k) scales as O(nm3), where n is the
number of partitions, and m is the number of rows in the matrix
A. Calculation of (λI − E(k))−1 is trivial and may be easily
performed many times. Therefore the total computational cost
our method scales as O(n × m3) + o(m3) × n × ng , where ng

is a number of nodes discretizing the contour over which
the phase is traced. In contrast, the computational cost of
the standard eigenvalues solver applied directly to the matrix
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L scales as O(n3m3); this difference becomes especially
important for fine-grained partitioning with large n.

A few words about numerical tracing of the phase. First,
the length of the contour should be chosen, for the sake of
confidence, to be several times larger than the span of the
imaginary parts of the eigenvalues of the matrices A(j ). Then
one needs to create some initial grid on this contour, i.e., to
select some set of nodes where arg (D(λ)) will be calculated.
After that, it is necessary to supplement this grid by introducing
additional nodes whenever the change of the phase among two
adjacent nodes exceeds some level of tolerance, not to miss
flips of the phase. For the determination of critical values
of some parameters characterizing the laser, i.e., the value at
which the system looses its stability, it is convenient to adapt
the grid by placing more initial nodes into the area where
the phase gradient was maximal in the previous step, and less
nodes into the other regions of the contour. This can be possible
if the change of parameter per iteration is small enough. Also
one can search pure imaginary roots of the function D(λ),
varying both the parameter of interest and Im(λ).

III. OPTICAL LATTICE LASER WITH INCOHERENTLY
PUMPED SPIN-1/2 ATOMS

In this section we consider an optical lattice laser with spin-
1/2 alkaline-earth-like atoms, such as 199Hg, 111Cd, 113Cd, and
171Yb. The latter is a particularly promising candidate for the
role of the gain medium in an active optical frequency standard.
First, all transitions necessary for cooling and manipulation of
ytterbium are in a convenient frequency range, in contrast
to mercury and cadmium. Second, the dipole moment of the
1S0 ↔ 3

P0 transition in 171Yb is much larger than in other
alkali-earth-like atoms except the fermionic isotopes of mer-
cury [38,39]. This fact may be considered as a disadvantage for
a high-precision passive optical frequency standard, because
a higher dipole moment leads to a broader natural linewidth.
However, in active standards the spectroscopic linewidth is not
bounded from below by the natural linewidth. On the contrary,
stronger coupling between the atoms and the cavity field allows
one to reach the desired linewidth and the output power with a
smaller density of atoms, which reduces the collisional shifts.
Third, the clock transition in 171Yb is approximately two times
less affected by the blackbody radiation shift in comparison
with 87Sr [40]. Last but not least, 171Yb has a much simpler
Zeeman structure of the lasing states than 87Sr, which may con-
siderably simplify the development of a repumping scheme.

The polarization of the optical lattice, as well as the
magnetic field at the position of the atomic ensemble can be
controlled to some extent only and may contribute significantly
to the uncertainties and fluctuations of the output frequency.
The reasons are the polarization-dependent differential light
shift and the Zeeman shift of the clock states. Note that
most of these shifts; namely, the vector light shift and the
linear Zeeman shift, are proportional to the magnetic quantum
number mF of the respective state. In passive optical clocks the
error related to these effects can be suppressed by alternating
between preparation of atoms with opposite Zeeman states
mF = F and mF = −F in different interrogation cycles with
subsequent averaging [41,42]. However, a direct application
of this technique to the active optical lattice clocks seems

FIG. 2. Level structure of individual atoms and notations used for
levels, frequencies, and detunings: ωc and ω are the frequencies of
the cavity mode and the lasing field; ωj is the averaged frequency of
the lasing transitions of the j th atom; δz = ωc − ω is the differential
Zeeman shift, and �j = ωj − ωc is the individual frequency detuning
of the j th atom. We consider only a π -polarized cavity field; therefore,
the relative energy shift between the levels |gj

−1/2〉 and |gj

1/2〉 is not
significant.

to be impossible. At the same time, in active clocks it may be
possible to pump the atoms into a balanced mixture of the upper
lasing state sublevels with opposite mF and directly obtain las-
ing at the averaged frequency. A too-large Zeeman splitting of
the lasing transitions may destroy the synchronization between
the two transitions, similarly to the loss of synchronization
between different atomic ensembles [14,43]. In this section
we investigate such balanced lasing for spin-1/2 atoms. We
introduce a differential Zeeman shift between lasing transitions
with opposite mF into our model and study the influence of
this shift on the steady-state solutions and their stability.

This section consists of three subsections. In the first one
we specify our semiclassical model introduced in Sec. II A to
the case of inhomogeneously broadened, incoherently pumped
spin-1/2 atoms. In the second, we discuss possible stationary
solutions. In the last subsection we perform the stability
analysis, and discuss the main results.

A. Specification of model for spin-1/2 atoms

We consider an ensemble of active (inverted) atoms with
total angular momentum F = 1/2 in both the lower and upper
lasing states, experiencing an external magnetic field causing a
differential Zeeman shift of the atomic transitions. The atoms
are coupled to a π -polarized cavity mode; for the sake of
simplicity we suppose that the coupling coefficients �ge are
the same for all the atoms. Each j th atom has a detuning �j

from the cavity eigenfrequency ωc, caused by some external
reason whose nature is not specified here. We suppose that
individual atomic detunings �j obey a normal distribution
with zero detuning and dispersion �0:

dN

d�j

= N√
2π�0

exp

[
− �2

j

2�2
0

]
. (32)

Here N is the total number of active atoms. Finally, all the
atoms are incoherently repumped with the same rate w.

By using the notation introduced in Fig. 2, we can write the
Hamiltonian of the j th atom interacting with the cavity field
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in the corresponding rotating frame as

Ĥ(j )
a + Ĥ(j )

af = h̄

1/2∑
m=−1/2

[
σ̂ j,m

ee (δ + �j + δz m)

+ �m

2

(
ĉ+σ̂ j,m

ge + σ̂ j,m
eg ĉ

)]
. (33)

Here σ̂
j,m

α,β = |αj
m〉〈βj

m| (α, β ∈ {e, g}), and δz is a differen-
tial Zeeman splitting. The coupling coefficient �m can be
expressed as �m = �CFm

Fm10, where CFm
Fm10 is a Clebsch–

Gordan coefficient. To describe incoherent pumping [2] and
spontaneous relaxations of the j th atom, we use the following
Liouvillian superoperator:

ˆ̂Lj [ρ̂] =
1/2∑

l,n=−1/2

(γln

2

[
2σ̂ j,nl

ge ρ̂σ̂ j,ln
eg − σ̂ j,ll

ee ρ̂ − ρ̂σ̂ j,ll
ee

]

+ wnl

2

[
2σ̂ j,ln

eg ρ̂σ̂ j,nl
ge − σ̂ j,nn

gg ρ̂ − ρ̂σ̂ j,nn
gg

])
, (34)

where σ̂
j,nl

αβ = |αj
n〉〈βj

l |, γln = γ |CFl
Fn1q |2 (here q = l − n) is

the rate of spontaneous decay from the state |ej

l 〉 to |gj
n〉, and

wnl is the incoherent pumping rate from state |gj
n〉 to |ej

l 〉. For
the sake of definiteness, we suppose that the atomic magnetic
states are totally mixed during the repumping process:

w± 1
2 ,± 1

2
= w± 1

2 ,∓ 1
2

= w

2
. (35)

Also, we neglected here the incoherent dephasing rate
(Rayleigh scattering in Ref. [18]).

The system is governed by the Born–Markov master
equation (1), where all the components are defined in
Eqs. (2)–(7) and (33)–(35). Now one can easily obtain the
explicit form of the semiclassical equations (8)–(10).

For the numerical analysis, we partition the atoms into a
number of groups (the graining of this partitioning has to be
chosen fine enough, as described in Sec. II C). Then we identify
the steady-state solutions of the semiclassical equations, and
analyze their stability using the method presented in Sec. II B.

For the sake of definiteness, we take the following param-
eters of the atomic ensemble and the cavity: number of atoms
N = 105, coupling coefficients �±1/2 = ±50 s−1, and decay
rate of the cavity field κ = 5 × 105 s−1. These parameters
seem to be realistic (see also experiment [16] with 87Sr) and
correspond to �c = N |�ge|2/κ = 500 s−1. The parameter �c

sets the upper lasing threshold (see Appendix A for details),
and its value will be kept constant throughout the paper. Also
we have taken characteristic atomic parameters of 171Yb;
namely, the transition frequency ω = 2π × 518.3 THz, and
the total spontaneous decay rate γ = 2π × 43.5 mHz [38].

B. Possible steady-state solutions

The system described in the previous subsection may have
several steady-state solutions. The first one is a “trivial”
zero-field solution. The second one is a nontrivial center-line
solution which correspond at δz = 0 to the nonzero-field
solution of the two-level model, see Appendix B for details.
The steady-state output power P = κh̄ω|〈ĉ〉cw|2 correspond-
ing to this solution is shown in Fig. 3(a) as a function of the
repumping rate w for δz = 100 s−1 and for various values
of �0. Also we indicate the maximum output power Pmax

[Fig. 3(b)], and the pumping rate wm maximizing this power
[Fig. 3(c)] versus the inhomogeneous broadening �0 for
different values of δz.

One can see that if the inhomogeneous broadening �0 and
the differential Zeeman splitting δz are small in comparison
with �c (five or more times less), the optimized value of the
output power and optimal repumping rate remain practically
the same as for the system without any broadening and
splitting. An increase of �0 and/or δz leads first to a decrease
of the output power and then to the disappearance of the
center-line solution.

If δz �= 0, additional frequency-detuned (δ �= 0) steady-
state solutions of the semiclassical equations may appear.
These solutions correspond to the situation when lasing occurs
primarily on one transition of the active atoms (with mF = 1/2
or mF = −1/2), whereas the other transition pulls the field

FIG. 3. Characteristics of the center-line solutions. (a) Steady-state output power P = h̄ω|〈ĉ〉|2κ versus the incoherent pumping rate w for
different values of the inhomogeneous broadening �0 [styled and colored curves labeled by the values of �0 (in s−1)]. Differential Zeeman
shift δz = 100. The solid black curve, representing the output power of the laser with �0 = δz = 0, is given as a reference. (b) Peak output
power Pmax versus �0 for different values of δz. (c) Repumping rate wm maximizing the output power P as a function of �0 for different values
of δz. The dashed horizontal line indicates wm = �c/2 at �0 = δz = 0; see Ref. [2] for details.
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detuning δ towards the line-center position. These solutions
appear in pairs, with the same field amplitudes and opposite
detunings ±δ.

The output powers and frequency detunings corresponding
to these frequency-detuned solutions are illustrated in Fig. 4.
One can see that these solutions exist in a quite limited range
of w only, and the lower (upper) limit of this range increases
(decreases) with increasing (decreasing) �0, respectively.
Also, the upper limit grows with an increase of the Zeeman
splitting δz. On the lower limit wth (coinciding with the
lower threshold to lasing), the detuning δ is maximal; it
decreases with increasing w until it reaches zero. Essen-
tially, at the upper limit, both detuned solutions merge.

C. Analysis of stability

We evaluate the stability of the nonzero-field steady-state
solutions (both center-line and detuned) by using a full
numerical procedure, i.e., by partitioning the atoms into a
number of groups (identical to the one used for the search of
steady-state solutions), building the function D(λ) according
to Eq. (31), and tracing its argument along the imaginary axis,
as described in Sec. II C.

For the zero-field solution, we build the function D(λ)
explicitly. First let us give the explicit expressions for the
components of Eqs. (8)–(10). We use the following notation
for the single-atom state vector (the normalization condition
is taken into account):

〈σ̂ i〉 = (〈σ̂ j,−1/2
ee

〉
,
〈
σ̂

j,−1/2
ge

〉
,
〈
σ̂

j,−1/2
eg

〉
,
〈
σ̂

j,1/2
gg

〉
,
〈
σ̂

j,1/2
ee

〉
,
〈
σ̂

j,1/2
ge

〉
,
〈
σ̂

j,1/2
eg

〉)T
, (36)

where the superscript T denotes transposition. Then the matrices A(j ), G(j ), and the constant term B̄ are

A(j ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−w
2 − γ − iE∗�

2
√

3
iE�

2
√

3
0 −w

2 0 0

− iE�√
3

−w+γ

2 − i�−
j 0 − iE�

2
√

3
− iE�

2
√

3
0 0

iE∗�√
3

0 −w+γ

2 + i�−
j

iE∗�
2
√

3
iE∗�
2
√

3
0 0

2γ

3 0 0 −w
γ

3 − iE∗�
2
√

3
iE�

2
√

3

−w
2 0 0 0 −w

2 − γ iE∗�
2
√

3
− iE�

2
√

3

0 0 0 − iE�

2
√

3
iE�

2
√

3
−w+γ

2 − i�+
j 0

0 0 0 iE∗�
2
√

3
− iE∗�

2
√

3
0 −w+γ

2 + i�+
j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (37)

G(j ) =
(

0 i�

2
√

3
0 0 0 − i�

2
√

3
0

0 0 − i�

2
√

3
0 0 0 i�

2
√

3

)
, (38)

B̄(j ) =
(

w
2 , iE�

2
√

3
, − iE∗�

2
√

3
, 0, w

2 , 0, 0
)T

, (39)

where �±
j = �j ± δz/2, E = 〈ĉ〉, and E∗ = 〈ĉ∗〉.

To find the zero-field solution, one needs to set E = E∗ = 0
in Eqs. (37) and (39) and solve Eq. (10). We obtain

S̄j = ( w
2(w+γ ) , 0, 0,

γ

2(w+γ ) ,
w

2(w+γ ) , 0, 0
)T

.

(40)

Using decompositions (13) and (14), definitions (18)
and (20), and taking the integral in Eq. (27) using distribu-
tion (32), we obtain for the zero-field solution

D(λ) =
(

λ + κ/2 − M
λ + κ/2

)2

, (41)

where

M(λ) = �2(w − γ )

12(w + γ )

[
η1

8�2
0

√
π

�

(
η2

1

8�2
0

)

+ η2

8�2
0

√
π

�

(
η2

2

8�2
0

)]
. (42)

Here the function � is defined via the complementary error
function as

�(y) =
∫ ∞

−∞

e−x2
dx

x2 + y
= ey π erfc(

√
y)√

y
, (43)

and

η1,2 = w + γ + 2λ ± iδz. (44)

In Fig. 5 we present domains of existence and stability
of different steady-state solutions for δz = 10 s−1 [Fig. 5(a)]
and δz = 100 s−1 [Fig. 5(b)]. One can see that these diagrams
resemble those obtained for two-level atoms [see Fig. 8(a)
in Appendix B] everywhere, except an area near the origin,
where w and �0 are smaller than δz. Also we should note
that frequency-detuned solutions are always unstable. The
domain of stability of the zero-field solution coincides with
the complement of the domain of existence of any nonzero
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FIG. 4. Characteristics of the frequency-detuned solutions. Frequency detuning δ = ω − ωc (top) and output power P = h̄ω|〈ĉ〉|2κ (bottom)
corresponding to the frequency-detuned solutions for δz = 100 s−1 and δz = 10 s−1 (left and right pairs of plots respectively) at different values
of �0 (different curves on the same plot) as a function of the pumping rate w (x axis). Curves δ(w) are labeled by the values of �0 (in s−1), the
same style-color encoding is valid for the power plot with the same δz. Insets show lower threshold wth to lasing as a function of �0. Vertical
dotted lines on the upper plots and horizontal dotted lines on the insets represent the fundamental lower threshold level w = γ .

FIG. 5. Domains of existence and stability of various steady-state solutions in the (w,�0) plane for (a) δz = 10 s−1, and (b) δz = 100 s−1.
The zero-field solution exists everywhere but is stable only in the unshaded domain where no other solution exists. Other domains are I:
line-centered solution exists and is stable, II: line-centered solution exists but is unstable, III: line-centered and frequency-detuned solutions
exist but are unstable, IV: frequency-detuned solutions exist but are unstable. The inset is an enlarged view of the area near the lower lasing
threshold for δz = 10 s−1. (c)–(h) Time evolution of the intracavity photon number |E|2 according the numerical simulation for δz = 100 s−1

and different values of w and �0 (given as plot labels; also indicated as red dots in panel (b) with respective labels (c)–(h). The seed value of
|E|2 was set to 10−6 for this simulation.
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steady-state solution, i.e., the zero-field solution is stable, if
and only if no nonzero-field solutions exists.

We also present the time evolution of the mean intracavity
photon number |E|2 for selected values of w and �0 at
δz = 100 s−1 in Figs. 5(c)–5(h). One may see that establishing
a stable lasing regime in points c and d involves some “dark”
time during the early stage. During this time, the atoms
are pumped into the upper lasing state, but their phases
synchronize slower via the slowly increasing intracavity field.
As the growth rate of the intracavity field energy increases,
the synchronization of the phases gets faster. At some time,
the rate of energy transfer from the gain into the cavity
field surpasses the energy entry from the pumping fields,
and the inversion starts to decrease, which also causes a
decrease of the cavity field towards its equilibrium value,
forming a characteristic “superradiant” pulse. Establishment
of the steady-state regime may be accompanied by oscillations
of the cavity field energy, as one can see in Fig. 5(c).
The point d is situated near the boundary of the domain
of the existence of the nonzero-field solution, the energy of
the steady-state intracavity field occurs to be extremely small,
much less than the height of the “superradiant” pulse. In
the unstable regimes, the photon number may demonstrate
either irregular chaotic behavior, as in Fig. 5(e), or regular
pulsation, as in Fig. 5(g). This pulsation may be interpreted
as simultaneous lasing on two transitions. Deviation of the
frequency of this pulsation [about 18 Hz in Fig. 5(g),
slightly grows with increasing w] from δz = 100 s−1 ≈ 2π ×
15.9 Hz is caused by the interaction between the involved
transitions.

Another remarkable fact is that an increase of the pumping
parameter w is accompanied by a transition from an unstable
to a stable lasing regime. This behavior differs from that de-
scribed in Refs. [24,28–30], where it has been shown that insta-
bility appears only if the pumping rate exceeds some “second
laser threshold”. We found that the reason for this inversion is
that, in our model, the total decoherence rate γ⊥ = (w + γ )/2
is primarily determined by the repumping rate w. Therefore,
increasing w leads to an increase of the homogeneous broaden-
ing and a suppression of the fluctuations of the cavity field. In
contrast, in Refs. [24,28–30] the authors introduced pumping
and relaxation rates as independent parameters. We should note
that introducing an additional inhomogeneous dephasing leads
to the stabilization of the lasing near the lower lasing threshold,
in correspondence with Refs. [24,28–30]; see Appendix B 2 for
details.

In general, we can conclude that a stable lasing regime with
high output power can be attained, if both the inhomogeneous
broadening parameter �0 and the differential Zeeman shift δz

are at least a few times smaller than the incoherent repumping
rate w, which is limited by the upper lasing threshold �c.

IV. OUTLOOK

Here we briefly review the results obtained and discuss
some perspectives of building an active optical frequency
standard by using inhomogeneously broadened ensembles
and simultaneous lasing on different transitions interacting
with the same cavity mode.

A. Optical lattice clocks with compensated first-order Zeeman
and vector light shifts

In the previous section we investigated the optical lattice
laser with an inhomogeneously broadened ensemble of in-
coherently pumped alkali-earth-like atoms with total angular
momentum F = 1/2 in both the upper and lower lasing states,
such as 171Yb, 199Hg, 111Cd, and 113Cd. We considered the
situation when both π -polarized lasing transitions are pumped
equally, and a differential Zeeman shift δz is present. We
found that, as long as both the inhomogeneous broadening
parameter �0 and the differential Zeeman shift δz are small
in comparison with the pumping rate w, their influence on the
output power and stability of the lasing regime remains minor.
In other words, if �0,δz � w, one can neglect inhomogeneous
broadening and Zeeman splitting for the description of the bad
cavity laser, and if �0,δz � �c = Ng2/κ , the optimum regime
and maximum output power will be similar to that for two-level
lasers without inhomogeneous broadening.

This finding opens the possibility to build an active optical
frequency standard by using inhomogeneously broadened
ensembles of atoms and to suppress the linear Zeeman
and vector light shifts by means of balanced lasing on the
transitions between the pairs of the upper and lower lasing
states with opposite mF . We should recall, however, that if the
inhomogeneous width and/or differential Zeeman shift δz are
of the order of or larger than the decoherence rate, the stability
may be lost, and/or the output laser power may be significantly
reduced, because most of the atoms will be far from resonance
with the cavity field.

We also checked the robustness of the center-line solution
with respect to an imbalance in the repumping rates caused,
for example, by a slight ellipticity of the repumping fields.
We implemented an imbalanced repumping rate in the form
wm,±1/2 = w

2 (1 ± ε) (where m is the magnetic quantum num-
ber of the ground state), and we obtained that the frequency
shift of the output radiation δ ≈ δzε, if w/�c lies between 0.2
and 0.9. Therefore, the uncertainty introduced by the first-order
Zeeman and vector light shifts remains but can be suppressed
by the remaining pumping imbalance ε, in comparison with
the lasing on only one of the possible lasing transitions.

B. Active optical clocks based on large ion crystal

The results outlined above open up another possibility for
implementing an active optical frequency standards. Namely,
such a standard can be realized with Coulomb crystals formed
by ions trapped in rf Paul (or Penning) traps. The main
advantage of such an approach is the long lifetime of ions
in the trap, which absolves the experimentalist from the need
for sophisticated methods to compensate for atom losses.

Up to now, ion optical clocks have been built primarily
by using single ions or small few-ion ensembles [44]; large
ensembles have not been used because of micromotion-related
second-order Doppler, Stark, and quadrupole shifts causing
significant inhomogeneous broadening. However, these limita-
tions may, in principle, be overcome for some ion species [45].

It appears to be possible to build a bad-cavity laser on ions
trapped in a linear Paul trap, if the lasing transition fulfills
some specific requirements. First, this transition should be
strong enough to realize the strong-coupling regime and should
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FIG. 6. General pumping scheme (hyperfine structure not shown)
for a 804 nm bad cavity laser using 176Lu ions. Dashed lines denote
the most relevant spontaneous decays, solid lines correspond to
both spontaneous and laser-induced transitions (wavelengths are
indicated).

lie in a convenient wavelength region where it is possible
to build a high-finesse cavity. Second, efficient cooling and
pumping into the upper clock state should be possible. Third,
the lasing states should have negative differential polarizability
�α = αe − αg . This allows us to compensate (in leading order)
the micromotion-induced second-order Doppler shift and the
Stark shift at a so-called magic frequency

�0 = q

mc

√
h̄ω

−�α
(45)

of the rf trapping field. Here q and m are the charge and the
mass of the ion, and ω is the frequency of the clock transition.

The combination of these properties can be found, for
example, in the 3

D2 → 1S0 transition in 176Lu+ ions. A
detailed analysis of such a system will be published soon [46],
here we only briefly mention the main concepts. A possible
repumping scheme is shown in Fig. 6: a 350.84 nm pumping
laser populates the 3

P
o
1 state which decays with a 42%

probability into the 3
D2 upper lasing state [47]. To pump the

ions from the 3
D1 and 1

D2 states into 3
D2, three additional

lasers are required: 661.37, 547.82, and 484.10 nm. Because
the nucleus of 176Lu has nonzero angular momentum I = 7,
these lasers should have several frequency components to
cover the hyperfine structure of the D states. Finally, a
five-component 499.55 nm laser should be employed to pump
the populations into the upper lasing state with specific F = Fe

and mF = 0. This can be realized if one component of this
laser is tuned in resonance with the |3D2 ,Fe〉 → |3P o

2 ,Fe〉
transition and polarized along the z axis of the trap coinciding
with the direction of the auxiliary magnetic field.

We consider a cold Coulomb crystal of Lu+ ions in a linear
Paul trap, where the rf field lies in the (x,y) plane orthogonal
to the auxiliary magnetic field. Then the noncompensated
oscillating electric field acting on the ions lies primarily in
this plane. Also we suppose that the Zeeman splitting is large
in comparison with the Stark shift.

According to Ref. [47], the spontaneous rate of the
lasing transition γ = 4.19 × 10−2 s−1, the differential scalar
polarizability �α0 = −0.9a3

0 , and the tensor polarizability of
the upper state α2 = −5.6a3

0 , where a0 is the Bohr radius.
Taking |3D2 ,Fe = 8,mF = 0〉 as the upper lasing state, we
can find the magic frequency �0 = 2π × 45.5 MHz following
the method described in Ref. [48].

For an estimation of �c we suppose that the trap is
spherically symmetric with a pseudopotential oscillation
frequency ωz = 2π × 2 MHz and contains 105 ions. With
the cavity waist being equal to the radius of this Coulomb
crystal (about 80 μm), and the cavity finesse F = 105, we
find �c ≈ 130 s−1, whereas the remaining broadening due to
higher-order contributions from the Stark and second-order
Doppler shifts will be about 20 s−1. Therefore, the condition
� � �c will be fulfilled, and a trapped-ion bad cavity laser
on this transition operating in a stable regime seems to be
realistic. We can increase �c further by using a cigar-shaped
trap instead of a spherical one.

Of course, there is a strong gap between the idea of a
bad cavity laser and the scheme of an active optical clock,
where different factors deteriorating the performance should
be considered and minimized. A detailed study of these effects
lies beyond the scope of the present paper.

V. CONCLUSION

In this paper we introduced a method for a numerical linear
stability analysis of inhomogeneously broadened running-
wave lasers or lasers where the active atoms are confined in
space (like the optical lattice laser). Our method consists of
tracing the argument of a specific function over the imaginary
axis in the complex plane. Both computational and memory
costs of this method are linear in the number of partitions,
which allows us to perform extended studies of the stability of
lasers with complex multilevel gain atoms and inhomogeneous
broadening within a wide range of parameters.

Using this method, we investigated the stability of the
optical lattice laser with an inhomogeneously broadened
ensemble of incoherently pumped alkali-earth-like atoms with
total angular momentum F = 1/2 in both the upper and lower
lasing states, such as 171Yb, 199Hg, 111Cd, and 113Cd. The
situation in which both π -polarized lasing transitions are
pumped equally, while a differential Zeeman shift is present,
has been considered. We investigated possible steady-state
solutions and conditions for their existence and stability. We
found that stable lasing and high output power can be attained,
if both the inhomogeneous broadening parameter �0 and the
differential Zeeman shift δz are small in comparison with the
pumping rate w. Increasing the inhomogeneous broadening
and/or differential Zeeman shift will partially suppress the
lasing and may eventually destroy the stability. Also, we
showed that if �0 and δz are both small (five or more times less)
in comparison with �c = Ng2

eg/κ , then the maximum output
power Pmax and the optimal pumping rate wm maximizing
this output power will be close to that predicted by a simple
two-level model [2], and the laser will operate in a stable
regime with these values.

This fact allows us to use balanced lasing on two π -
polarized lasing transitions between pairs of states with
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opposite values of mF for the suppression of the first-order
Zeeman and the vector light shift in optical lattice lasers.
Also, it seems to be possible to build a bad cavity laser
(and probably an active optical clock) on multi-ion ensembles
trapped in axial Paul traps. This technique may be helpful to
avoid sophisticated methods to compensate losses because of
the long lifetime of the ions in the trap.
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APPENDIX A: STABILITY OF STEADY-STATE SOLUTION
FOR TWO-LEVEL MODEL WITH INCOHERENT

PUMPING

Here we briefly overview the instabilities arising in a
two-level bad cavity laser without inhomogeneous broadening.
Although this system has been considered in textbooks [24], it
is useful to review it using the notations introduced in Ref. [2]
and subsequent publications [18,43,49,50].

We start from the Born–Markov master equation for
the reduced atom-field density matrix ρ̂. For the sake of
simplicity, we assume the cavity mode to be exactly in
resonance with the atomic transition. Then the density matrix
is governed by Eq. (1), where the Hamiltonian Ĥ after the
transformation (5) becomes

Ĥ = h̄�

2

N∑
j=1

(σ̂ j
+ĉ + ĉ+σ̂

j
−). (A1)

Here σ̂
j
+ = σ̂

j
eg , σ̂

j
− = σ̂

j
ge. The single-atom Liouvillian ˆ̂Lj is

ˆ̂Lj = γ

2

(
2σ̂

j
−ρ̂σ̂

j
+ − σ̂ j

eeρ̂ − ρ̂σ̂ j
ee

)+ γR

2

(
σ̂ j

z ρ̂σ̂ j
z − ρ̂

)
+ w

2

(
2σ̂

j
+ρ̂σ̂

j
− − σ̂ j

ggρ̂ − ρ̂σ̂ j
gg

)
, (A2)

where γ is the rate of spontaneous decay of the lasing transi-
tion, w is the rate of incoherent pumping, γR is the incoherent
dephasing rate, σ̂

j
z = σ̂

j
ee − σ̂

j
gg . The Liouvillian of the cavity

field is given by Eq. (2). Introducing macroscopic variables

E = 〈ĉ〉, p = −i

N∑
j=1

〈σ̂ j
−〉, D =

N∑
j=1

〈
σ̂ j

z

〉
, (A3)

we can write the semiclassical equations as

Ė = −κ

2
E + �

2
p, (A4)

ṗ = −γ⊥p + �

2
DE, (A5)

Ḋ = γ‖(D0 − D) − �(Ep∗ + E∗p). (A6)

Here γ‖ = (w + γ ), γ⊥ = (w + γ )/2 + γR , and
D0 = Nd0 = N (w − γ )/(w + γ ). The nonzero steady-state
solution (indexed by “cw”) is

pcw = eiφ

√
κγ‖
2�2

(
D0 − 2γ⊥κ

�2

)
,

Dcw = 2γ⊥κ/�2, Ecw = pcw �/κ, (A7)

where φ is an arbitrary phase. These solutions exist only if

w <
Nd0�

2

κ
− γ − 2γR. (A8)

If γ � �c, this condition can be rewritten as

γ
1 + 2γR/�c

1 − 2γR/�c

< w < �c − 2γR. (A9)

We refer to these limits as the lower and the upper laser
thresholds, following Ref. [2].

While performing the linear stability analysis of the solu-
tion (A7), one can fix the phase φ = 0, following Haken [24].
It leads to the loss of two roots of the characteristic polynomial,
but does not impair the stability analysis (one of the lost roots
corresponding to the phase invariance being equal to zero, and
another root corresponding to the decay of a phase imbalance
between the atoms and the cavity mode always being negative).
Introducing dimensionless variations

ε = E − Ecw

Ecw

, � = p − pcw

pcw

, ϑ = D − Dcw

Dcw

, (A10)

one obtains the set of linearized equations

ε̇ = κ

2
(−ε + �), �̇ = γ⊥(ε − � + ϑ),

(A11)
ϑ̇ = −γ‖[�(ε + �) + ϑ],

where � = (D0/Dcw − 1). To determine the stability domain,
one can apply the Routh–Hurwitz criterion to the characteristic
polynomial of (A11). The steady-state solution is stable if

γ⊥�
(κ

2
− γ⊥ − γ‖

)
<
(κ

2
+ γ⊥ + γ‖

)(κ

2
+ γ⊥

)
. (A12)

In other words, instability arises only when both conditions

κ > 2(γ‖ + γ⊥), (A13)

� >

(
κ
2 + γ⊥ + γ‖

)(
κ
2 + γ⊥

)
γ⊥
(

κ
2 − γ⊥ − γ‖

) (A14)

are fulfilled. From Eq. (A14) follows

N�2 − 2γ⊥κ > κ2. (A15)

Taking κ = 106 s−1 � γ⊥, � = 102 s−1 (realistic parameters
of a high-performance bad cavity laser on a 1S0 ↔ 3

P0

transition in alkali-earth-like atoms estimated in Ref. [9]),
one finds that instabilities arise only when the total number
of active atoms N > 108. This value seems to be unrealistic
in optical lattice laser systems. On the other hand, for a laser
operating on the 1S0 ↔ 3

P1 transition, similar to that presented
in Ref. [15], this condition is easily attainable because of the
much stronger atom-cavity coupling. Note that, in Ref. [15],
oscillations of the output power have been observed in a
cavity-enhanced pulse, without optical pumping.

APPENDIX B: OPTICAL LATTICE LASER WITH
INHOMOGENEOUSLY BROADENED ENSEMBLE OF

INCOHERENTLY PUMPED TWO-LEVEL ATOMS

Here we construct the function D(λ) and perform the linear
stability analysis for a laser with inhomogeneously broadened
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and incoherently pumped two-level active atoms. The aim of
this appendix is to illustrate the applicability of our method
for analytical treatments and to overview the most important
characteristics of such a system. We limit our consideration to
line-centered normally broadened distributions. Also, we will
use here the notation introduced in Ref. [2] and subsequent
theoretical papers [18,43,49,50] to establish a link with modern
studies of active optical frequency standards.

We should also note that a two-level system may be realized
on 3

P0 → 1S0 transitions in bosonic isotopes of alkaline-
earth atoms. Such transitions may be slightly allowed in
external magnetic fields [51] or in circularly polarized optical
lattices [52]. This laser would require a simpler repumping
scheme because of the absence of hyperfine splittings of
intermediate levels used for the pumping. On the other hand,
additional challenges may arise from the reduced strength of
the lasing transition (at reasonable values of the magnetic or
trapping fields), and collisions between the identical bosons.

1. Semiclassical equations and steady-state solutions
for two-level model

We start from the Born–Markov master equation for the
reduced atom-field density matrix ρ̂. Then the density matrix
is governed by Eq. (1), where the Hamiltonian Ĥ after the
transformation (5) becomes

Ĥ = h̄

N∑
j=1

[
�

2
(σ̂ j

+ĉ + ĉ+σ̂
j
−) + �j σ̂

j
ee

]
. (B1)

Here σ̂
j
+ = σ̂

j
eg , σ̂

j
− = σ̂

j
ge, �j = ωj − ωc is a detuning of the

frequency ωj of the lasing transition of the j th atom from the

cavity mode frequency ωc. The single-atom Liouvillian ˆ̂Lj is
given by Eq. (A2), and the Liouvillian of the cavity field is
given by Eq. (2).

We suppose that the detunings �j of the atoms obey a
normal distribution (32) with zero mean (line-center operation)
and dispersion �0. In such a case, the frequency ω of the
laser radiation coincides with the mode eigenfrequency ωc.
Choosing δ = 0 and introducing

〈σ̂ j 〉 =

⎛
⎜⎝

〈σ̂ j
−〉

〈σ̂ j
+〉〈

σ̂
j
z

〉
⎞
⎟⎠, (B2)

we can build the set of semiclassical equations of the form
(8)–(10), where δ = 0,

A(j ) =

⎛
⎜⎝

−γ⊥ − i�j 0 i�〈ĉ〉
2

0 −γ⊥ + i�j − i�〈ĉ+〉
2

i�〈ĉ+〉 −i�〈ĉ〉 −γ‖

⎞
⎟⎠, (B3)

B̄(j ) =
⎛
⎝ 0

0
w − γ

⎞
⎠, (B4)

Ḡ′(j ) = i�

2

(−1 0 0
)
, (B5)

Ḡ′′(j ) = i�

2

(
0 1 0

)
. (B6)

Here γ⊥ = (w + γ )/2 + γR and γ‖ = (w + γ ).

There are two possible steady-state solutions of
Eqs. (8)–(10). The first one is a trivial zero-field solution:

〈ĉ〉 = 〈ĉ+〉 = 0, 〈σ̂ j
−〉 = 〈σ̂ j

+〉 = 0,
〈
σ̂ j

z

〉
0 = d0, (B7)

where d0 = (w − γ )/(w + γ ). The second, nontrivial solution
may be obtained after some algebra in the following form (see
also Ref. [29]):

〈σ̂ j
−〉cw = 〈σ̂ j

+〉∗cw = i�〈ĉ〉cw
〈
σ̂

j
z

〉
cw

2(γ⊥ + i�j )
, (B8)

〈
σ̂ j

z

〉
cw

= (w − γ )
(
γ 2

⊥ + �2
j

)
(w + γ )

(
γ 2

⊥ + �2
j

)+ |〈ĉ〉cw|2�2γ⊥
, (B9)

|〈ĉ〉cw|2 = 2�2
0γ‖

�2γ⊥

[
�−1

(
4�2

0κ
√

π

�2Nγ⊥d0

)
− γ 2

⊥
2�2

0

]
, (B10)

where the function �−1 is inverse to the function (43).
The influence of the inhomogeneous broadening on the

steady-state output power P estimated as P = h̄ωκ|〈ĉ〉|2 at
γR = 0 is illustrated in Fig. 7(a). One can see that an increase
of �0 leads to an increase of the lower, and to a decrease of the
upper laser thresholds, together with a general decrease of the
output power. Maximal output power Pmax and the pumping
rate wm maximizing the output power for different values of
γR are given in Figs. 7(b) and 7(c) respectively. The parameters
of the system were taken the same as in the Sec. III A:
N = 105, γ = 2π × 43.5 mHz, ω = 2π × 518.3 THz, � =
50 s−1, κ = 5 × 105 s−1.

Also, it might be useful to derive the conditions for the
existence of the nonzero-field solution explicitly. This solution
exists if the expression within the square brackets in Eq. (B10)
is positive. If w � γ,γR , then this condition may be easily
expressed as

�c

�0
>

√
8

π

exp(−B)

erfc(
√
B)

, where B = w2

8�2
0

, (B11)

and �c = N�2/κ , as before. Note that, at �0 → 0, this
condition transforms into �c > w. Also, one may note that
the right part of Eq. (B11) cannot exceed

√
8/π , which leads

to the fundamental limit �c > �0
√

8/π .

2. Stability of nonzero steady-state solution

Here we build the function D(λ) characterizing the stability
of the steady-state solution (B8)–(B10). Therefore, we have to
construct the matrices G(j ), D(j ), and (λI − A(j ))−1. Matrix
G(j ) can be easily found from Eqs. (19), (B4), and (B5):

G(j ) = i�

2

(−1 0 0
0 1 0

)
. (B12)

Also, matrix D(j ) can be calculated from
Eqs (13), (14), (20), (B3), (B4), and the steady-state
solution (B8)–(B10):

D(j ) = i�
〈
σ̂

j
z

〉
cw

2

⎛
⎜⎝

1 0

0 −1
i�E

γ⊥−i�j

i�E
γ⊥+i�j

⎞
⎟⎠. (B13)
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FIG. 7. Characteristics of the steady-state solutions for inhomogeneously broadened two-level laser with incoherent pumping. (a) Output
power P versus the incoherent repumping rate w for atomic ensembles without (solid black curve) and with inhomogeneous broadening �0

[colored curves labeled by values of �0 (s−1)] at γR = 0. (b) Peak output power Pmax and (c) repumping rate wm maximizing the output power
versus �0 for different values of the incoherent dephasing rate γR . Curves wm(�0) are labeled by the values of γR (in s−1); the same style-color
encoding is valid for the plot of Pmax(�0) in panel (b) with the same γR . The dashed horizontal line indicates wm = �c/2.

Here we took the arbitrary phase of the cavity field to be zero,
which results in 〈ĉ〉cw = 〈ĉ+〉cw = E.

Calculation of the matrix (λI − A(j ))−1 requires a little more
effort:

(λI − A(j ))−1 = 1

(λ + γ‖)
[
(λ + γ⊥)2 + �2

j

]+ �2E2(λ + γ⊥)

×

⎡
⎢⎢⎢⎢⎣

�2E2

2 + (λ + γ‖)(λ + γ⊥ − i�j ) �2E2

2
i�E

2 (λ + γ⊥ − i�j )

�2E2

2
�2E2

2 + (λ + γ‖)(λ + γ⊥ + i�j ) − i�E
2 (λ + γ⊥ + i�j )

i�E(λ + γ⊥ − i�j ) −i�E(λ + γ⊥ + i�j ) (λ + γ⊥)2 + �2
j

⎤
⎥⎥⎥⎥⎦. (B14)

Now we can calculate D(λ) with the help of Eq. (27). After
some algebra, we can express the even part M(�j ) of the
matrix product G · [λI − A(�j )]−1 · D(�j ) in the form

M(�j ) =
(

Md (�j ) Mnd (�j )

Mnd (�j ) Md (�j )

)
, (B15)

where

Md (�j ) = �2d0(λ + γ⊥)

4

×
(

ξ − η

ζ − η

1

�2
j + η

+ ξ − ζ

η − ζ

1

�2
j + ζ

)
, (B16)

Mnd (�j ) = �4E2d0γ⊥(2γ⊥ + λ)

8(λ + γ‖)(ζ − η)

(
1

�2
j + ζ

− 1

�2
j + η

)
.

(B17)

Here we denoted

ξ = γ 2
⊥ − E2�2λγ⊥

2(λ + γ⊥)(λ + γ‖)
, (B18)

ζ = (λ + γ⊥)2 + E2�2(λ + γ⊥)

λ + γ‖
, (B19)

η = γ 2
⊥ + E2�2γ⊥

�‖
. (B20)

Now we should integrate the matrix M over the Gaussian
distribution (32). Introducing

Md,nd = N

∫ ∞

−∞

Md,nd (�j )√
2π�0

exp

[
− �2

j

2�2
0

]
d�j , (B21)

and using the function (43), we can express the results of this
integration in the form

Md = N�2d0(λ + γ⊥)

8�2
0

√
π

(
ξ − η

ζ − η
�η + ξ − ζ

η − ζ
�ζ

)
, (B22)

Mnd = N�4E2d0γ⊥(λ + 2γ⊥)

16 (λ + γ‖) �2
0

√
π

�ζ − �η

ζ − η
, (B23)

where we denoted �ζ,η = �( ζ,η

2�2
0
). Finally, with the help of

Eq. (B10) one can show that

�η = 2�2
0κ

√
π

�2Nγ⊥d0
. (B24)

Therefore, we can express the function D(λ) via the
functions Md and Mnd as

D(λ)=
(λ + κ/2 − Md )2 − M2

nd

(λ + κ/2)2
. (B25)

Because the explicit form of D(λ) is quite bulky, it is
convenient to perform the stability analysis numerically,
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FIG. 8. Domains of existence and stability of the steady-state solutions for the two-level incoherently pumped laser with inhomogeneous
broadening �0 in the (w,�0) plane for different values of incoherent dephasing rate γR: (a) γR = 0, (b) γR = 10 s−1, (c) γR = 70 s−1. Insets
are enlarged views of the stability domains at small �0 near the lower lasing threshold. Parameters of the cavity and the atomic ensemble are
the same as for Fig. 7.

tracing the phase of D(λ) along the contour, as described in
Sec. II B.

The existence and the stability domains for various steady-
state solutions for the inhomogeneously broadened two-level
atomic laser in the (w,�0) plane are presented in Fig. 8.
We should note that, although the presence of nonzero
inhomogeneous dephasing γR suppresses the output power
[see Fig. 7(b)], it enlarges the stability domain. Particularly,
at γR = 10 s−1, the laser radiation becomes stable slightly
above the lower laser threshold, but looses its stability with
some increase of w, as shown in Fig. 8(b). This result is in
correspondence with Refs. [24,28–30]. Further increase of
w will again stabilize the lasing, because the contribution
of w to the total decoherence rate becomes dominant. So,
we have effectively two “second laser thresholds,” the lower
and the upper, lying between the lower and the upper first
lasing thresholds. Note that an increase of γR to higher values
leads to a drastic reduction of the instability domain, as shown
in Fig. 8(c) for γR = 70 s−1. At further increase of γR , the
instability domain eventually disappears.

3. Existence of nonzero field, and stability
of zero-field solution

By using the fact that �(y) is a strictly decreasing function
of y [see definition (43)], one can easily derive the condition for
the existence of the nonzero-field steady-state solution from
Eq. (B10):

γ⊥�

(
γ 2

⊥
2�2

0

)
>

4�2
0 κ

√
π

�2Nd0
. (B26)

Let us investigate the stability of the zero-field solu-
tion (B7). As before, we build the function D(λ). Matrices
G(j ), D(j ), and A(j ) are

G(j ) = i�

2

(−1 0 0
0 1 0

)
, (B27)

D(j ) = d0
i�

2

⎛
⎝1 0

0 −1
0 0

⎞
⎠, (B28)

A(j ) =
⎛
⎝−γ⊥ − i�j 0 0

0 −γ⊥ + i�j 0
0 0 −γ‖

⎞
⎠. (B29)

According to Eq. (27), we obtain

D(λ)=
[

1− N �2 (λ + γ⊥) d0

4
√

π �2
0 (κ + 2λ)

�

(
(λ + γ⊥)2

2�2
0

)]2

. (B30)

Now we can show that the zero-field solution of the
semiclassical equations is stable, if and only if the nonzero-
field solution does not exist. Indeed, if the inequality (B26) is
fulfilled, then the equation

(λ + γ⊥)�

(
(λ + γ⊥)2

2�2
0

)
= 4 �2

0 (κ + 2λ)
√

π

�2 N d0
(B31)

has a solution on the real positive semi-axis. This is a result of
the fact that the right part of Eq. (B31) is strictly increasing,
whereas the left part is a strictly decreasing function of λ,
approaching zero when λ is approaching infinity. On the other
hand, if Eq. (B26) is not fulfilled, there is no solution of
Eq. (B31) with a positive real part of λ. To illustrate this,
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one can represent (λ + γ⊥)/(2�2
0)1/2 = x + iy, and use the

inequality

e(x+iy)2
erfc(x + iy) � ex2

erfc(x) for x > 0, (B32)

which can easily be proven by using the integral
form of the complementary error function erfc; see
Ref. [53].
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