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Dark spatial solitary waves in a cubic-quintic-septimal nonlinear medium
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We consider the evolution of light beams in nonlinear media exhibiting nonlinearities up to the seventh order
wherein the beam propagation is governed by the cubic-quintic-septimal nonlinear Schrödinger equation. An
exact analytic solution that describes dark solitary wave propagation is obtained, based on a special ansatz. Unlike
the well-known tanh-profile dark soliton in Kerr media, the present one has a functional form given in terms
of “sech2/3”. The requirements concerning the optical material parameters for the existence of this localized
structure are discussed. This propagating solitary wave exists due to a balance among diffraction, cubic, quintic,
and septimal nonlinearities. We also investigate its stability under initial pertubations by employing numerical
simulations. The modulational stability of the continuous-wave background, which supports the dark soliton, is
also studied analytically. Collisions between stable dark solitons are finally investigated.
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I. INTRODUCTION

Since their seminal theoretical prediction in 1964 [1],
spatial solitons in nonlinear media have attracted considerable
interest. Stationary optical spatial solitons are self-trapped
optical beams that propagate in a nonlinear medium with
their beam diameter remaining constant during propagation
[2,3] due to the perfect counterbalancing between diffraction
and nonlinear self-trapping effects [4,5]. The robust nature of
such structures displayed in their propagation and interaction
[3] makes them potentially useful for various applications
in photonics such as optical information transmission and
processing [5–8]. Experimentally, spatial solitons were first
produced in 1985 in liquid CS2 [9]. The typical powers
required for their observation range from hundreds of kilowatts
(pulsed) in fast Kerr media [10] to watts (continuous wave) in
slow thermal-nonlinear media [11].

From a theoretical point of view, the fundamental approach
to spatial soliton dynamics generally involves the cubic
nonlinear Schrödinger (NLS) equation, which can be solved
exactly by the inverse scattering method [12]. This model is
valid for both pulse (temporal) and beam (spatial) propagation
in a medium with cubic (or pure Kerr) nonlinearity [13].
Experimentally, spatial solitons have been found to occur
in a variety of nonlinear materials, from Kerr [14] and
photorefractive materials [15] to liquid crystals [16], as well
as in media featuring a nonlocal cubic response [17], and in
arrays of discrete waveguides [18].

Much attention has been paid to the study of optical
materials with the Kerr (cubic) nonlinearity, which exhibit
stable fundamental (single-hump) solitons in one spatial
dimension [9,10,19] and collapse in two and three spatial
dimensions [20,21]. In this frame, two distinct types of
localized waves, namely spatial bright and dark solitons, may
exist during propagation. Bright spatial solitons in optical
media are supported by the balance between self-focusing
nonlinearity and diffraction [22]. Conversely, when Kerr self-
defocusing balances diffraction, the formation of dark and
gray soliton solutions, i.e., propagating invariant dips on a
finite background level, arises [23].

However, the nonlinear refractive index of the material may
deviate from the Kerr law at higher light intensities [24,25]. A
self-defocusing fifth-order susceptibility χ (5) usually accounts
for the saturation of the third-order susceptibility χ (3) [26].
This higher-order effect becomes particularly relevant in
highly nonlinear media, such as chalcogenide glasses [27],
organic materials [28], colloids [29], dye solutions [30], and
ferroelectrics [31]. Very recently, a quintic medium with
suppressed cubic nonlinearity was created in metal colloids by
varying the volume fraction of silver nanoparticles in acetone
[32]. Note that quintic nonlinearity can lead to nonlinear
dynamics markedly different from those observed in pure cubic
Kerr media. For instance, the action of higher-order nonlinear
terms can regularize the instability and arrest the collapse of
spatial solitons in higher dimensions [33,34]. In this context,
significant results obtained in studies of multidimensional
solitons and their physical realizations, especially in atomic
Bose-Einstein condensates and nonlinear optics, were recently
reported in Refs. [35,36].

Nowadays, the development of ultrashort pulse lasers
allows to handle a favorably large ratio between the peak
optical intensity and the deposited energy, so that the
contributions of higher-order nonlinearities (HONs) become
detectable for a wide range of samples without damaging
them [37]. In particular, attention has been paid to new
materials exhibiting septimal nonlinearity, in addition to cubic
and quintic nonlinearities [37–40]. Conditions for obtaining
metal-dielectric nanocomposites featuring a fifth- or seventh-
order nonlinear refractive index were discussed in Ref. [37],
whereas the experimental observation of two-dimensional
bright solitons in metal colloids exhibiting quintic-septimal
(focusing-defocusing) nonlinearity was recently reported [38].
We also note that chalcogenide glasses can also exhibit
nonlinearities up to the seventh order [41], and that the
measurement of third-, fifth-, and seventh-order nonlinearities
of silver nanoplatelet colloids using a femtosecond laser was
reported [42].

Concerning cubic-quintic-septimal media, conditions for
the stable propagation of one-dimensional bright spatial
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solitons have been rigorously analyzed using a combination
of the variational approximation and the Vakhitov-Kolokolov
criterion [39]. For these media, an extension of NLS equation
including the cubic-quintic-septimal nonlinearity was used
to model the propagation of spatial solitons. It is worth
recalling that the contributions of HONs may enable the
formation of stable solitons in homogeneous isotropic media
[43] and influence many aspects of filamentation in gases and
condensed matter [44].

The discovery of new classes of solitary waves in material
systems involving higher-order Kerr responses opens up new
possibilities in experimental area as they represent valuable
tools to understand the diversity of newly available dynamics
in such materials. The present paper focuses on the discovery
of exact “dark” solitary wave solutions for the cubic-quintic-
septimal NLS equation. We unveil an analytical demonstration
of the propagation of a “dark” optical solitary wave with a
sech2/3 profile in a cubic-quintic-septimal nonlinear material.
We also analyze the stability of the solutions by numerical
simulation. The recently determined localized structure char-
acteristically exists due to a balance among diffraction and
competing cubic-quintic-septimal nonlinearities.

The paper is organized as follows. In Sec. II we present the
NLS equation model with cubic-quintic-septimal nonlinearity,
describing light propagation with one transverse dimension,
in a medium exhibiting nonlinearities up to the seventh order.
By making an ansatz for the field amplitude, we prove the
existence of an unconventional class of solitary waves of
dark type in Sec. III. The stability of those solitary waves is
addressed in Sec. IV, which is structured into three subsections.
In the first subsection, we examine the modulational stability
of the continuous-wave (cw) background supporting the dark
soliton. Next, we examine the ability of the solitary soliton to
propagate in a system strongly perturbed by a photon noise.
In the third subsection, we consider collisions between dark
solitons. In Sec. V, we summarize the outcomes of the article
and outline perspectives.

II. MODEL

The field dynamics in a medium exhibiting nonlinearities up
to the seventh order is governed by the cubic-quintic-septimal
NLS equation

iψz + α1ψxx + α2|ψ |2ψ + α3|ψ |4ψ + α4|ψ |6ψ = 0, (1)

where ψ(z,x) is the complex amplitude of the electric field;
z and x denote the propagation distance and the transverse
spatial coordinate, respectively; α1 is the parameter of diffrac-
tion, while α2, α3, and α4 represent the strengths of the third,
quintic, and septimal nonlinear terms, respectively.

Recently, Eq. (1) with α1 = 1
2 and α4 = 1 was used to

study numerically the stability conditions of one-dimensional
spatial solitons [39]. Here, we consider arbitrary parameters
αi (with i = 1, . . . ,4), for the sake of a general analysis that is
valid for several types of septimal materials. Note that when
α3 = α4 = 0, Eq. (1) reduces to the standard NLS equation. By
setting α4 = 0 in Eq. (1), we get the extended NLS equation
with cubic-quintic nonlinearity for which the solitary wave
solutions have already been studied [45,46].

It is relevant to mention that by appropriately scaling
variables ψ , z, and x, the governing Eq. (1) can be written
in a dimensionless form with only two free parameters.
The presence of all the parameters αi (i = 1, . . . ,4) in the
model allows one to examine the individual influence of each
effect on the stability of propagating envelopes. Throughout
this work, all quantities we use to characterize our soliton
solutions are given in arbitrary units. In Ref. [38], for example,
the use of the nonlinearity parameters [given in term of
the effective susceptibilities χ

(2N+1)
eff , N = 1,2,3] has proven

to be crucial in performing numerical calculations based
on a NLS-type equation, including contributions up to the
seventh-order susceptibility. To date, there has not been any
report of exact analytical dark solitary wave solutions of the
cubic-quintic-septimal NLS equation (1). To this goal, we
introduce a new ansatz solution allowing us to construct exact
solitary wave solutions for Eq. (1) in the general case, when
all the coefficients αi (with i = 1, . . . ,4) have nonzero values.
In particular, we focus on the role played by the septimal
nonlinearity. It is remarked that the existence of localized
solutions crucially depends on the physical parameters, and
therefore on the specific nonlinear feature of the medium.

To obtain exact solitary wave solutions to Eq. (1), we
assume a solution of the form [47,48]

ψ(z,x) = A(x + βz)ei(κz−�x) = A(χ )ei(κz−�x), (2)

where A(χ ) is a differentiable real function and β is a real
constant to be determined by the physical parameters of the
model.

Substituting Eq. (2) into Eq. (1) and separating the real and
imaginary parts, one obtains

β = 2α1� (3)

from the imaginary part, indicating that in the present case, the
wave parameter β is controlled by �. The real part yields the
equation

−κA + α1Aχχ − α1�
2A + α2A

3 + α3A
5 + α4A

7 = 0.

(4)

We can express Eq. (4) in the form

Aχχ = κ + α1�
2

α1
A − α2

α1
A3 − α3

α1
A5 − α4

α1
A7, (5)

which coincides with the evolution of an anharmonic oscillator
with an effective potential energy U defined by

U (A) = −1

2

(
κ + α1�

2

α1

)
A2 + α2

4α1
A4 + α3

6α1
A6 + α4

8α1
A8.

(6)

Multiplying Eq. (5) by Aχ and integrating with respect to
χ, we get

(Aχ )2 = aA2 − bA4 − cA6 − dA8 + 2E, (7)

where

a = κ + α1�
2

α1
, b = α2

2α1
, c = α3

3α1
, d = α4

4α1
, (8)

and E is an arbitrary constant of integration, which coincides
with the energy of the anharmonic oscillator [48].
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Equation (7) is a first-order nonlinear ordinary differential
equation with an eighth-degree nonlinear term, which is
not analytically integrable for nonzero E. The challenging
problem is to find exact solitary wave solutions of this equation
in the most general case, when all the coefficients have
nonzero values. Recently, one of the present authors solved the
auxiliary equation (7) in the particular case where d = 0 and
obtained bright and dark solitary wave solutions having novel
functional forms which are different from the traditional sech
and tanh functions [49]. However, exact localized solutions in
the presence of the eighth-order nonlinear term that is related
to the coefficient “d” together with all the other terms have
not yet been reported in the literature. In the following section,
we propose an efficient ansatz for obtaining novel closed-form
expression for solitary waves of such an equation.

Before finding exact solutions, let us first rewrite Eq. (7) in
a more simplified form by making use of the transformation

A(χ ) = u1/2(χ ). (9)

Then we obtain a new auxiliary equation possessing a fifth-
degree nonlinear term

1

4

(
du

dχ

)2

= 2Eu + au2 − bu3 − cu4 − du5, (10)

where the range of power covers from 1 to 5. No exact
solution exists for this equation when the coefficients have
nonzero values. In the following, we solve Eq. (10) by
using an appropriate ansatz and obtain an alternative type of
solitary wave solutions on a continuous wave background, and
investigate parameter domains in which these optical spatial
solitary waves exist.

III. DARK SOLITARY WAVE SOLUTIONS

To solve Eq. (10), we propose the special ansatz

u(χ ) = ρ + λsech2/3(μχ ), (11)

where μ, ρ, and λ are the wave parameters to be determined by
the physical coefficients of the model. Here μ is the width of
the solitary wave, while λ is its amplitude. Also, the parameter
ρ determines the strength of the background, in which this
solution propagates.

We clearly see that envelope solutions obtained by means of
this ansatz have asymptotic nonzero values when the χ variable
approaches infinity [i.e., |χ | → ∞, where χ = τ + βξ is the
traveling coordinate]. Substituting the ansatz (11) into Eq. (10)
and then setting the coefficients of sechj (μχ ) (where j = 0, 2

3 ,
4
3 , 2, 8

3 , 10
3 ) to zero, one obtains a set of algebraic equations as

−2Eρ − aρ2 + bρ3 + cρ4 + dρ5 = 0, (12)

−2Eλ − 2aρλ + 3bρ2λ + 4cρ3λ + 5dρ4λ = 0, (13)

1
9λ2μ2 − aλ2 + 3bρλ2 + 6cρ2λ2 + 10dρ3λ2 = 0, (14)

bλ3 + 4cρλ3 + 10dρ2λ3 = 0, (15)

cλ4 + 5dρλ4 = 0, (16)

− 1
9λ2μ2 + dλ5 = 0. (17)

Obviously, Eqs. (12) to (17) can be solved for the unknown
parameters ρ, λ, and μ to give

ρ = − c

5d
, (18)

λ =
(

25ad2 + 15bcd − 4c3

25d3

)1/3

, (19)

μ = 3
√

25ad2 + 15bcd − 4c3

5d
, (20)

together with an energy value given by

2E = 125acd2 + 25bdc2 − 4c4

625d3
, (21)

and subject to the parametric conditions

5bd = 2c2, 11c3 − 125d2a − 50bcd = 0. (22)

Clearly, we must have 25ad2 + 15bcd − 4c3 > 0 and
d > 0 to ensure the soliton width (20) to be real. Moreover,
we see from Eqs. (18) to (20) that the quintic and septimal
nonlinearity terms included in the parameters c and d have a
major influence on the solitary wave parameters. In particular,
one must require d �= 0 [i.e., nonzero values for the septimal
NL term α4 �= 0] for the parameters ρ, λ, and μ to exist. We
can then conclude that the septimal nonlinearity influences the
evolution of the existing waves.

Thus, the exact solitary wave solution on a continuous-wave
background of Eq. (1) is of the form

ψ(z,x) =
{
− c

5d
+

(
�

25d3

)1/3

sech2/3

(
3
√

�

5d
(x + βz)

)}1/2

× ei(κz−�x), (23a)

� ≡ 25ad2 + 15bcd − 4c3. (23b)

By analyzing the solution (23), we see that the solitary
wave amplitude may approach nonzero when the variable
x approaches infinity. Physically, this propagating envelope
represents a dark solitary wave, which exists for the governing
septimal NLS model due to a balance among diffraction and
competing cubic-quintic-septimal nonlinearities.

IV. STABILITY ANALYSIS

A. Modulational stability of the cw background

The dark soliton given by the expression (23) is sitting
on a cw background, which may be subject to modulational
instability (MI). If this phenomenon occurs, then the cw
background will be quickly destroyed; which will inevitably
cause the destruction of the soliton. It is therefore of paramount
importance to verify whether the condition of the existence
of the soliton can be compatible with the condition of the
stability of the cw background. In this section, we examine
the modulational stability of a cw in the system modeled by
Eq. (1). For this purpose, we use the standard linear stability
analysis [12]. First let us consider the propagation of the
cw signal of the initial power P0 inside a media exhibiting
optical nonlinearities up to the seventh order. One back-
ground plane-wave field for the cubic-quintic-septimal NLS
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equation (1) is given by

ψ(z,x) =
√

P0 exp (iφNL), (24)

where φNL = P0(α2 + α3P0 + α4P
2
0 )z, is the nonlinear phase

shift induced by self-phase modulation and non-Kerr quintic-
septimal nonlinear terms. Expression (24) means that the
cw signal should propagate through the septimal medium
unchanged except for acquiring a power-dependent phase
shift. To analyze the modulational stability of the cw (24),
we introduce the perturbed field of the form

ψ(z,x) = [
√

P0 + a(z,x)] exp(iφNL), (25)

where |a(z,x)| � √
P0. Upon substituting Eq. (25) into

Eq. (1), we obtain the following linearized equation of the
perturbed field:

iaz + α1axx + α2P0(a + a∗) + 2α3P
2
0 (a + a∗)

+ 3α4P
3
0 (a + a∗) = 0, (26)

where a∗(z,x) is the complex conjugate of the perturbed field.
Now we assume the following standard ansatz for the perturbed
field:

a(z,x) = a1 exp [i(Sz − kx)] + a2 exp [−i(Sz − kx)],
(27)

where a1,2 are real amplitudes of infinitesimal perturbation, k is
the perturbed wave number, and s is the respective eigenvalue.
Inserting the expression (27) into Eq. (26), we obtain the
following dispersion relation:

S = ±|α1k|
√

k2 − sgn(α1)k2
c , (28a)

kc ≡ 1√|α1|
√

2α2P0 + 4α3P
2
0 + 6α4P

3
0 , (28b)

where sgn(α1) = +1 or −1 depending on whether α1 > 0
or α1 < 0. The relation (28a) shows that the stability of the
cw depends critically on whether light experiences normal or
anomalous diffraction inside the medium. It is clear that in the
normal diffraction regime [sgn(α1) = −1], S is real for all k,
and the cw is stable. By contrast, in the anomalous diffraction
regime [sgn(α1) = 1], S becomes imaginary for |k| < kc, and
the perturbation a grows exponentially with z, with a gain
spectrum given by the imaginary part of S

G(k) = 2Im(S) = |2α1k|
√

k2
c − k2. (29)

The gain becomes maximum at two optimum frequencies
given by kopt = ±kc/

√
2, with a peak value given by

GMI = |α1|k2
c .

At this point, it is worth reemphasizing that the soliton exists
only in the parameter regions where the parametric condition
(22) is satisfied, as we will specify in the next subsection.
However, from the above linear stability analysis, it can already
be predicted that if the soliton exists in normal diffraction
regime, then it is likely to be stable. On the other hand, if
the soliton exists only in anomalous diffraction regime, its
stability will necessarily be prone to MI. Then the question
arises as to whether there are parameter regions where the
impact of the MI can be minimized. To answer this question,
we examined several characteristic features of MI, including
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FIG. 1. Plots showing the characteristic features of MI for α1 = 1.
(a): Evolution of the upper limit of the gain spectrum, kc versus α2,
for different values of α3. (b): Peak value of the gain, GMI versus α2.
(c): Power level of the cw background, P0 versus α2. (d): Septimal
nonlinear term, α4 versus α2.

the size of its gain spectrum, kc (as 0 < |k| < kc), and the
peak value of the gain GMI, in different parameter regions
satisfying the parametric condition (22). The results, which
are represented in Fig. 1, show that the values of kc and
GMI decrease monotonically and tend to zero as α2 decreases
[see Figs. 1(a) and 1(b)]. This behavior is qualitatively the
same regardless of the value of α3 [the value of α4 being
closely related to other system parameters via the parametric
conditions (22)]. Thus, the negative impact of MI can be
considerably reduced by sufficiently lowering the value of the
diffraction coefficient α2 [see Fig. 1(b)]. On the other hand,
Figs. 1(a) and 1(b) show that a decrease in the value of α3

favors MI. Consequently, to minimize the impact of MI in a
more efficient way, it is necessary to lower the value of α2

and increase that of α3, concomitantly. However, the increase
of α3 cannot be done without limit because the power level
of the cw background of the soliton depends on the system
parameters through the relation P0 = √

ρ [see Eqs. (18) and
(8)], which leads to a decrease of power P0 when α3 increases,
as can be seen in Fig. 1(c). The value of α3 is limited upwards
by the tolerable level of the signal-to-noise ratio in the system.
In addition, it is worth noting that in the region of slightest MI
(small α2 and large α3) α4 is large [see Fig. 1(d)]. In the next
subsection, we will check whether this region of slightest MI
is the most conducive to a better stability of the soliton.

B. Stability of the single soliton

It is a well-known fact that the practical interest of a
solitary wave is closely related to its stability, and in particular,
its ability to propagate in a perturbed environment over an
appreciable distance [50]. In what follows, we analyze the
stability of the solitary wave given by Eq. (23a), by numerically
solving the propagation equation (1) by means of the standard
split-step Fourier method. In the analysis, it is useful to have
an overview of the individual influence of each of the system
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parameters on the soliton stability. In this respect, we found
that the magnitude of the diffraction parameter of diffraction
α1 has no influence on the stability of the soliton, but we
noticed that the sign of α1 should be positive in order that the
soliton can exist. In other words, the soliton can exist only
in the anomalous diffraction regime, and therefore, MI can
effects its cw background. So, hereafter, we set α1 = 1. On
the other hand, it follows from the parametric conditions (22)
that the nonlinearity coefficients, α2, α3, and α4, must all be
of positive sign in order that the soliton can exist. It should
be noted that only two of the three coefficients can be chosen
freely, the value of the third coefficient then being obtained
via the parametric conditions (22). Thus, to gain insight into
the influence of the cubic nonlinearity, we set α3 = 1 and we
varied α2. Figure 2 shows the evolution of the spatial profile
of the soliton during its propagation over the distance L = 1,
for α2 = 1.55, 0.35, and 0.17. One can clearly see in Fig. 2(a),
that for α2 = 1.55, the soliton is unstable, with a spatial profile
that distorts and continually deviates from its original profile.
Figures 2(b) and 2(c), which we obtained for α2 = 0.35 and
α2 = 0.17, respectively, show that distortions of the profile
disappear as the value of α2 decreases, thus implying that the
area of stability of the soliton is located in the region of the low
values of α2. This parameter region is exactly the one where MI
is the weakest, as we demonstrated in the previous subsection.
In this regard, it is instructive to note that the MI gain GMI,
for the sets of parameters considered in Figs. 2(a)–2(c), is
respectively 11.17, 0.57, and 0.13. The link between the high
level of stability of the soliton and the weakness of MI in the
system is thus established. The soliton is all the most stable that
the weight of the cubic nonlinearity is weak. On the other hand,
to determine the influence of the quintic nonlinearity, we set α2

=1 and we varied α3. Figure 3 shows the evolution of the spatial
profile of the soliton during its propagation, for α3 = 0.026,
0.5, and 1.8. Figure 3(a) shows that for α3 = 0.026, the soliton
is unstable, with a spatial profile which distorts in a manner
similar to that of Fig. 2(a). Figures 3(b) and 3(c) show that the
distortions of profile disappear for increasingly large values
of α3. Thus, the area of stability of the soliton is located in
the region of large values of α3. It is also in this region of
this parameter that the MI is at its lowest, as can be seen
in Fig. 1. Thus, the soliton is all the most stable that the
weight of the quintic nonlinearity is high. It is worth noting in
Figs. 2 and 3 that the values of α4 [that satisfy the parametric
conditions (22)] increase as one approaches the stability area,
thus indicating that the soliton is all the more stable that the
value of the septimal nonlinearity coefficient is high.

A careful inspection of Figs. 2 and 3 reveals that, when
α2 or α3 vary in the direction that enhances the stability,
the spatial width of the soliton is increased. For instance,
one can clearly see in Fig. 2 that the soliton width increases
appreciably when α2 is changed from 1.55 [Fig. 2(a)] to 0.17
[Fig. 2(c)]. One can also see in Fig. 3, that the soliton’s
width increases appreciably when α3 varies in a direction
that enhances the stability (i.e., from 0.026 to 1.8). It is clear
from this observation that the soliton stability is fundamentally
determined only by its spatial width, which in turn depends
upon the three parameters of nonlinearity. This observation
is important because it allows to quantitatively characterize
the stability of the soliton by any parameter proportional to

0

0.2

0.4

0.6

0.8−60
−40

−20
0

20
40

60

0.5

1.5

 z

α
2
=1.55

 x

(a)

|ψ
|

0

0.2

0.4

0.6

0.8−60
−40

−20
0

20
40

60

0.1

0.3

 z

α
2
=0.35

 x

(b)

|ψ
|

0

0.2

0.4

0.6

0.8−60
−40

−20
0

20
40

60

0.1

0.3

 z

α
2
=0.17

 x

(c)

|ψ
|

FIG. 2. Plot showing the evolution of the spatial profile of the
soliton, as a function of the propagation distance z, for α1 = 1,
α3 = 1, and α2 = 1.55, 0.35, and 0.17. The value of α4 is given by the
parametric conditions (22). The other parameter values used here are:
(a) α4 = 0.2294, � = −0.2, κ = −0.8508; (b) α4 = 1.0159, � =
−0.2, κ = −0.0813; (c) α4 = 2.0915, � = −0.2, κ = −0.0498. The
initial condition of the simulation is the soliton profile given by
formula (23a).

its spatial width. From the expression (11), we can define the
stability parameter simply as ξ ≡ 1/μ. With this definition,
the soliton is all the more stable that the value of ξ is high.
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FIG. 3. Plot showing the evolution of the spatial profile of the
soliton, as a function of the propagation distance z, for α1 = 1,
α2 = 1, and α3 = 0.026, 0.5, and 1.8. The value of α4 is given by
the parametric conditions (22). The other parameter values used
here are: (a) α4 = 2.4036 × 10−4, � = −0.2, κ = −13.0208; (b)
α4 = 0.0889, � = −0.2, κ = −0.7150; (c) α4 = 1.1520, � = −0.2,
κ = −0.2275. The initial condition of the simulation is the soliton
profile given by formula(23a).

Figure 4(a), which represents (by a color code) the value of ξ

as a function of α2 and α3, allows to map the areas of stability
and instability in the parameters plane (α2,α3). The stability
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FIG. 4. Stability diagram in the space of nonlinearity parameters.
(a) : Plot of the stability parameter ξ as a function of (α2, α3). (b): Plot
of 1/GMI . Here � = −0.2 and the value of κ is given by parametric
conditions (22).

zone is located on the left edge and in the upper part of this
plane. The symbols in the form of small crosses labeled a,
b, and c, indicate the parameter sets used for the numerical
simulations displayed in Figs. 2(a)–2(c), respectively, while
the small circles labeled a, b, and c, indicate the parameter
sets used for the simulations represented in Figs. 3(a)–3(c),
respectively. Figure 4(b), shows, for each pair of values of (α2,
α3), the inverse of the peak value of MI gain, 1/GMI. We see in
Fig. 4(b) that in the stability area highlighted in Fig. 4(a), i.e.,
on the left edge and in the upper part of the parameter plane,
1/GMI reached its highest values. In other words, Fig. 4(b)
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confirms that the soliton is all the more stable that the value
of GMI is low. This observation is of paramount importance
because it indicates that the MI gain GMI is an excellent guide
to quickly determine the region of high stability of the soliton,
and that GMI can even be tuned to any desired level of stability.

At this point it should be noted that the numerical
simulations represented in Figures 2 and 3, were conducted
in an ideal environment (i.e., containing no photon noise). But
from a practical standpoint, it is also important to assess the
ability of the soliton to propagate in an environmental subject
to perturbations (such as those generated by a photon noise).
To this end, we carried out a numerical simulation for the
following parameter set α2 = 0.18, α3 = 1.8, and α4 = 6.4,
which corresponds to the point represented by the star-shaped
symbol in the parameter space of Fig. 4. In this simulation,
we chosen as initial condition a soliton profile perturbed by a
strong photon noise having an average power of 2.7 × 10−5

(which corresponds to 0.035% of the power of the continuous
background). The result of the simulation, which is displayed
in Fig. 5, shows a remarkable stability of the soliton despite
the large magnitude of the noise.

Thus, it follows from the overall stability analysis that
the robustness of the soliton given by Eq. (23a), is highly
dependent on its spatial width. As this width depends on
the nonlinearity coefficients α2, α3, and α4, a suitable choice
of these coefficients provides solitons displaying very high
stability, even in an environment strongly disturbed by a noise
of photons.

C. Collision of solitons

In the previous section, we have shown that the soliton
displays a high robustness against perturbations induced by
photon noise. At present, it is interesting to submit the soliton
to a test of robustness more powerful than the effect of a
photon noise, namely, a collision with a similar entity. To this
end, we injected two solitons into the system under conditions
in which a collision can take place. Because of diffraction, for
a collision to occur, it is necessary to inject the two solitons,
ψ1 and ψ2, into two different channels (carrier waves), say, �1

and �2, in the following way:

ψ(z = 0,x) = ψ1(x) + ψ2(x), (30a)

ψ1(x) ≡
{
− c

5d
+

(
�

25d3

)1/3

sech2/3

(
3
√

�

5d
(x+�0/2)

)}1/2

× ei(κ1z−�1[x+�0/2]), (30b)

ψ2(x) ≡
{
− c

5d
+

(
�

25d3

)1/3

sech2/3

(
3
√

�

5d
(x−�0/2)

)}1/2

× ei(κ2z−�2[x−�0/2]), (30c)

where � is defined in relation (23b), while κ1,2 is defined in
Eq. (8). To limit the impact of the parasitic interference phe-
nomena (such as four-wave mixing), we sufficiently separated
the two channels by taking �1 = 2 and �2 = −2. The spatial
separation between the two solitons was fixed at �0 = 300.
Then, we increased the diffraction parameter to α1 = 5 to
increase the velocity difference between the two solitons so
as to cause a collision process within the propagation distance
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FIG. 5. Plot showing the evolution of the spatial profile of the
soliton, as a function of the propagation distance z, in the presence of
a strong perturbation generated by a photon noise having an average
power of 2.7 × 10−5. Here α1 = 1, α2 = 0.18, α3 = 1.8, α4 = 6.4,
� = −0.2, and κ = −0.0461. The initial condition of the simulation
is the soliton profile given by the formula (23a).

fixed at L = 12. The result of the propagation of the two
solitons is shown in Fig. 6, which represents the intensity
profile of the two solitons |ψ(z,x)|2 as a function of the
propagation distance. It should be noted that, while the solitary
soliton is sitting on a cw background which envelops the
variations of the amplitude of the carrier wave (of this soliton),
a system of two solitons injected in two different channels, sits
on a continuous background modulated at the beat frequency
�1 − �2. The cw background becomes a periodic structure
with spatial period ζ ≡ 2π

�1−�2
, which gives rise to fine grooves

(clearly visible in Fig. 6), as the structure is sampled with step
�x different from ζ .

More importantly, the striking result in Fig. 6 is the
propagation of the two solitons till their collision at the distance
zc 	 7.5. The two solitons survive this collision and continue
their propagation. This collision process confirms the remark-
able robustness of these solitons and their ability to execute
highly stable propagation in strongly perturbed environments.
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FIG. 6. Plot showing the evolution of the intensity profile of two
colliding solitons, as a function of the propagation distance z. The
initial condition of the simulation is given by the formula (30), with
α1 = 5, α2 = 0.18, α3 = 1.8, α4 = 6.4, �1 = −�2 = 2, and κ1 =
κ2 = −20.

This property is a real advantage for experimental demonstra-
tion prospects and possible applications.

V. CONCLUSION

In this work, we have investigated the cubic-quintic-
septimal nonlinear Schrödinger equation modeling the spatial-
soliton propagation in an optical media with nonlinearities up
to the seventh order. The exact dark solitary wave solution
has been obtained by means of the ansatz method. It is
remarkable that the special ansatz used here is efficient to
determine successfully the exact dark wave solution of the
septimal model. The conditions on the physical parameters
for the existence of this propagating envelope have also been
reported. These conditions show a subtle balance among the
diffraction, Kerr nonlinearity, and quintic-septimal non-Kerr
nonlinearities, which has a profound implication to control the
wave dynamics. In particular, the newly determined solitary
wave solution presents a fractional value of the exponent

in terms of hyperbolic secant function, which is different
from the commonly known localized structures with a “tanh”
amplitude profile. These results constitute the first analytical
demonstration of propagation of dark spatial solitary waves
with sech2/3 profile in a cubic-quintic-septimal media. The
stability of the soliton has been also discussed numerically. We
have found that the conditions of existence of those solitons
coincide with the conditions of existence of the MI, which
tends to destabilize its cw background. However, we have
shown that the impact of MI can be reduced by an appropriate
choice of the coefficients of nonlinearity. We then obtain highly
robust solitons, displaying a high stability with respect to a
strong noise, and capable of surviving a collision process.

Thus, the mathematical analysis and numerical simulations
we have carried out in the present work reveal the existence
of particularly robust solitons in very specific regions of the
different coefficients of nonlinearity. The identification of
these regions of high stability, which we have achieved in
the present work, is a key step on the road towards possible
experimental demonstrations because it can guide the work
of design and engineering of the adequate physical medium
for the experiences. It follows that the engineering of the
physical medium must be such that the light propagates in
the anomalous diffraction regime, with a set of nonlinearity
coefficients such that the weight of the cubic nonlinearity be
relatively weak, while the quintic and septimal nonlinearities
are relatively strong. Without being too speculative, we believe
that such a physical medium is achievable in the medium term.

As a final remark, it is worth noting that it would certainly
be of interest to examine the existence and stability of localized
nonlinear waves in a cubic-quintic-septimal medium with
time- and space-modulated nonlinearities. We note that the
impact of space-modulated nonlinearities has recently been
studied, using similarity transformations, in the case of the
cubic NLSE [51], the quintic NLSE [52], and the cubic-quintic
NLSE [53].
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