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Strong resonances on periodic arrays of cylinders and optical bistability with weak incident waves
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A one-dimensional periodic array of circular dielectric cylinders surrounded by air is a simple structure on
which guided modes above the light line, also called bound states in the continuum (BICs), may exist. Recent
studies reveal that such an array supports not only antisymmetric standing waves which are symmetry-protected
BICs, but also propagating Bloch BICs and symmetric standing waves. Near a BIC, there is a family of resonant
modes (depending on the Bloch wave number β) with arbitrarily large quality factors. Using a perturbation
method, we show that the quality factor of the resonant mode typically depends on β like 1/(β − β∗)2, where
β∗ is the Bloch wave number of the BIC, but near a symmetric standing wave (β∗ = 0), the quality factor blows
up like 1/β4. This indicates that strong resonances can be more easily induced near a symmetric standing wave.
As an application, we numerically study optical bistability for the periodic array assuming the cylinders have a
Kerr nonlinearity. With the nonlinear effects enhanced by the resonances, it is possible to have optical bistability
for weak incident waves. The numerical results confirm that the weakest incident wave for optical bistability is
realized through the resonances near the symmetric standing waves.
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I. INTRODUCTION

Optical bistability (OB) is a classical nonlinear optical
phenomenon that has been extensively studied in the last 4
decades [1]. The simplest nonlinear medium in which OB
occurs is probably the Kerr medium, where the nonlinear
effect is modeled by adding a term proportional to the field
intensity to the linear dielectric constant. OB is proposed
for a number of all-optical signal processing applications,
such as optical switches and memory. However, the nonlinear
coefficient of a conventional material is extremely small. In
simple configurations, such as a slab of nonlinear medium,
OB only occurs when the amplitude of the incident wave A

is proportional to 1/
√

γ , where γ is the nonlinear coefficient,
unless the interaction length is very long. This implies that a
device based on OB is either very large or requires a very high
power for its operation. Clearly, such a device is not useful for
nanophotonic applications.

One way to overcome these limitations is to enhance the
nonlinear effects by a local field with a much larger amplitude
than the incident wave. This can be achieved by resonances
such as those in photonics crystal (PhC) microcavities [2–4].
When an incident wave with amplitude A excites a resonant
mode with quality factor Q, the amplitude of the local field u is
on the order of

√
QA. In addition, the resonance induces sharp

peaks or dips with an O(1/Q) bandwidth in transmission,
reflection, or scattering spectra, and OB can occur when
γ |u|2 is on the order of Q−1. Therefore, with the resonant
enhancement, the required incident wave amplitude A for
OB is proportional to 1/(Q

√
γ ) [5]. In principle, if resonant

modes with arbitrarily large quality factors are utilized, OB can
occur for arbitrarily weak incident waves. Some microcavities
fabricated on PhC slabs indeed have resonant modes with very
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high quality factors, but once a microcavity is fabricated, its
quality factor is fixed. To achieve OB at arbitrarily low incident
field intensity, it is desirable to have a fixed physical structure
on which a family of resonant modes exist, their quality factors
tend to infinity, but their resonant frequencies converge to a
constant. Notice that a simple resonator, such as a dielectric
sphere, cannot serve this purpose, because although it has a
sequence of resonant modes with quality factors tending to
infinity, the corresponding resonant frequencies also tend to
infinity.

The desired family of resonant modes exist on periodic
structures, such as PhC slabs and periodic arrays of cylinders.
A periodic structure sandwiched between two homogeneous
media could have guided modes that are confined around the
main periodic part of the structure and decay exponentially
into the surrounding homogeneous media. In addition to the
well-known guided modes below the light line, there could
also be special guided modes above the light line, i.e., their
frequencies lie in the frequency intervals where radiation
modes exist [6–20]. These guided modes above the light line
(i.e., in the radiation continuum) are special bound states
in the continuum (BICs) [21–23], and mathematically they
correspond to discrete eigenvalues in a continuous spectrum.
On a two-dimensional (2D) structure with one periodic
direction, resonant modes exist continuously with respect to
the Bloch wave number β. It is known that the quality factor
tends to infinity as β tends to the Bloch wave number β∗ of
a BIC. In fact, the quality factor is typically proportional to
1/(β − β∗)2. Therefore, resonant modes with arbitrarily large
quality factors can be obtained if β is sufficiently close to β∗.
In that case, for incident waves with a wave-vector component
equal to β, it is possible to have OB with very small incident
wave amplitudes. However, this requires high precision for the
incident wave-vector.

A one-dimensional (1D) periodic array of parallel and
infinitely long circular dielectric cylinders is a particular
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simple structure on which BICs exist [8,16,17,20]. A well-
known class of BICs are standing waves having a symmetry
incompatible with that of the outgoing radiation modes. The
existence of these so-called symmetry-protected BICs can be
rigorously proved [6,8,17,24]. The array also supports other
BICs that are not protected by symmetry [16,20]. For a fixed
array, the BICs are isolated points in the frequency–wave-
number plane, but they exist continuously with respect to the
radius and dielectric constant of the cylinders. In particular, for
cylinders with their radius and the dielectric constant satisfying
a proper condition, there are standing waves which are not
protected by symmetry [16,20].

In Sec. II, we describe the periodic array, present the the
mathematical formulation, and recall some results on BICs.
In Sec. III, we show that resonant modes near standing waves
unprotected by symmetry have quality factors proportional
to 1/(β − β∗)4, where β∗ = 0 and β (real and close to β∗)
is the Bloch wave number of the resonant mode. This is
very different from the resonant modes near ordinary BICs.
The inverse fourth power relation indicates that the quality
factor can be very large, even when |β − β∗| is not so small.
Consequently, resonant modes with high quality factors can
be obtained with a much relaxed accuracy requirement for
the wave number β. In Sec. IV, based on rigorous numerical
simulations, we analyze OB enhanced by resonances near
three distinct BICs. Numerical results for a fixed and small
|β − β∗| confirm that the minimum incident wave amplitude
A for OB is proportional to (β − β∗)2/

√
γ for ordinary BICs

and (β − β∗)4/
√

γ for the standing waves without symmetry
protection.

II. FORMULATION AND BICS

In Fig. 1, we show a 1D periodic array of parallel and
infinitely long circular cylinders surrounded by air. A Cartesian
coordinate system is chosen so that the cylinders are parallel
to the z axis, the array is periodic in y with period L, and
the origin lies in the center of one cylinder. Therefore, the
structure is symmetric with respect to both x and y axes. We
assume that the cylinders are made from a dielectric material

x

y

1
γ

1

L

2a
u(in)

FIG. 1. A 1D array of circular cylinders with radius a, dielectric
constant ε1, and nonlinear coefficient γ1. The array is periodic in y

with period L.

with a Kerr nonlinearity. The dielectric constant and the radius
of the cylinders are ε1 and a, respectively, where ε1 > 1 and
a < L/2.

For the E polarization, the z component of the electric
field, denoted by u, satisfies the following nonlinear Helmholtz
equation [25–30]:

∂2u

∂x2
+ ∂2u

∂y2
+ k2

0(ε + γ |u|2)u = 0, (1)

where k0 = ω/c is the free-space wave number, ω is the
angular frequency, c is the speed of light in vacuum, ε = ε(r)
is the dielectric function, r = (x,y), γ = γ (r) is the nonlinear
coefficient, and the time dependence is e−iωt . In particular, we
have ε = ε1 and γ = γ1 > 0 in the cylinders and ε = 1 and
γ = 0 outside the cylinders. Equation (1) can be derived from
the nonlinear Maxwell’s equations with the assumption that
higher harmonics can be ignored, and γ = 3

4χ (3), where χ (3)

is an element of the third-order nonlinear susceptibility tensor.
We study the nonlinear diffraction problem for an incident

plane wave given by

u(in)(r) = Aeiβy+iα(x+L/2), x < −a, (2)

where A is the amplitude, (α,β) is the wave vector, β is real,
α is positive, and they satisfy α2 + β2 = k2

0. The reflected and
transmitted waves can be expanded as

u(r)(r) =
∞∑

m=−∞
c−
meiβmy−iαm(x+L/2), x < −a, (3)

u(t)(r) =
∞∑

m=−∞
c+
meiβmy+iαm(x−L/2), x > a, (4)

where m is an integer, and

βm = β + 2πm

L
, αm =

√
k2

0 − β2
m. (5)

If α0 = α is the only real number among all αm, then the
reflection and transmission coefficients for normalized power
are

R = |c−
0 /A|2, T = |c+

0 /A|2. (6)

The nonlinear diffraction problem may have multiple
solutions related to optical bistability and symmetry-breaking
phenomena [31]. To understand the nonlinear properties, it is
necessary to first study the linear solutions of the periodic array.
A BIC on the periodic array is a special Bloch mode solution of
the linear Helmholtz equation [i.e., γ ≡ 0 in Eq. (1)] without
any incident wave. It is given by

u(r) = φ(r)eiβy, (7)

where φ is periodic in y with period L, φ → 0 as |x| → ∞,
and β is the real Bloch wave number (or propagation constant)
satisfying k0 > |β| (i.e., above the light line). Due to the
periodicity of φ and the reflection symmetry in y, β can
be restricted to the interval [0,π/L]. Notice that the array
can be regarded as a periodic waveguide, and it has Bloch
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guided modes below the light line (i.e., k0 < |β|) that depend
continuously on β and ω. On the other hand, the BICs only
exist as isolated points in the frequency–wave-number plane.

The simplest BICs on the periodic array shown in Fig. 1
are antisymmetric standing waves satisfying β = 0 and
u(x,−y) = −u(x,y) [16,17]. The solution u given in Eq. (7)
can be expanded in a Fourier series for |x| > a, as in
Eqs. (3) and (4). If β = 0 and k0 < 2π/L, then α0 is real
and all other αm for m �= 0 are pure imaginary, and the only
outgoing radiation channel is the plane wave for m = 0 in
Eqs. (3) and (4). But if u is an odd function of y, the
coefficients c±

0 are zero automatically, thus u → 0 as |x| → ∞
is guaranteed. Since these antisymmetric standing waves have
incompatible symmetry with the outgoing radiating waves,
they are symmetry-protected BICs. However, the array also
supports BICs that are not protected by symmetry, and they
are propagating Bloch BICs with β �= 0 or symmetric standing
waves (even functions of y) [16,20]. In particular, these
Bloch BICs are quite robust, since they exist continuously
with respect to the radius and the dielectric constant of the
cylinders [20].

In Fig. 2(a), we show a symmetry-protected BIC for
a = 0.382L and ε1 = 5. The normalized frequency of this
standing wave is ωL/(2πc) = 0.532 688. For the same radius
a and dielectric constant ε1, there is a propagating Bloch BIC
with normalized frequency ωL/(2πc) = 0.647 949 and nor-
malized wave number βL/(2π ) = 0.072 28, and it is shown
in Fig. 2(b). If we fix radius a = 0.382L and allow ε1 to vary,
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FIG. 2. Wave field patterns (i.e., the real parts of u) of three BICs
on a periodic array of circular cylinders with radius a = 0.382L. (a)
Antisymmetric (y-odd) standing wave for ε1 = 5 and ωL/(2πc) =
0.532 688. (b) Propagating BIC for ε1 = 5, ωL/(2πc) = 0.647 949,
and βL/(2π ) = 0.072 28. (c) Symmetric (y-even) standing wave for
ε1 = 6.449 74 and ωL/(2πc) = 0.573 935. The x and y axis are given
in unit L.

then we can find a family of BICs for 2.524 < ε1 � 6.449 74.
Both ω and β depend continuously on ε1. At the endpoint
ε1 = 6.449 74, we have β = 0 and ωL/(2πc) = 0.573 935;
thus the Bloch BIC becomes a standing wave, and it has a
symmetric (i.e., y-even) field pattern as shown in Fig. 2(c).
From Figs. 2(b) and 2(c), we can see that this family of BICs
without symmetry protection are even functions of x. It turns
out that there is also a family of x-odd BICs for larger values
of ε1 [20].

III. PERTURBATION ANALYSIS

For a fixed periodic array, a BIC corresponds to an isolated
point in the ω-β plane. Let (ω∗,β∗) be a frequency–wave-
number pair of a BIC, then for any real β close to but not
equal to β∗ the array has a resonant mode with a complex
frequency ω near ω∗. A resonant mode is a nonzero solution
of the linear Helmholtz equation (without incident waves)
satisfying outgoing radiation conditions. Since we assume the
time dependence is e−iωt , the imaginary part of the complex
frequency, i.e., Im(ω), should be negative, so that the amplitude
of the mode decays with time. The quality factor of the resonant
mode is Q = −0.5Re(ω)/Im(ω), where Re(ω) is the real part
of ω. In the following, we show that, if ω is expanded as a power
series of β − β∗, then the first nonzero term in the series of
Im(ω) is in general (β − β∗)2, but it becomes (β − β∗)4 for the
symmetric (i.e., y-even) standing wave shown in Fig. 2(c).

First, we consider a general 2D periodic structure sur-
rounded by air. We assume that the dielectric function ε(r)
is real and is periodic in y with period L and that ε = 1 for
|x| � L/2. Let u(r) = eiβyφ(r) (for a complex frequency ω)
be a resonant mode near a BIC u∗(r) = eiβ∗yφ∗(r), we develop
a perturbation theory for the resonant mode assuming |β − β∗|
is small. Since u blows up as |x| → ∞, the perturbation
theory should be developed in a bounded domain with proper
boundary conditions for truncating x.

The linear Helmholtz equation for u gives rise to

∂2φ

∂x2
+ ∂2φ

∂y2
+ 2iβ

∂φ

∂y
+ (gε − β2)φ = 0, (8)

where g = k2
0 = (ω/c)2 is now complex. For |x| � L/2, we

can expand u as in Eqs. (3) and (4). Comparing these
expansions with their x derivatives at x = ±L/2, we obtain
the following boundary condition for φ [32]:

±∂φ

∂x
= T φ, x = ±L

2
, (9)

where T is a linear operator acting on periodic functions of y

with period L, such that

T ei2πmy/L = μm ei2πmy/L (10)

for all integers m and μm = i
√

g − β2
m. Since g is complex,

the square root must be carefully defined. It is necessary to
insist that the complex square root is continuous as β → β∗
and ω → ω∗ [or g → g∗ = (ω∗/c)2]. For simplicity, we
assume g∗ − β2

∗ > 0 and g∗ − β2
∗m < 0 for all m �= 0, where

β∗m = β∗ + 2πm/L.
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Let δ = β − β∗, we expand φ, g, μm, and operator T as
follows:

φ = φ∗ + δφ1 + δ2φ2 + · · · , (11)

g = g∗ + δg1 + δ2g2 + · · · , (12)

μm = μ∗m + δμ1m + δ2μ2m + · · · , (13)

T = T∗ + δT1 + δ2T2 + · · · . (14)

The explicit formulas for μ∗m, μ1m, and μ2m are given in the
Appendix. Similar to the definition of T in Eq. (10), the actions
of T∗, T1, and T2 on ei2πmy/L are simply ei2πmy/L multiplied
by μ∗m, μ1m, and μ2m, respectively.

Inserting Eqs. (11), (12), and (14) into the governing
equation (8) and boundary conditions (9), we get

Lφ∗ = 0, (15)

Lφ1 = −2i∂yφ∗ + (2β∗ − εg1)φ∗, (16)

Lφ2 = −2i∂yφ1 + (2β∗ − εg1)φ1 + (1 − εg2)φ∗, (17)

where

L = ∂2
x + ∂2

y + 2iβ∗∂y + g∗ε − β2
∗ (18)

and

±∂xφ∗ = T∗φ∗, x = ±L/2, (19)

±∂xφ1 = T∗φ1 + T1φ∗, x = ±L/2, (20)

±∂xφ2 = T∗φ2 + T1φ1 + T2φ∗, x = ±L/2. (21)

Equations (15) and (19) are satisfied by the BIC. From
Eqs. (16) and (20), we can show that

g1 = 2β∗
∫
�

|φ∗|2d r − 2i
∫
�

φ∗∂yφ∗ d r + B1∫
�

ε|φ∗|2 d r + B0
, (22)

where � is the square given by |x| < L/2 and |y| < L/2,

B0 = L

2

∑
m�=0

|c+
∗m|2 + |c−

∗m|2(
β2∗m − g∗

)1/2 , (23)

B1 = L
∑
m�=0

β∗m

|c+
∗m|2 + |c−

∗m|2(
β2∗m − g∗

)1/2 , (24)

and c±
∗m are the Fourier coefficients of φ∗ at x = ±L/2, i.e.,

φ∗(±L/2,y) =
∞∑

m=−∞
c±
∗m ei2πmy/L. (25)

The derivation of Eq. (22) is given in the Appendix.
Since φ∗ is periodic in y with period L, we have

0 =
∫

�

∂|φ∗|2
∂y

d r =
∫

�

[
φ∗

∂φ∗
∂y

+ φ∗
∂φ∗
∂y

]
d r.

Thus the term 2i
∫
�

φ∗∂yφ∗ d r in Eq. (22) is real. Since all
other terms in Eq. (22) are clearly real, we conclude that g1 is

real. From Eq. (12), it is easy to get

ω = ω∗ + c2g1

2ω∗
δ + O(δ2). (26)

Therefore, Im(ω) is in general O(δ2) and the quality factor is
proportional to 1/δ2.

Next, we consider resonant modes near standing waves
(β∗ = 0) on symmetric (i.e., y-even) periodic structures. If
u(x,y) = eiβyφ(x,y) is a resonant mode on such a structure,
then so is its reflection, u(x, − y) = e−iβyφ(x, − y). This
implies that if the resonant mode is nondegenerate, ω (also g)
should be an even function of β. Thus, Eq. (12) becomes

g = g∗ + δ2g2 + δ4g4 + · · · , (27)

where δ = β. We can also apply the reflection transform to
standing waves. This leads to the conclusion that a standing
wave φ∗ on a symmetric periodic structure must be either sym-
metric (y-even) or antisymmetric (y-odd), since otherwise we
can construct them from φ∗(x,y) + φ∗(x, − y) or φ∗(x,y) −
φ∗(x, − y). The results shown in Figs. 2(a) and 2(c) confirm
this conclusion. Whether φ∗ is symmetric or antisymmetric,
φ∗∂yφ∗ is always odd in y, thus

∫
�

φ∗∂yφ∗d r = 0. Moreover,
the Fourier coefficients satisfy |c±

∗m| = |c±
∗,−m| and β∗m =

2πm/L, thus B1 = 0. From Eq. (22), we again conclude that
g1 = 0.

The equations for φ1 and φ2 are simplified as

Lφ1 = −2i∂yφ∗, (28)

Lφ2 = (1 − εg2)φ∗ − 2i∂yφ1, (29)

where L = ∂2
x + ∂2

y + g∗ε. In the Appendix, we show that

g2 =
∫
�

[|φ∗|2 − |∇φ1|2 + g∗ε|φ1|2]d r − B2 + B3∫
�

ε|φ∗|2d r + B0
, (30)

where B0 is given in Eq. (23),

B2 = Lg∗
2

∑
m�=0

|c+
∗m|2 + |c−

∗m|2(
β2∗m − g∗

)3/2 , (31)

B3 = L
∑
m

μ∗m(|c+
1m|2 + |c−

1m|2), (32)

and c±
1m are the Fourier coefficients of φ1 at x = ±L/2, that

is,

φ1(±L/2,y) =
∞∑

m=−∞
c±

1mei2πmy/L. (33)

Moreover, μ∗0 = i
√

g∗ − β2∗ = iω∗/c is pure imaginary, and
all μ∗m, for m �= 0, are real and given in the Appendix.
Equation (27) implies that

ω = ω∗ + c2g2

2ω∗
δ2 + O(δ4) (34)

for standing waves. Thus,

Im(ω) = − Lc(|c+
10|2 + |c−

10|2)

2(
∫
�

ε|φ∗|2 d r + B0)
δ2 + O(δ4). (35)

023834-4



STRONG RESONANCES ON PERIODIC ARRAYS OF . . . PHYSICAL REVIEW A 95, 023834 (2017)

10
−2

10
−1

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

(β − β∗)L/(2π)

-I
m

(ω
)L

/(
2π

c)

BIC(a)
BIC(b)
BIC(c)

FIG. 3. Logarithmic relations between −Im(ω)L/(2πc) and
(β − β∗)L/(2π ) for the three BICs shown in Fig. 2.

For a y-even standing wave φ∗, we notice that T1φ∗ in
Eq. (20) is odd in y and ∂yφ∗ in Eq. (28) is also odd in y;
thus φ1 is an odd function of y, the coefficients c±

10 vanish,
and Im(g2) = 0. As a result, we have Im(ω) = O(δ4) and the
quality factor is proportional to 1/δ4.

For the three BICs shown in Fig. 2, we calculate the complex
resonant frequency ω for some β close to β∗. In Fig. 3, we show
the relations between the normalized −Im(ω) and normalized
β − β∗ in a logarithmic scale. It can be seen that the two curves
for the antisymmetric standing wave and the propagating BIC
have a relatively small slope (close to 2), while the curve for the
symmetric standing wave has a larger slope (close to 4). These
numerical results confirm the theoretical results developed in
this section.

IV. OPTICAL BISTABILITY

In this section, we consider the nonlinear diffraction
problem formulated in Sec. II for a periodic array of circular
cylinders with the Kerr nonlinearity. Since resonances with
arbitrarily high quality factors can be obtained when the wave
number β is close to the wave number β∗ of a BIC, we
consider incident waves with a real frequency ω and a real
wave-vector (α,β), where ω is close to the frequency ω∗ of
the BIC and β is close to β∗. It should be pointed out that
OB is a robust nonlinear optical phenomenon. Its appearance
does not sensitively depend on the choice of ω. For the three
BICs shown in Fig. 2, especially the symmetric standing wave
shown in Fig. 2(c), we show that OB occurs for incident waves
with small amplitudes if |β − β∗| is small.

For the linear problem (γ ≡ 0), let Q be the quality factor
of the resonant mode with a real wave number β and a complex
frequency ωc, and let A be the amplitude of the incident wave
with the real frequency ω = Re(ωc) and the real wave-vector
(α,β), then the field amplitude around the array is O(

√
QA)

[33]. In addition, a linear perturbation theory shows that if ε1 of
the cylinders is slightly increased, the real part of the complex
frequency ωc decreases slightly. For the nonlinear problem, the
term γ |u|2 effectively increases the dielectric constant ε1 of

the cylinders, thus the most dramatic resonance enhancement
occurs at a real frequency ω slightly smaller than Re(ωc).

Although OB has been widely studied, it is difficult to
predict the precise values of the incident amplitude A for
which OB actually occurs. However, it is possible to obtain
some estimates based on related linear problems. Due to the
coupling of the incident plane wave with the resonant mode,
the linear transmission or reflection spectrum for a fixed β

typically exhibits an asymmetric line shape for frequencies
around Re(ωc). Furthermore, the spectrum contains two
frequencies around Re(ωc) for total transmission and total
reflection, respectively, and the difference between these two
frequencies is O(1/Q) [33,34]. It appears that OB can only
occur when the nonlinear term γ |u|2 induces an O(1/Q)
shift in the resonant frequency; i.e., the resonant frequency
ω̃c for ε̃1 = ε1 + γ |u|2 differs from the original ωc by an
O(1/Q) amount. In addition, to the first order, ω̃c − ωc varies
linearly with ε̃1 − ε1. Therefore, OB requires that γ1|u|2 =
O(γ1QA2) = O(1/Q) or

A = O

(
1

Q
√

γ1

)
. (36)

Based on the results of Sec. III, we conclude that, near a typical
BIC, OB may occur when

A = O

(
(β − β∗)2L2

√
γ1

)
, (37)

but near the symmetric standing wave, the condition becomes

A = O

(
β4L4

√
γ1

)
. (38)

For the three BICs shown in Fig. 2, we solve the nonlinear
diffraction problem assuming the incident wave-vector com-
ponent β satisfies (β − β∗)L/(2π ) = 0.01 and the nonlinear
coefficient of the cylinders is γ1 = 1.125×10−17 m2/V2. The
first BIC is the antisymmetric standing wave shown in Fig. 2(a).
Its normalized frequency is ω∗L/(2πc) = 0.532 688. For the β

given above (β∗ = 0), the array has a resonant mode with com-
plex frequency ωcL/(2πc) = 0.532 479 − 0.000 008 6i. The
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FIG. 4. Reflection coefficient of a nonlinear diffraction problem
related to the BIC shown in Fig. 2(a), for different incident amplitude
A (with unit V/m), wave number βL/(2π ) = 0.01, and frequency
ωL/(2πc) = 0.532 46.
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FIG. 5. Reflection coefficient of a nonlinear diffraction problem
related to the BIC shown in Fig. 2(b), for different incident
amplitude A (with unit V/m), wave number βL/(2π ) = 0.082 28,
and frequency ωL/(2πc) = 0.650 40.

corresponding quality factor is Q ≈ 3.1×104. The frequency
of the incident wave is chosen to be ωL/(2πc) = 0.532 46. In
Fig. 4, we show a curve relating the reflection coefficient R

and the incident amplitude A. For A between 4.93×104 and
5.21×104 V/m, R has multiple values corresponding to the
multiple solutions related to the OB phenomenon.

The second BIC is the propagating mode shown in
Fig. 2(b). Its frequency and wave number are ω∗L/(2πc) =
0.647 949 and β∗L/(2π ) = 0.072 28, respectively. For β given
above, there is a resonant mode with complex frequency
ωcL/(2πc) = 0.650 409 − 0.000 004 8i. The corresponding
quality factor is Q ≈ 6.8×104. For incident waves with
frequency ωL/(2πc) = 0.650 40 and the given β, we solve
the nonlinear diffraction problem and obtain the multivalued
amplitude-dependent reflection coefficient R shown in Fig. 5.
Notice that OB occurs when A is between 2.73×104 and
2.81×104 V/m.

The third BIC shown in Fig. 2(c) is the symmetric standing
wave on an array with radius a = 0.382L and dielectric con-
stant ε1 = 6.449 74. Its frequency is ω∗L/(2πc) = 0.573 935.
For βL/(2π ) = 0.01, the array has a resonant mode with com-
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FIG. 6. Reflection coefficient of a nonlinear diffraction problem
related to the BIC shown in Fig. 2(c), for different incident amplitude
A (with unit V/m), wave number βL/(2π ) = 0.01, and frequency
ωL/(2πc) ≈ 0.574 086.

plex frequency ωcL/(2πc) = 0.574 086 − 0.000 000 022i and
quality factor Q ≈ 1.3×107. For incident waves with fre-
quency ωL/(2πc) ≈ 0.574 086 and the given β, we find the
relation between reflection coefficient R and amplitude A as
shown in Fig. 6. We can see that OC occurs for A between
139.9 and 143.5 V/m. Compared with the two previous cases,
a much weaker incident wave is needed to realize OB, even
though β − β∗ is identical in all three cases.

V. CONCLUSION

On periodic structures such as an array of circular cylin-
ders, there could be special guided modes in the radiation
continuum, and they are referred to as BICs. Near a BIC with
Bloch wave number β∗, there are resonant modes that depend
continuously on a given Bloch wave number β. As β → β∗,
the resonant frequencies of these modes converge to that of
the BIC, and their quality factors tend to infinity. Using a
perturbation theory, we show that for a typical BIC, the quality
factors are proportional to 1/(β − β∗)2, but for a symmetric
standing wave (β∗ = 0) on a symmetric periodic structure,
the quality factors are proportional to 1/β4. The latter case is
particularly interesting, since it gives rise to strong resonances
with a relaxed requirement on β.

As an application of the resonances near the BICs, we
study optical bistability for single arrays of circular cylinders
with a Kerr nonlinearity. Since the nonlinear coefficient of a
conventional dielectric material is very small, usually OB is
only possible for very strong incident waves. With resonance
enhancement, the required incident-wave amplitude for OB
can be significantly reduced. Since the quality factors of
the resonant modes near a BIC can be arbitrarily high, in
principle, OB can happen for incident waves with arbitrarily
low intensity. Our numerical results for three different BICs
and the same β − β∗ confirm that the smallest incident
amplitude needed for OB can be realized by resonances near
a symmetric standing wave.

It should be pointed out that the existence of BICs and
nearby resonances with arbitrarily high quality factors requires
an infinite structure with perfect periodicity. In practice, the
array is always finite, the cylinders are not perfectly identical,
the length of the cylinders is also finite, and the incident wave
cannot be a true plane wave. Clearly, it is important to study
these practical issues. For a finite array of possibly distorted
cylinders, the resonant modes form a discrete sequence, but it
is worthwhile to find out whether there are particularly strong
resonances when the related ideal periodic array supports
symmetric standing waves. It is also highly relevant to consider
incident waves with a finite beam-width and to study optical
bistability when the frequency and the main wave-vector of
the beam are related to different kinds of BICs.
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APPENDIX

The perturbation theory is developed for resonant modes
near a BIC on a 2D periodic structure with a dielectric function
ε(x,y), where ε is real and periodic in y with period L, and
ε = 1 for x � L/2. A BIC is a special solution u∗ = eiβ∗yφ∗
for a real frequency ω∗. For a real β close to but not equal to β∗,
the linear Helmholtz equation has a resonant mode u = eiβyφ

for a complex ω near ω∗, where φ is periodic in y and satisfies
the outgoing radiation condition (9). The perturbation theory
is developed for g = (ω/c)2 and φ, assuming δ = β − β∗ is
small. The operator T appearing in the boundary condition
(9) is related to μm which has been expanded in Eq. (13). For
m = 0, we have

μ∗0 = i

√
g∗ − β2∗ ,

μ10 = i(g1 − 2β∗)

2
√

g∗ − β2∗
,

μ20 = i(g2 − 1)

2
√

g∗ − β2∗
− i(g1 − 2β∗)2

8(g∗ − β2∗ )3/2
.

For m �= 0, we have

μ∗m = −
√

β2∗m − g∗,

μ1m = g1 − 2β∗m

2
√

β2∗m − g∗
,

μ2m = g2 − 1

2
√

β2∗m − g∗
+ (g1 − 2β∗m)2

8
(
β2∗m − g∗

)3/2 .

Based on the expansions for φ, g, and T , we obtain the
equations and boundary conditions for φ∗, φ1, and φ2.

Multiplying Eq. (16) by φ∗ (the complex conjugate of φ∗)
and integrating the result on the square � (given by |x| < L/2
and |y| < L/2), we obtain∫

�

φ∗Lφ1d r = −2i

∫
�

φ∗
∂φ∗
∂y

d r + 2β∗
∫

�

|φ∗|2d r

− g1

∫
�

ε|φ∗|2d r. (A1)

For the left-hand side above, we notice that

φ∗Lφ1 = φ1Lφ∗ + ∇ · (φ∗∇φ1 − φ1∇φ∗) + 2iβ∗∂y(φ∗φ1).

The first term in the right-hand side vanishes. Due to the
periodicity in y, the integral of the last term on � is zero.
Using Green’s theorem, we obtain∫

�

φ∗Lφ1d r =
∫

∂�

[
φ∗

∂φ1

∂ν
− φ1

∂φ∗
∂ν

]
ds,

where ∂� is the boundary of �; ν is the outward unit normal
vector of ∂�; and ∂ν becomes ∂y , −∂y , −∂x , and ∂x on the
top, bottom, left, and right edges of �, respectively. Due to the

periodicity in y, the line integrals on the top and bottom edges
cancel out. Using the boundary conditions (19) and (20), we
obtain ∫

�

φ∗Lφ1d r = J (F0) + J (F1) = J (F1), (A2)

where

F0 = φ∗(T∗φ1) − φ1(T∗φ∗), F1 = φ∗T1φ∗,

and for each integer j ,

J (Fj ) =
∫ L/2

−L/2
[Fj (L/2,y) + Fj (−L/2,y)]dy. (A3)

Since φ∗ decays to zero as |x| → ∞, we have c±
∗0 = 0, where

c±
∗m are the Fourier coefficients of φ∗ at x = ±L/2, as in

Eq. (25). In addition, μ∗m (for T∗) is real if m �= 0. Using these
results, we can verify that J (F0) = 0. Using the Fourier series
of φ∗ at x = ±L/2 and the definition of T1, we obtain

J (F1) = g1B0 − B1, (A4)

where B0 and B1 are given in Eqs. (23) and (24), respectively.
Combining Eqs. (A1), (A2), and (A4), we obtain Eq. (22)
for g1.

Next, we assume that the periodic structure has a reflection
symmetry along the y axis, i.e., ε is an even function of y, and
consider resonant modes around a standing wave φ∗ which is
either symmetric (even in y) or antisymmetric (odd in y). Due
to the symmetry, g is an even function of δ. The conditions
β∗ = 0 and g1 = 0 lead to some simplifications. Notice that
β∗m = 2πm/L, and for m �= 0,

μ1m = −β∗m√
β2∗m − g∗

,

μ2m = g2

2
√

β2∗m − g∗
+ g∗

2
(
β2∗m − g∗

)3/2 .

Multiplying Eq. (29) by φ∗ and integrating the result on �,
we obtain∫

�

φ∗Lφ2d r =
∫

�

|φ∗|2d r − g2

∫
�

ε|φ∗|2d r

− 2i

∫
�

φ∗
∂φ1

∂y
d r. (A5)

For the left-hand side, we notice that

φ∗Lφ2 = φ2Lφ∗ + ∇ · (φ∗∇φ2 − φ2∇φ∗).

This leads to∫
�

φ∗Lφ2 d r =
∫

∂�

[
φ∗

∂φ2

∂ν
− φ2

∂φ∗
∂ν

]
ds

= J (F2) + J (F3) + J (F4)

= J (F2) + J (F3),

where

F2 = φ∗T2φ∗, F3 = φ∗T1φ1,

F4 = φ∗T∗φ2 − φ2(T∗φ∗),

and J (Fj ), for j = 2, 3, and 4, are defined in Eq. (A3). In the
above, we notice that the line integrals on the top and bottom
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edges of � cancel out, the boundary conditions (19) and (21)
are applied, and J (F4) = 0. Therefore, we can rewrite Eq. (A5)
as

2i

∫
�

φ∗
∂φ1

∂y
d r + J (F3)

=
∫

�

|φ∗|2d r − g2

∫
�

ε|φ∗|2d r − J (F2). (A6)

Multiplying Eq. (28) by φ1, integrating the result on �, and
taking a complex conjugate, we obtain

2i

∫
�

φ1
∂φ∗
∂y

d r =
∫

�

[g∗ε|φ1|2 − |∇φ1|2]d r

+ J (F5) + J (F6), (A7)

where F5 = φ1T∗φ1 and F6 = φ1T1φ∗. Using the properties of
φ∗ and T∗ mentioned above, we can verify that

J (F6) = J (F3).

In addition, we notice that∫
�

[
φ∗

∂φ1

∂y
+ φ1

∂φ∗
∂y

]
d r =

∫
�

∂(φ∗φ1)

∂y
d r = 0.

Therefore, Eq. (A7) can be written as

2i

∫
�

φ∗
∂φ1

∂y
d r + J (F3)

=
∫

�

[|∇φ1|2 − g∗ε|φ1|2]d r − J (F5). (A8)

Using the Fourier series of φ∗ and φ1 at x = ±L/2 and the
definitions of T∗ and T2, we obtain

J (F2) = L
∑
m

μ2m(|c+
∗m|2 + |c−

∗m|2) = g2B0 + B2,

J (F5) = L
∑
m

μ∗m(|c+
1m|2 + |c−

1m|2) = B3,

where B0, B2, and B3 are defined in Sec. III. The formula for
g2, i.e., Eq. (30), can be easily obtained from the above two
equations and Eqs. (A7) and (A8).
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Joannopoulos, and M. Soljačić, Bloch surface eigenstates within
the radiation continuum, Light Sci. Appl. 2, e84 (2013).

[13] C. W. Hsu, B. Zhen, J. Lee, S.-L. Chua, S. G. Johnson, J. D.
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