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Quantizing polaritons in inhomogeneous dissipative systems
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In this article we provide a general analysis of canonical quantization for polaritons in dispersive and dissipative
electromagnetic inhomogeneous media. We compare several approaches based either on the Huttner-Barnett
model [B. Huttner and S. M. Barnett, Phys. Rev. A 46, 4306 (1992)] or the Green function, Langevin-noise
method [T. Gruner and D.-G. Welsch, Phys. Rev. A 53, 1818 (1996)] which includes only material oscillators
as fundamental variables. We show that in order to preserve unitarity, causality, and time symmetry, one must
necessarily include with an equal footing both electromagnetic modes and material fluctuations in the evolution
equations. This becomes particularly relevant for all nanophotonics and plasmonics problems involving spatially
localized antennas or devices.
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I. INTRODUCTION

Tremendous progress has been realized in the last decades
concerning the theoretical foundation of quantum optics in
dielectric media. While the historical approach proposed by
Jauch and Watson [1] was already based on the standard canon-
ical quantization formalism for fields, it neglected dispersion
and dissipation which are intrinsic properties of any causal
dielectric media satisfying Kramers-Krönig relations. Since
then, several important studies were devoted to the extension
of the method to inhomogeneous and artificially structured
media which are central issues in modern microphotonics
and nanophotonics [2–4]. Furthermore, theoretical approaches
adapted to transparent but dispersive media with negligible
losses have been also developed based on different techniques
such as the slowly varying envelope approximation [5] or the
quasimodal expansion method which is valid near resonance
for polaritons [6–9]. More recently, losses were included in the
theory by adding phenomenologically some optical dissipation
channels in the light propagation path [10,11]. Such a method
was successfully used for the modeling of Casimir forces in
dissipative media [12] and surface plasmon polaritons [13–15].

Moreover, the most fundamental progress was probably
done when Huttner and Barnett, and others [16–22], proposed
a self-consistent canonical quantization procedure for a homo-
geneous and causal dielectric medium by coupling photonic
degrees of freedom with mechanical oscillator variables acting
as thermal baths. The method, based on the pioneer works
by Fano and Hopfield [23,24] (see also Ref. [25]), was
subsequently extended to several inhomogeneous systems
including anisotropic and magnetic properties [26–32]. In
parallel to these theoretical works based on the standard
canonical quantization method, a different and powerful axis of
research appeared after the work by Gruner and Welsch [33,34]
(see also Ref. [35]) based on the quantum Langevin-noise
approach used in cavity QED (i.e., quantum electrodynamics)
[36]. The method is also known as the Green tensor method
[34] since it relies on efficient Green dyadic techniques used
nowadays in nanophotonics and plasmonics [37,38]. This
“Langevin-noise” approach, which actually extends earlier
“semiclassical” researches based on the fluctuation-dissipation
theorem by Lifshitz and many others in the context of Casimir
and optical forces [39–50], was successfully applied in the
recent years to many issues concerning photonics [51–60]

and nanoplasmonics where dissipation can not be neglected
[61–69]. In this context, the relationship between the Huttner-
Barnett approach on the one side and the Langevin-noise
method on the other side has attracted much attention in the last
years, and several works attempted to demonstrate the validity
of the Langevin-noise method from a rigorous Hamiltonian
perspective which is more in a agreement with the canonical
Huttner-Barnett approach [26–32,44].

The aim of this work is to revisit these derivations of
the equivalence between the Langevin-noise and Hamiltonian
methods and to show that some unphysical assumptions
actually limit the domain of validity of the previous attempts.
More precisely, as we will show in this work, the analysis
and derivations always included some hypothesis concerning
causality and boundary conditions which actually lead to
circularity in the deductions and are not applicable to the
most general inhomogeneous systems used in nano-optics.
Specifically, these derivations, like the fluctuation-dissipation
reasoning in Lifshitz and Rytov works [39–41,43], give too
much emphasis on the material origin of quantum fluctua-
tions for explaining macroscopic quantum electrodynamics in
continuous media. However, as it was already pointed out
in the 1970s [43,70–73], one must include with an equal
footing both field and matter fluctuations in a self-consistent
QED Hamiltonian in order to preserve rigorously unitarity
and causality [43,74]. While this does not impact too much
the homogeneous medium case considered by Huttner and
Barnett [17], it is crucial to analyze further the inhomogeneous
medium problem in order to give a rigorous foundation to the
Gruner and Welsch theory [34] based on fluctuating currents.
This is the central issue tackled in this work.

The layout of this paper is as follows: In Sec. II, we
review the Lagrangian method developed in our previous work
[75] based on an alternative dual formalism for describing
the Huttner-Barnett model. In this section, we summarize
the essential elements of the general Lagrangian and Hamil-
tonian models necessary for this study. In particular, we
present the fundamental issue about the correct definition
of Hamiltonian which will be discussed at length in this
article. In Sec. III, we provide a quantitative discussion
of the Huttner-Barnett model for a homogeneous dielectric
medium. We discuss a modal expansion into plane waves
and separate explicitly the electromagnetic field into classical
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eigenmodes and noise-related Langevin modes. We show that
both contributions are necessary for preserving unitarity and
time symmetry. We consider limit cases such as the ideal
Hopfield-Fano polaritons [23,24] without dissipation and the
weakly dissipative polariton modes considered by Milonni
and others [6–9]. We discuss the physical interpretation of
the Hamiltonian of the whole system and interpret the various
contributions with respect to the Langevin-noise method and to
the lossless Hopfield-Fano limit. In Sec. IV, we generalize our
analysis to the inhomogeneous medium case by using a Green
dyadic formalism in both the frequency and time domains. We
demonstrate that in general it is necessary to keep both pure
photonic and material fluctuations to preserve the unitarity and
time symmetry of the quantum evolution. We conclude with a
discussion about the physical meaning of the Hamiltonian in
presence of inhomogeneities and interpret the various terms
associated with photonic and material modes.

II. HUTTNER-BARNETT MODEL AND THE DUAL
LAGRANGIAN FORMALISM

In Ref. [75] we developed a Lagrangian formalism adapted
to QED in dielectric media without magnetic properties. Here,
we will use this model to derive our approach, but a standard
treatment based on the minimal coupling scheme [76] or
the Power-Zienau [77] transformation would lead to similar
results. We start with the dual Lagrangian density:

L = B2 − D2

2
+ F · ∇ × P − P2

2
+ LM, (2.1)

where B(x,t) and D(x,t) are the magnetic and displacement
fields, respectively. In this formalism, the usual magnetic
potential A, defined such as B = ∇ × A, is replaced by the dual
electric potential F [in the “Coulomb” gauge ∇ · F(x,t) = 0]
defined by

B(x,t) = 1

c
∂tF(x,t), D(x,t) = ∇ × F(x,t), (2.2)

implying

∇ × B(x,t) = 1

c
∂tD(x,t), ∇ · D(x,t) = 0. (2.3)

The material part LM of the Lagrangian density in Eq. (2.1)
reads as

LM =
∫ +∞

0
dω

(∂tXω)2 − ω2X2
ω

2
(2.4)

with Xω(x,t) the material oscillator fields describing the
Huttner-Barnett bath coupled to the electromagnetic field. The
coupling depends on the polarization density which is defined
by

P(x,t) =
∫ +∞

0
dω

√
2σω(x)

π
Xω(x,t), (2.5)

where the coupling function σω(x) � 0 defines the conductiv-
ity of the medium at the harmonic pulsation ω. From Eq. (2.1)
and Euler-Lagrange equations we deduce the dynamical laws
for the electromagnetic field

∇ × E(x,t) = −1

c
∂tB(x,t), ∇ · B(x,t) = 0 (2.6)

with the electric field E(x,t) = D(x,t) − P(x,t). Similarly for
the material oscillators we have

∂2
t Xω(x,t) + ω2Xω(x,t) =

√
2σω(x)

π
E(x,t). (2.7)

We point out that the Lagrangian density in Eq. (2.1) includes
a term −P2

2 which is necessary for the derivation of the
dynamical laws for the material fields Xω [75]. Furthermore,
to complete the QED canonical quantization procedure of the
material field we introduce the lowering fω(x,t) and rising
f†ω(x,t) operators for the bosonic material field from the relation
fω(x,t) = i∂t Xω(x,t)+ωXω(x,t)√

2h̄ω
. As explained in Ref. [75] by using

the equal-time commutation relations between the canonical
variables Xω(x,t) and ∂tXω(x,t), we deduce the fundamental
rules

[fω(x,t),f†ω′(x′,t)] = δ(ω − ω′)δ3(x − x′)I (2.8)

(with I = x̂ ⊗ x̂ + ŷ ⊗ ŷ + ẑ ⊗ ẑ the unit dyad) and
[fω(x,t),fω′(x′,t)] = [f†ω(x,t),f†ω′(x′,t)] = 0 allowing a clear
interpretation of fω(x,t) and f†ω(x,t) as lowering and rising
operators for the bosonic states associated with the matter
oscillators.

Moreover, Eqs. (2.5) and (2.7) can be formally integrated,
leading to

P(x,t) = P(0)(x,t) +
∫ t−t0

0
χ (x,τ )dτ E(x,t − τ ), (2.9)

where t0 is an initial time and where P(0)(x,t) is a fluctuating
dipole density distribution defined by

P(0)(x,t) =
∫ +∞

0
dω

√
2σω(x)

π
X(0)

ω (x,t)

=
∫ +∞

0
dω

√
h̄σω(x)

πω

[
f(0)
ω (x,t) + f†(0)

ω (x,t)
]
(2.10)

with X(0)
ω (x,t) = cos [ω(t − t0)]Xω(x,t0) + sin [ω(t − t0)]∂t

Xω(x,t0)/ω and where by definition f(0)
ω (x,t) =

fω(x,t0)e−iω(t−t0). We therefore have

D(x,t) = E(x,t) + P(x,t)

= P(0)(x,t) + E(x,t) +
∫ t−t0

0
dτ χ (x,τ )E(x,t − τ ),

(2.11)

which is reminiscent of the general linear response theory
used in thermodynamics [78]. We point out that the term∫ t−t0

0 χ (x,τ )dτ E(x,t − τ ) can be seen as an induced dipole
density. However, as we will show in the next section,
the electric field itself is decomposed into a purely fluc-
tuating term E(0)(x,t) and a scattered field E(s)(x,t) which
depends on the density P(0). Therefore, the contribution∫ t−t0

0 χ (x,τ )dτ E(x,t − τ ) to P is also decomposed into a pure
photon-fluctuation term

∫ t−t0
0 χ (x,τ )dτ E(0)(x,t − τ ) and an

induced term
∫ t−t0

0 χ (x,τ )dτ E(s)(x,t − τ ) related to material
fluctuations P(0).

023831-2



QUANTIZING POLARITONS IN INHOMOGENEOUS . . . PHYSICAL REVIEW A 95, 023831 (2017)

Importantly, the linear susceptibility χ (x,τ ) which is
defined by

χ (x,τ ) =
∫ +∞

0
dω

2σω(x)

π

sin ωτ

ω
	(τ ) (2.12)

characterizes completely the dispersive and dissipative dielec-
tric medium. We can show that the permittivity ε̃(x,ω) =
1 + ∫ +∞

0 dτ χ (x,τ )eiωτ is an analytical function in the upper
part of the complex plane ω = ω′ + iω′′, i.e., ω′′ > 0, provided
χ (x,τ ) is finite for any time τ � 0. From this we deduce
the symmetry ε̃(x, − ω)∗ = ε̃(x,ω∗) and it is possible to
derive the general Kramers-Krönig relations existing between
the real part Re[̃ε(x,ω)] ≡ ε̃′(x,ω) and the imaginary part
Im[̃ε(x,ω)] ≡ ε̃′′(x,ω) of the dielectric permittivity. Therefore,
the Huttner-Barnett model characterized by the conductivity
σω(x) is fully causal and can be applied to describe any
inhomogeneous dielectric media in the linear regime.

The central issue of this paper concerns the definition of the
Hamiltonian H (t) in the Huttner-Barnett model. We remind
that in Ref. [75] we derived the result

H (t) =
∫

d3x
: B2 + E2 :

2
+ HM (2.13)

with HM (t) = ∫
d3x

∫ +∞
0 dω

:(∂t Xω)2+ω2X2
ω :

2 where : [. . .] :
means, as usually, a normally ordered product for removing the
infinite zero-point energy. Inserting the definition for fω(x,t)
obtained earlier we get for the material part

HM (t) =
∫

d3x
∫ +∞

0
dωh̄ωf†ω(x,t)fω(x,t), (2.14)

which has the standard structure for oscillators (i.e., without
the infinite zero-point energy).

However, Huttner and Barnett [17] after diagonalizing their
Hamiltonian found that the total evolution is described in the
homogeneous medium case by

H
(0)
M (t) =

∫
d3x

∫ +∞

0
dωh̄ωf†(0)

ω (x,t)f(0)
ω (x,t). (2.15)

While as we will see this is actually a correct description
“for all practical purposes” in a homogeneous dissipative
medium for large class of physical boundary conditions,
this is in general not acceptable in order to preserve time
symmetry and unitarity in the full Hilbert space for interacting
matter and light. The general method based on Langevin forces
and noises avoided quite generally mentioning that difficult
point. We emphasize that while the conclusions presented
in Refs. [33–35] are accepted by more or less all authors
on the subject [51–59,61–69], there have been some few
dissident views (see Refs. [79,80]) claiming that in the context
of an input-output formalism, the Langevin-noise formalism
is not complete unless we consider as well fluctuations of
the free-photon modes (see also the replies with an opposite
perspective in Refs. [81,82]). In this work, we will generalize
and give a rigorous QED-like Hamiltonian foundation to the
prescriptions of Refs. [79,80] and we will show that it is
actually necessary to include a full description of photonic and
material quantum excitations in order to preserve unitarity. In
order to appreciate this fact further, we will first consider the

problem associated with quantization of the electromagnetic
field.

III. QUANTIZATION OF ELECTROMAGNETIC WAVES
IN A HOMOGENEOUS DIELECTRIC MEDIUM

A. General modal expansion

We first introduce the paradigmatic homogeneous medium
case considered initially by Huttner and Barnett [17], i.e., with
χ (x,τ ) = χ (τ ). We start with Faraday’s law ∇ × E(x,t) =
− 1

c
∂tB(x,t) rewritten according to Eq. (2.11) as

∇ × D(x,t) = −1

c
∂tB(x,t) + ∇ × P(0)(x,t)

− 1

c

∫ t−t0

0
dτ χ (τ )∂t−τ B(x,t − τ ). (3.1)

Inserting Eq. (2.3) and using the Coulomb (transverse) gauge
condition we get

1

c2
∂2
t F(x,t) − ∇2F(x,t) − ∇ × P(0)(x,t)

+ 1

c2

∫ t−t0

0
dτ χ (τ )∂2

t−τ F(x,t − τ ) = 0. (3.2)

We use the modal expansion method developed in Ref. [75]
and write

F(x,t) =
∑
α,j

qα,j (t)ε̂α,j�α(x) (3.3)

with α a generic label for the wave vector kα,�α(x) =
eikα ·x/

√
V (here we consider as it is usually done the periodical

“box” Born–von Karman expansion in the rectangular box of
volume V ), j = 1 or 2, labels the two transverse polarization
states with unit vectors ε̂α,1 = kα × ẑ/|kα × ẑ| and ε̂α,2 =
k̂α × ε̂α,1 (conventions and details are given in Appendix A
of Ref. [75]). Inserting Eq. (3.3) into Eq. (3.2), we obtain the
dynamical equation

q̈α,j (t) +
∫ t−t0

0
dτ χ (τ )q̈α,j (t − τ ) + ω2

αqα,j (t) = S
(0)
α,j (t)

(3.4)

with the time-dependent source term

S
(0)
α,j (t) = c2

∫
d3x ∇ × P(0)(x,t) · ε̂α,j�

∗
α(x). (3.5)

To solve this equation, we use the Laplace transform of the
fields which is defined below.

We are interested in the evolution for t � t0 of a field
A(t) for which Fourier transform is not necessarily well
mathematically defined since the field is not going to zero
fast enough for t → +∞ (e.g., a fluctuating current or
field). The method followed here is to consider the forward
Laplace transform of the different evolution equations (such an
approach was also used by Suttorp by mixing both forward and
backward Laplace transforms [27]). To deal with this problem,
we first change the time t variable in t ′ = t − t0 and define
A′(t ′) = A(t). We define the (forward) Laplace transform of
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A′(t ′) as

A′(p) =
∫ +∞

0
dt ′e−pt ′A′(t ′) =

∫ +∞

t0

dt e−p(t−t0)A(t)

(3.6)

with p = γ − iω (ω a real number and γ � 0). The
presence of the term e−γ t ′ ensures the convergence. We
will not here introduce the backward Laplace transform∫ t0
−∞ dt e+p(t−t0)A(t) = ∫ +∞

−t0
du e−p(u+t0)A(−u) since the time

t0 is arbitrary and can be sent into the remote past if needed.
As it is well known, the (forward) Laplace transform is

connected to the usual Fourier transform since we have

A′(γ − iω) = 2πÃ(ω)e−iωt0 , (3.7)

where Ã(ω) = ∫ +∞
−∞

dt
2π

A(t)eiωt is the Fourier transform of
A(t) = A(t)	(t − t0)e−γ (t−t0) with respect to t .

Now, for the specific problem considered here we obtain
the separation qα,j (t) = q

(s)
α,j (t) + q

(0)
α,j (t). The (0) contribution

corresponds to what classically we call a sum of eigenmodes
supported by the medium (i.e., with P(0) = 0) while the (s)
term is the fluctuating field generated by the Langevin source
P(0)(t). More explicitly, we have for the source term

q
(s)
α,j (t) =

∫ t−t0

0
dτ Hα(τ )S(0)

α,j (t − τ ), (3.8)

where we use Eq. (3.5). The propagator function Hα(τ ) is
expressed as a Bromwich contour:

Hα(τ ) =
∫ γ+i∞

γ−i∞

idp

2π

epτ

ω2
α + [1 + χ̄ (p)]p2

, (3.9)

where χ̄ (p) is defined as χ(x,p) = ∫ +∞
0 dτ e−pτχ (x,τ ). We

remind that a Bromwich integral by definition will vanish for
τ < 0 so that on the left side we actually mean θ (τ )Hα(τ ).

The function Hα(τ ) has some remarkable properties which
should be emphasized here. We first introduce the “zeros”
of ω2

α − ε̃(ω)ω2, i.e., the set of roots �(±)
α,m solutions of

�(±)
α,m

√
ε̃(�(±)

α,m) ± ωα = 0. From the causal properties of ε̃

we have ε̃(−ω∗) = ε̃(ω)∗ and therefore we deduce �(±)
α,m

∗ =
−�(∓)

α,m implying that the “+” and “−” roots are not inde-
pendent. The important fact is that the roots are located in the
lower complex plane associated with a negative imaginary part
of the frequency [17] (this is proven in Appendix A). Now, as
shown in Appendix B the integral in Eq. (3.9) can be computed
by contour integration in the complex plane after closing the
contour with a semicircle in the lower plane and using the
Cauchy residue theorem. We get

Hα(τ ) =
∑
m

−1

2iωα

e−i�
(−)
α,mτ

∂[ω
√

ε̃(ω)]
∂ω

∣∣
�

(−)
α,m

+ c.c. (3.10)

We also get Hα(τ ) = 0 for τ � 0 (after integration in the upper
plane and considering in detail the case τ = 0). Clearly, the
function Hα(τ ) is here expanded into a sum of modes which
define the polaritons of the problem (this is shown explicitly in
the next subsection). Here, the normal-mode frequency �(−)

α,m

consists of complex numbers ensuring the damped nature of
the waves in the future direction. We emphasize that in our

knowledge this kind of formula has never been discussed
before. The expansion in Eq. (3.10) is, however, rigorous and
generalizes the quasimodal approximations used in the weak
dissipation regime and discussed in Sec. III F.

Similarly, the source-free term q
(0)
α,j (t) reads as

q
(0)
α,j (t) = Uα(t − t0)q̇α,j (t0) + U̇α(t − t0)qα,j (t0) (3.11)

with the new propagator function

Uα(τ ) =
∫ γ+i∞

γ−i∞

idp

2π

[1 + χ̄ (p)]epτ

ω2
α + [1 + χ̄(p)]p2

=
∑
m

−ε̃(�(−)
α,m)

2iωα

e−i�
(−)
α,mτ

∂[ω
√

ε̃(ω)]
∂ω

∣∣
�

(−)
α,m

+ c.c. (3.12)

Like for Hα we get Uα(τ ) = 0 for τ � 0. Additionally, the
boundary condition at t = t0 [i.e., q

(0)
α,j (t0) = qα,j (t0)] imposes

d
dτ

Uα(τ )|τ=0 = 1 (see Appendix B).

B. Classical eigenmodes

The electromagnetic field can be calculated using the
expansion (3.8) or (3.11). First, the mathematical and physical
structure of the free field is seen by using the modal expansion

F(0)(x,t) =
∑
α,j

[Uα(t − t0)q̇α,j (t0)

+ U̇α(t − t0)qα,j (t0)]ε̂α,j�α(x)

=
∑
α,j,m

−ε̃(�(−)
α,m)

2iωα

e−i�
(−)
α,m(t−t0)

∂[ω
√

ε̃(ω)]
∂ω

∣∣
�

(−)
α,m

[q̇α,j (t0)

− i�(−)
α,mqα,j (t0)]ε̂α,j�α(x) + H.c., (3.13)

where we used the symmetries of the modal expansion [83]
together with �(−)

α,m = �
(−)
−α,m. From this we directly obtain

D(0)(x,t) = i
∑
α,j

ωα

c
[Uα(t − t0)q̇α,j (t0)

+ U̇α(t − t0)qα,j (t0)]k̂α × ε̂α,j�α(x)

=
∑
α,j,m

−ε̃(�(−)
α,m)

2c

e−i�
(−)
α,m(t−t0)

∂[ω
√

ε̃(ω)]
∂ω

∣∣
�

(−)
α,m

[q̇α,j (t0)

− i�(−)
α,mqα,j (t0)]k̂α × ε̂α,j�α(x) + H.c. (3.14)

and similarly for the magnetic field

B(0)(x,t) = 1

c

∑
α,j

[U̇α(t − t0)q̇α,j (t0)

+ Üα(t − t0)qα,j (t0)]ε̂α,j�α(x)

=
∑
α,j,m

�(−)
α,mε̃(�(−)

α,m)

2cωα

e−i�
(−)
α,m(t−t0)

∂[ω
√

ε̃(ω)]
∂ω

∣∣
�

(−)
α,m

[q̇α,j (t0)

− i�(−)
α,mqα,j (t0)]ε̂α,j�α(x) + H.c. (3.15)

The (transverse) electric field associated with these free
solutions can also be obtained from the definition
D(0)(x,t) = E(0)(x,t) + ∫ t−t0

0 dτ χ (τ )E(0)(x,t − τ ). We have
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thus D′(0)
(x,p) = [1 + χ̄ (p)]E′(0)

(x,p) and considering the
Laplace transform in Eqs. (3.11) and (B4) we can express
the electric field as a function of Hα(τ ), i.e.,

E(0)(x,t) = i
∑
α,j

ωα

c
[Hα(t − t0)q̇α,j (t0)

+ Ḣα(t − t0)qα,j (t0)]k̂α × ε̂α,j�α(x)

=
∑
α,j,m

−1

2c

e−i�
(−)
α,m(t−t0)

∂[ω
√

ε̃(ω)]
∂ω

∣∣
�

(−)
α,m

[q̇α,j (t0)

− i�(−)
α,mqα,j (t0)]k̂α × ε̂α,j�α(x) + H.c. (3.16)

From Eqs. (3.15) and (3.16) we see that ∇ × E(0)(x,t) =
−∂tB(0)(x,t)/c in agreement with Maxwell’s equation for a
free field (the other Maxwell’s equations are also automatically
fulfilled by definition).

Importantly, in the vacuum case where χ (τ ) → 0 we have
�(−)

α,m → ωα and we find that the vacuum fields are given by

F(v)(x,t) =
∑
α,j

ic

√
h̄

2ωα

c
(v)
α,j (t)ε̂α,j�α(x) + H.c.,

D(v)(x,t) =
∑
α,j

−
√

h̄ωα

2
c

(v)
α,j (t)k̂α × ε̂α,j�α(x) + H.c.,

B(v)(x,t) =
∑
α,j

√
h̄ωα

2
c

(v)
α,j (t)ε̂α,j�α(x) + H.c. (3.17)

with c
(v)
α,j (t) = cα,j (t0)e−iωα (t−t0) as expected. In the general

case, however, causality imposes that the imaginary part of
�(−)

α,m is negative. Therefore, the optical modes labeled by α, j ,
and m are damped in time [the only exception being of course
the vacuum case where the only contribution to the field arises
from the source-free term (0) since the (s) terms vanishes
together with P(0)]. As a consequence, if t − t0 → +∞, the
free terms vanish asymptotically. In particular, if t0 → −∞
(corresponding to initial conditions fixed in the infinite remote
past), we can omit for all practical purposes the contribution
of F(0), D(0), and B(0) to the field observed at any finite
time t (unless we are in the vacuum). This is indeed what
was implicitly done by Huttner and Barnet [17] and Gruner
and Welsch [34] and that is why for all calculational needs
they completely omitted the discussion of the F(0), D(0), and
B(0) fields. However, for preserving the unitarity of the full
evolution one must necessarily include both (0) and (s) terms.
While this problem is apparently only technical, we will see
in the following its importance for inhomogeneous systems.

C. Fluctuating Langevin modes

The previous discussion concerning the omission of the
(0) source-free terms is very important since it explains
the mechanism at work in the Huttner-Barnet model [17].
To clarify that point further, we now express the scattered
field (s) using a Green tensor formalism (in Appendix C
we introduce alternative descriptions based on vectorial and
scalar potentials). We first observe that from D(s)(x,t) =

∇ × F(s)(x,t) we obtain after integration by parts

D(s)(x,t) =
∫ γ+i∞

γ−i∞

idp

2π

∫
d3x′Sχ (x,x′,ip)

· P′(0)
(x′,p)ep(t−t0) (3.18)

with the dyadic propagator [33,34,37,38]

Sχ (x,x′,ip) =
∑
α,j

ω2
α�α(x)�∗

α(x′)ε̂α,j ⊗ ε̂α,j

ω2
α + [1 + χ̄(p)]p2

. (3.19)

The meaning of the tensor Sχ (x,x′,ip), which depends on
χ , becomes more clear if we introduce the Green tensor
Gχ (x,x′,ip) solution of

∇ × ∇ × Gχ (x,x′,ip) + p2

c2
[1 + χ̄(p)]Gχ (x,x′,ip)

= Iδ3(x − x′) = δ(x − x′). (3.20)

We observe that if we separate the tensor into a transverse
and longitudinal part, we get Gχ (x,x′,ip) = Gχ,⊥(x,x′,ip) +
Gχ,‖(x,x′,ip) with for the transverse dyadic Green function

Gχ,⊥(x,x′,ip) =
∑
α,j

c2�α(x)�∗
α(x′)ε̂α,j ⊗ ε̂α,j

ω2
α + [1 + χ̄(p)]p2

(3.21)

and for the longitudinal part

p2

c2
[1 + χ̄(p)]Gχ,‖(x,x′,ip) = δ‖(x − x′) (3.22)

with the unit longitudinal dyadic distribution δ‖(x − x′) =∑
α k̂α ⊗ k̂α�∗

α(x′)�α(x). We have also the important relations
between the tensors Sχ (x,x′,ip) and Gχ (x,x′,ip):

Sχ (x,x′,ip) = −p2

c2
[1 + χ̄ (p)]Gχ,⊥(x,x′,ip) + δ⊥(x − x′)

= −p2

c2
[1 + χ̄ (p)]Gχ (x,x′,ip) + δ(x − x′)

= ∇ × ∇ × Gχ (x,x′,ip). (3.23)

Now, if we write D′(x,p) = E′(x,p) + P′(x,p) =
[1 + χ̄(p)]E′(x,p) + P′(0)

(x,p) and introduce the relation

E′(x,p) = E′(0)
(x,p) + E′(s)

(x,p) with E′(0)
(x,p) the free

mode given by Eq. (3.16) and E′(s)
(x,p) the source field,

induced by P′(0)
(x′,p), which is given by

E′(s)
(x,p) = −

∫
d3x′ p

2

c2
Gχ (x,x′,ip) · P′(0)

(x′,p), (3.24)

we get D′(s)
(x,p) = [1 + χ̄ (p)]E′(s)

(x,p) + P′(0)
(x,p), i.e.,

Eq. (3.18) as it could be checked directly after comparing
Eq. (3.19) with Eqs. (3.21) and (3.22). Other important
relations between the dyadic formalism and scalar Green
function are given in Appendix D.

Importantly, we can write all scattered fields as a function of
the rising and lowering operators f†(0)

ω (x,t), f(0)
ω (x,t). In order

to give explicit expressions, we use the Fourier transform
notations (i.e., with p = γ − iω with γ → 0+) and the
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relation [75]

P̃(0)(x,ω) =
∫ +∞

0
dω′

√
h̄σω′(x)

πω′
[
f(0)
ω′ (x,t0)eiω′t0δ(ω − ω′)

+ f†(0)
ω′ (x,t0)e−iω′t0δ(ω + ω′)

]
. (3.25)

We obtain

D(s)(x,t) =
∑
α,j

∫ +∞

0
dω

ω2
α�α(x)ε̂α,j

ω2
α − ε̃(ω)ω2

√
h̄σω

πω
f

(0)
ω,α,j (t) + H.c.,

(3.26)

E(s)
⊥ (x,t) =

∑
α,j

∫ +∞

0
dω

ω2�α(x)ε̂α,j

ω2
α − ε̃(ω)ω2

√
h̄σω

πω
f

(0)
ω,α,j (t) + H.c.,

(3.27)

where f
(0)
ω,α,j (t) is a lowering operator associated with the

transverse fluctuating field and defined as

f
(0)
ω,α,j (t) =

∫
d3x′�∗

α(x′)ε̂α,j · f(0)
ω (x,t) (3.28)

such that from Eq. (2.8) we get the mode commutator[
f

(0)
ω,α,j (t),f †(0)

ω′,β,k(t)
] = δα,βδj,kδ(ω − ω′) (3.29)

and the harmonic time evolution f
(0)
ω,α,j (t) =

f
(0)
ω,α,j (t0)e−iωα (t−t0) if we impose the initial condition

f
(0)
ω,α,j (t0) = fω,α,j (t0) = ∫

d3x′�∗
α(x′)ε̂α,j · fω(x,t0).

For the longitudinal electric field we deduce from

Eqs. (3.22) and (3.24) E′(s)
‖ (x,p) = − P′ (0)

‖ (x,p)
[1+χ̄ (p)] [in agreement

with the definition D′‖(x,p) = 0] and, therefore,

E(s)
‖ (x,t) = −

∑
α

∫ +∞

0
dω

�α(x)k̂α

ε̃(ω)

√
h̄σω

πω
f

(0)
ω,α,‖(t) + H.c.

(3.30)

We have f
(0)
ω,α,‖(t) = ∫

d3x′�∗
α(x′)k̂α · f(0)

ω (x,t) and the com-

mutator [f (0)
ω,α,‖(t),f †(0)

ω′,β,‖(t)] = δα,βδj,kδ(ω − ω′) and the time

evolution f
(0)
ω,α,‖(t) = f

(0)
ω,α,‖(t0)e−iωα (t−t0) with similar initial

condition as for the transverse field. Regrouping these defini-
tions we have obviously

f(0)
ω (x,t) =

∑
α

k̂α�α(x)f (0)
ω,α,‖(t) +

∑
α,j

ε̂α,j�α(x)f (0)
ω,α,j (t).

(3.31)

Furthermore, we can easily show that we have also

B′(s)
(x,p) = ∫

d3x′ p

c
∇ × Gχ (x,x′,ip) · P′(0)

(x′,p) leading to

B(s)(x,t) =
∑
α,j

∫ +∞

0
dω

ωckα × ε̂α,j�α(x)

ω2
α − ε̃(ω)ω2

×
√

h̄σω

πω
f

(0)
ω,α,j (t) + H.c. (3.32)

The description of the scattered field (s) given here corresponds
exactly to what Huttner and Barnett [17] called the quantized
field obtained after generalizing the diagonalization procedure

of Fano and Hopfield [23,24]. Here, we justify these modes
by using the Laplace transform method and by taking the
limit t0 → −∞ explicitly. This means that we neglect the
contribution of the (0) transverse field which is infinitely
damped at time t . Importantly, P(0)(x,t) does not vanish since
the time evolution of f(0)

ω (x,t) in Eq. (2.10) is harmonic.

D. A discussion on causality and time symmetry

It is important to further comment about causality and on the
structure of the total field as a sum of (0) and (s) modes. The (0)
(classical polariton) modes are indeed exponentially damped
in the future direction meaning that a privileged temporal
direction apparently holds in this model. This would mean
that we somehow break the time symmetry of the problem.
However, since the evolution equations are fundamentally
time symmetric, this should clearly not be possible. Similarly,
propagators such as Gχ (x,x′,ip) are also spatially damped
at large distance [see Eq. (C1)] since we have terms like

∼ eiω
√

ε̃(ω)|x−x′ |/c
4π |x−x′ | . This also seems to imply a privileged time

direction and would lead to a kind of paradox. However,
we should remind that only the sum (0) + (s) has a physical
meaning and this sum must preserve time symmetry. Indeed,
we remind that time reversal applied to electrodynamics
implies that if E(t), B(t), and Xω(t) are a solution of the
coupled set of equations given in Sec. II, then the time-
reversed solutions [84] ET (t) = E(−t), BT (t) = −B(−t), and
Xω,T (t) = Xω(−t) is also defining a solution of the same
equations [we have also FT (t) = F(−t) and PT (t) = P(−t)].
Now, considering the dipole density evolution we get from
Eq. (2.9) after some manipulations

PT (x,t) = P(0)
T (x,t) +

∫ 0

t+t0

χ (x, − τ )dτET (x,t − τ ),

(3.33)

where P(0)
T is defined as P(0) [see the definition (2.10)] but with

X(0)
ω (x,t) = cos [ω(t − t0)]Xω(x,t0) + sin [ω(t−t0)]

ω
∂tXω(x,t0)

replaced by X(0)
ω,T (x,t) = cos [ω(t + t0)]Xω,T (x, − t0) +

sin [ω(t+t0)]
ω

∂tXω,T (x, − t0). The presence of the time −t0
everywhere has a clear meaning. Indeed, from special
relativity choosing a time reference frame with t ′ = −t

(passive time-reversal transformation) implies that the causal
evolution of P defined for t � t0 will become an anticausal
evolution defined for t ′ � t ′0 = −t0. Going back to the active
time-reversal transformation (3.33) we see that the new linear
susceptibility χT (x,τ ) = χ (x, − τ ) is given by

χ (x, − τ ) = −
∫ +∞

0
dω

2σω(x)

π

sin ωτ

ω
	(−τ ) (3.34)

[	(−τ ) is explicitly written in order to empha-
size the anticausal structure]. However, since we
have χ̃T (ω) = ∫ +∞

−∞
dt
2π

eiωtχT (t) = ∫ +∞
−∞

dt
2π

eiωtχ (−t) and

χ (−t) = χ∗(−t) we have χ̃T (ω) = ∫ +∞
−∞

dt
2π

eiωtχ∗(−t) =∫ +∞
−∞

du
2π

e−iωuχ∗(u) = χ̃∗(ω). This means that the new per-
mittivity (with poles in the upper half complex frequency
space) is now associated with growing anticausal modes since
ε̃T

′′(ω) < 0. The (active) time-reversed evolution is defined
for t < −t0 so that we indeed get modes decaying into the
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past direction while growing into the future direction. This
becomes even more clear for the time-reversal evolution
of the electromagnetic field given by the separation in (0)
and (s) modes. The time reversal applied on the (0) field
such as E(0)

T (t) corresponding to classical polaritons is now
involving frequency −�(−)

α,m instead of �(−)
α,m. This leads to

reversed temporal evolution such as ei�
(−)
α,m(t+t0) and e−i�

(−)∗
α,m (t+t0)

associated with growing waves in the future direction (since
the new poles are now in the upper half complex frequency
space). More generally, we have shown (see Appendix C) that
the full evolution of either (0) or (s) fields is completely defined
by the knowledge of the Green function and propagators such
as

�χ (τ,|x − x′|) = c2
∑

α

Hα(τ )�∗
α(x′)�α(x) (3.35)

[see Eq. (C4)] with the causal function Hα(τ ) given by
the Bromwich-Fourier integral

∫ +∞
−∞

dω
2π

e−iωτ

ω2
α−ε̃(ω)ω2 . Now, like

for the susceptibility χT (t), time reversal leads to a new
propagator �χ,T (τ,|x − x′|) = �χ (−τ,|x − x′|) and therefore
by a reasoning equivalent to the previous one to

�χ,T (τ,|x − x′|) = c2
∑

α

H ∗
α (−τ )�∗

α(x′)�α(x) (3.36)

involving the complex conjugate H ∗
α (−τ ) with a Fourier ex-

pansion which again involves the anticausal permittivity ε̃∗(ω).
This naturally leads to growing waves in the future direction

and to Green function spatially growing as ∼ eiω
√

ε̃∗(ω)|x−x′ |/c
4π |x−x′ | .

The full equivalence between the two representations of the
total field (s) + (0) is completed if first we observe that
the initial conditions at t0 [i.e., Xω(t0), E(t0), etc.] are now
replaced by “final” boundary condition at tf = −t0 [i.e.,
Xω,T (−t0), ET (−t0), etc.]. Second, since the −t0 value is
arbitrary, we can send it into the remote future if we want
and we will have thus an evolution expressed in terms of
growing modes for all times t � tf . The value of the field
at such a boundary is of course arbitrary, so that if we want
the two representations can describe the same field if for the
final field at tf we take the field evolving from t0 using the
usual causal evolution from past to future. This equivalence is
of course reminiscent from the dual representations obtained
using either retarded or advanced waves [85–87]. Indeed, the
total electric field E can always be separated into Ein + Eret or
equivalently Eout + Eadv where ret and adv label the retarded
and advanced source fields, respectively, and in and out label
the homogeneous “free” fields coming from the past and from
the future, respectively. This implies that only a specific choice
of boundary conditions in the past or future can lead to a
completely causal evolution and, therefore, time symmetry
is not broken in the evolution equations but only through a
specification of the boundary conditions. In other words, in
agreement with the famous Loschmidt and Poincaré objections
to Boltzmann, strictly deriving time irreversibility from an
intrinsically time-reversible dynamics is obviously impossible
without additional postulates. This point was fully recognized
already by Boltzmann long ago and was the basis for his
statistical interpretation of the second law of thermodynamics
[87].

E. Fano-Hopfield diagonalization procedure

In order to further understand the implication of the
Huttner-Barnett model [17], we should discuss how the full
Hamiltonian finally reads in this formalism. This is central
since the Langevin-noise equations developed by Gruner
and Welsch [34] use only the H

(0)
M (t) Hamiltonian. In the

Huttner-Barnett model, the full dynamics is determined by
the complete knowledge of the dipole density P(0)(t) so that
the results of Gruner and Welsch [34] should be in principle
justifiable. However, if we are not careful, this will ultimately
break unitary and time symmetry. In order to understand
the physical mechanism at work, one should first clarify the
relation existing between the Huttner-Barnett model, using
P(0)(t) as a fundamental field, and the historical Hopfield-Fano
approach [23,24] for defining discrete polariton modes as
normal coordinate solutions of the full Hamiltonian.

We remind that the historical method for dealing with
polariton is indeed based on the pioneer work by Fano and
Hopfield [23,24] for diagonalizing the full Hamiltonian. The
procedure is actually reminiscent of the classical problem of
finding normal coordinates and normal (real-valued) eigenfre-
quencies associated with free vibrations of a system of linearly
coupled harmonic oscillators. The classical diagonalization
method [88] relies on the resolution of secular equations
already studied by Laplace. Actually, the first “semiclassical”
treatment made by Born and Huang [25] is mathematically
correct and equivalent to the one made later by Fano and
Hopfield even though the relation between those formalisms
is somehow hidden behind the mathematical symbols. The
full strategy for finding normal coordinates and frequencies
becomes clear if we use Fourier transforms of the various fields
for the problem under study. Indeed, a Fourier expansion of
a field component A(t) = ∫ +∞

−∞ d� Ã(�)e−i� will obviously
define the needed harmonic expansion. In the problems
considered by Born, Huang, Fano, and Hopfield, the Fourier
spectrum Ã(�) is a sum of Dirac distributions δ(� ∓ �n)
peaked on the real-valued eigenvibrations �n. This specific
situation needs a complete discussion since the Hopfield-
Fano model [23,24] leads to an exact diagonalization of the
full Hamiltonian H (t). This will in turn make clear some
fundamental relations with the Laplace transform formalism
used in the previous subsections.

We start with the Fourier transformed equations

∇ × ∇ × Ẽ(�) − �2

c2
Ẽ(�) = �2

c2
P̃(�), (3.37)

(ω2 − �2)X̃ω(�) =
√

2σω

π
Ẽ(�), (3.38)

and ∫ +∞

0
dω

√
2σω

π
X̃ω(�) = P̃(�). (3.39)

With the constraint Ẽ(�) = Ẽ(−�)∗, X̃ω(�) = X̃ω(−�)∗
coming from the real-valued nature of the fields. From
Eq. (3.38), we get using the properties of distributions

X̃ω(�) = P

[
1

ω2 − �2

]√
2σω

π
Ẽ(�) + X̃ω

(sym)
(�) (3.40)
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with

X̃ω
(sym)

(�) =
√

h̄

2ω

[
f (sym)

ω δ(ω − �) + f (sym)∗
ω δ(ω + �)

]
,

(3.41)

and where we used the reality constraint and introduced
constants of motions f

(sym)
ω , f

(sym)∗
ω which will become an-

nihilation and creation operators in the second quantized
formalism. The principal value can be conveniently written
in different ways [89], and this fact leads to two different
equivalent representations of Eq. (3.40):

X̃ω(�) = 1

ω2 − (� + i0+)2

√
2σω

π
Ẽ(�) + X̃ω

(in)
(�)

= 1

ω2 − (� − i0+)2

√
2σω

π
Ẽ(�) + X̃ω

(out)
(�),

(3.42)

where X̃ω
(in)

(�) and X̃ω
(out)

(�) can also be written

like Eq. (3.41), i.e., respectively as
√

h̄
2ω

[f (in)
ω δ(ω − �) +

f (in)∗
ω δ(ω + �)] or

√
h̄

2ω
[f (out)

ω δ(ω − �) + f (out)∗
ω δ(ω + �)].

This discussion is reminiscent of the different representation
given in Sec. III D involving retarded, advanced, or time-
symmetric modes. Of course, the usual causal representation
is (in) which is obtained from the definition of f (0)

ω (t) given in
Sec. III at the limit t0 → −∞. However, all the descriptions
are rigorously equivalent. It is also easy to show that we have

f
(sym)
ω = f (in)

ω +f (out)
ω

2 which justifies why we called this field
symmetrical. It corresponds to a representation of the problem
mixing boundary conditions in the future and the past in a
symmetrical way like it was used, for instance, by Feynman
and Wheeler in their description of electrodynamics [85] as
discussed in Sec. III D.

Now, after inserting the causal representation of Eq. (3.42)
in (3.39) and then into (E3) we get

∇ × ∇ × Ẽ(�) − �2

c2
ε̃(�)Ẽ(�) = �2

c2
P̃(in)(�) (3.43)

with P̃(in)(�) = ∫ +∞
0 dω

√
2σω

π
X̃ω

(in)
(�) and

ε̃(ω) = 1 +
∫ +∞

0
dτ χ (τ )eiωτ . (3.44)

This causal permittivity ε̃(�) being given by the Huttner-
Barnett model [17,75], the secular equations ω2

α = �2̃ε(�)
for transverse modes have no root in the upper complex
frequency half-plane and in particular on the real frequency
axis (the longitudinal term is discussed below). This means
that, unlike Eq. (3.40), Eq. (3.43) has in general no Dirac term
corresponding to independent eigenmodes. The electric field
is thus represented by a source term

Ẽ(x,�) = �2

c2

∫
d3x′Gχ (x,x′,�) · P̃(in)(x′,�) (3.45)

obtained like in the previous subsection using a causal
Green function. The absence of free normal modes for the
electric field is of course reminiscent from the rapid decay

of the free modes (0) when t0 → −∞ as discussed before.
The representation given here does not distinguish between
transverse and longitudinal fields but this should naturally
occur since we have the constraint ∇ · Ẽ(�) = −∇ · P̃(�)
which implies Ẽ‖(�) = −P̃‖(�). Together with Eq. (E3), we
thus get

Ẽ‖(�) = −P̃‖(�) = − P̃(in)
‖ (�)

ε̃(�)
. (3.46)

Equation (3.46) is actually reminiscent of the charge screening
by ε̃(�). Here, we used the fact that ε̃(�) has no root on the real
axis, otherwise, the imaginary part of the permittivity should
vanish and the medium would be lossless at the frequency �,
a fact which is prohibited by physical consideration about
irreversibility [90]. This reasoning is rigorously not valid
at � = 0 since the imaginary part of the permittivity is an
odd function on the real axis. But then in general to have
a root at � = 0 it would require that the real part of the
permittivity vanishes as well and this is not allowed from
the usual permittivity model [see Eq. (A5)] which makes
therefore this possibility very improbable.

The previous reasoning is clearly formally equivalent to the
ones obtained in the previous subsection, and in both cases the
field P̃(in)(x′,�) or P(0)(t) completely determines the electro-
magnetic evolution. Still, there are exceptions for instance

in the Drude-Lorentz model with ε̃(�) = 1 + ω2
p

ω2
0−(�+i0+)2

which forms the basis for the Hopfield [24] polariton model.
This model is rigorously not completely lossless since we

have ε̃(�) = 1 + P [
ω2

p

ω2
0−�2 ] + iπω2

p

2ω0
[δ(� − ω0) − δ(� + ω0)]

corresponding to a singular absorption peak.
Moreover, in this Hopfield model [24], which is a limit

case of the Huttner-Barnett model [17,91], we get the exact
evolution equation

∂2
t P + ω2

0P = ω2
pE (3.47)

which in the case of the longitudinal modes leads to solving
the secular equation (ω2

0 − �2)̃P‖(�) = −ω2
pP̃‖(�). It has the

solution

P̃‖(�) = βδ(� − ωL) + β∗δ(� + ωL), (3.48)

where ωL =
√

ω2
0 + ω2

p is the longitudinal plasmon fre-
quency. However, relating this result to Eq. (3.46) requires
careful calculations since ε̃(�) is here a highly singular
distribution. Indeed, applying Eq. (3.46) will lead to find
solutions of ε̃(�)̃P‖(�) = P̃(in)

‖ (�) with P̃(in)
‖ (�) = αδ(� −

ω0) + α∗δ(� + ω0) with α(x) a longitudinal vector field. This
singular (in) field at � = ±ω0 seems to imply that polaritons
are resonant at such frequency in contradiction with the result
leading to � = ±ωL for such polariton modes. Now, due
to the presence of absorption peaks at � = ±ω0 we have

near this singular point α = iπω2
p

2ω0
P̃‖(ω0) where P̃‖(ω0) is

supposed to be regular [92]. Moreover, outside this narrow
absorption band, the medium is effectively lossless and instead

of Eq. (3.46) we have (1 + ω2
p

ω2
0−�2 )̃P‖(�) = 0 which has

the singular solution P̃‖(�) = βδ(� − ωL) + β∗δ(� + ωL)
with β(x) a longitudinal vector field. Importantly, from the
hypothesis of regularity at ±ω0 we have P̃‖(ω0) = 0 and
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therefore α = 0 which means that P̃(in)
‖ (�) = 0 everywhere.

The Lorentz-Drude model leads therefore to genuine longitu-
dinal polariton eigenfrequencies ±ωL solutions of ε̃(ωL) = 0.
We emphasize that the same result could be obtained using

the Laplace transform method. We have indeed E′(s)
‖ (x,p) =

− P′ (0)
‖ (x,p)

1+ω2
p/(p2+ω2

0)
with P′(0)

‖ (x,p) = pP‖(x,t0)+∂t0 P‖(x,t0)

ω2
0+p2 . Therefore,

we can rewrite the longitudinal scattered field as E′(s)
‖ (x,p) =

−pP‖(x,t0)+∂t0 P‖(x,t0)

ω2
L+p2 . Moreover, since there is no longitudinal

(0) electric field and since P‖ = −E‖ we have P‖(t) =
cos [ωL(t − t0)]P‖(t0) + sin [ωL(t − t0)]∂t0 P‖(t0) which shows
that the genuine longitudinal polariton oscillates at the fre-
quency ωL as expected.

The transverse polariton modes of the Hopfield model are
obtained in a similar way from Eq. (3.43) with P̃(in)

⊥ (�) =
γ δ(� − ω0) + γ ∗δ(� + ω0) with γ (x) a transverse vector
field. As explained in Appendix G, solving the problem with
a plane-wave expansion labeled by α and j leads again
to a secular equation ω2

α − �α,±2̃ε(�α,±) = 0 for the two
transverse modes (±) giving a quartic dispersion relation

ω2
αω2

0 − �2
α,±
(
ω2

α + ω2
L

)+ �4
α,± = 0 (3.49)

with two usual Hopfield solutions

�± =

√
ω2

α + ω2
L ±

√(
ω2

α + ω2
L

)2 − 4ω2
αω2

0√
2

. (3.50)

The two-mode fields have now the structure

Ẽ(x,�) =
∑
α,j,±

Ẽα,j,±(�)ε̂α,j�α(x) (3.51)

with Ẽα,j,±(�) = φα,j,±δ(� − �α,±) + ηjφ
∗
−α,j,±δ(� +

�α,±) with φα,j,± an amplitude coefficient for the mode (see
Appendix E and [83] for a derivation).

One of the most important issues in the context of the
Hopfield model concerns the Hamiltonian. Indeed, in this
model the full Hamiltonian (2.13) H (t) = ∫

d3x B2+E2

2 + HM

reads as

H (t) =
∫

d3x
[

B2 + E2

2
+ (∂tP)2 + ω2

0P2

2ω2
p

]
. (3.52)

If we isolate first the longitudinal term we get

H‖(t) =
∫

d3x
[

P2
‖

2
+ (∂tP‖)2 + ω2

0P2
‖

2ω2
p

]

=
∫

d3x
[

(∂tP‖)2 + ω2
LP2

‖
2ω2

p

]
= 2

ω2
L

ω2
p

∫
d3x β∗β.

(3.53)

We can of course introduce a Fourier transform of the
dipole field as P‖ = ∑

α Pα(�)k̂α�α(x) and polariton field
amplitudes βα = ∫

d3x β(x) · k̂α�α(x). We thus have H‖(t) =
2ω2

L

ω2
p

∑
α β∗

αβα . This expression of the Hamiltonian is standard

for normal coordinates expansion in linearly coupled harmonic
oscillators.

Furthermore, using commutators like Eq. (2.8), one can
deduce [P(x,t),∂tP(x′,t)] = ih̄δ3(x′ − x)I and other similar
ones. In the Fourier space, we thus obtain [Pα(t),Ṗβ(t)] =
ih̄δα,β which leads after straightforward transformation to
the commutators [fα,‖(t),f †

β,‖(t)] = δα,β, [fα,‖(t),fβ,‖(t)] =
[f †

α,‖(t),f †
β,‖(t)] = 0 with βα = ωp

√
h̄

2ωL
fα,‖ [the time depen-

dence in the Heisenberg picture means f||,β(t) = f||,βe−iωLt ].
This naturally leads to the Hopfield-Fano Hamiltonian expan-
sion for longitudinal polaritons:

H‖(t) = h̄ωL

∑
α

f
†
α,‖(t)fα,‖(t). (3.54)

A similar analysis can be handled for the transverse
polariton modes, but the calculation is a bit longer (see
Appendix E). To summarize this calculation in few words:
Using a Fourier expansion of the different primary transverse
field operators in Eq. (3.52) we get after some manipulations
the Hopfield-Fano expansion [23,24]

H⊥(t) = 2
∑
α,j,±

[
1 + ω2

0

ω2
p

(
ω2

α

�2
α,±

− 1

)2]
φ
†
α,j,±φα,j,±

=
∑
α,j,±

h̄�α,±αf
†
α,j,±(t)fα,j±(t) (3.55)

with the operator fα,j,±(t) = fα,j,±e−i�α,±t obeying the usual
commutation rules for rising and lowering operators. Again,
this result is expected in a modal expansion using normal
coordinates and again the same result could be alternatively
obtained using the Laplace transform method. To summarize,
the approach developed previously using the Laplace trans-
form formalism agrees with the normal coordinate methods
based on the Fourier expansion in the frequency domain. Both
approaches lead to the conclusion that for a homogeneous
medium, the various electromagnetic and material fields
are completely determined by the knowledge of the matter
oscillating dipole density P(in)(t) (Fourier’s method) or P(0)(t)
(Laplace’s method). In the limit t0 → −∞, both approaches
are equivalent and there is no contribution of the free field
in a homogeneous dissipative medium (the residual E(0),
B(0) is exponentially damped in the regime t0 → −∞). We
also showed that if losses in the Huttner-Barnett model are
sharply confined in the frequency domain, we can find exact
polaritonic modes which agree with the historical method
developed by Fano and Hopfield [23,24]. These modes fully
diagonalize the Hamiltonian H (t). While we focused our study
on the particular Drude-Lorentz model, the result is actually
generalizable [93] to homogeneous media with conductivity

σ (�) = ∑
n

πω2
p,n

2 [δ(� − ω0,n) + δ(� + ω0,n)] which lead to
a permittivity

ε̃(�) = 1 +
∑

n

P

[
ω2

p,n

ω2
0,n − �2

]
+ i

σ (�)

�
. (3.56)

In particular, the Hamiltonian can in these special cases
be written as a sum of harmonic oscillator terms cor-
responding to the different longitudinal and transversal
polariton modes. We thus write H‖ = ∑

m,α h̄�α,mf
†
α,m,‖fα,m,‖

and H⊥ = ∑
m′,α,j h̄�′

α,m′f
†
α,j,m′fα,j,m′ where m and m′ label
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the discrete longitudinal and transverse polariton modes.
However, for a more general Huttner-Barnett model where the
permittivity is only constrained by Kramers-Kronig relations,
such a simple interpretation is not possible and the Hamiltonian
is not fully diagonalized. The additional physical requirement
[90] imposing that the imaginary part of the permittivity should
be rigorously positive valued, i.e., ε̃′′(�) > 0, also prohibits
these exceptional cases which should therefore only appear as
ideal limits with loss confined in infinitely narrow absorption
bands. However, as we will show in the next subsection, the
lossless idealization represents a good approximation for a
quite general class of medium with weak dissipation. The
previous results of Hopfield and Fano have still a physical
meaning and are, for example, used with success for the
description of planar cavity polaritons [30,94–99].

F. Approximately transparent medium case:
Milonni’s approach

It is particularly relevant to consider what happens in the
Huttner-Barnett approach if we relax a bit the demanding
constraints of the original Hopfield-Fano model based on
Eq. (3.56). For this we consider a medium with low loss such
as the medium can be considered with a good approximation
as transparent in a given spectral band where the field is
supposed to be limited. This approach was introduced by
Milonni [7] and is based on the Hamiltonian obtained long ago
by Brillouin [100] and later by Landau and Lifschitz [40,44,90]
for dispersive but slowly absorbing media. The main idea is
to replace the electromagnetic energy density (E2 + B2)/2
in the full Hamiltonian by a term like [ dωcε̃(ωc)

dωc
E2 + B2]/2

where ε̃(ωc) is the approximately real-valued permittivity of
the field at the central pulsation ωc with which the wave
packet propagates. Since this approach has been successfully
applied to quantize polaritons [6,8,9,44] or surface plasmons
[101,102], it is particularly interesting to justify it in the context
of the more rigorous Huttner-Barnett approach developed here.
In the mean time, this will justify the use of Hopfield-Fano
approach as an effective method applicable for the low-
loss regime which is a good assumption in most dielectric
(excluding metals supporting lossy plasmon modes).

From Poynting’s theorem, it is usual in macroscopic
electromagnetism to isolate the work density We = E · ∂tD
such as the energy conservation reads as

∂tu = We + ∂t

(
B2

2

)
= −∇ · (cE × B). (3.57)

By direct integration we thus get the usual formula for the time
derivative of the total energy H (t) = ∫

d3x u(x,t) such as

d

dt
H (t) = d

dt

(∫
d3x

B2

2

)
+
∫

d3x E · ∂tD

= d

dt

(∫
d3x

B2

2

)
+
∫

d3x E⊥ · ∂tD (3.58)

which cancels if the fields decay sufficiently at spatial infinity
(assumption which will be done in the following) as it can be
proven after using the Poynting vector divergence and Stokes
theorem. We now consider a temporal integration window δt

to compute the average derivative∫
δt

dt ′
∫

d3x E⊥(t ′) · ∂tD(t ′)
δt

+ δ

δt

(∫
d3x

B2

2

)

 0,

(3.59)

where δ
∫

d3x B2

2 means the magnetic energy variation during

the time δt and
∫
δt

dt ′[. . .] = ∫ t+δt

t
dt ′[. . .] is an integration

domain from an initial time t to a final time t + δt . The next
step is to Fourier expand the field in the frequency domain
and we write E⊥ = E(+)

⊥ + E(−)
⊥ where the positive frequency

part of the field is defined as E(+)
⊥ (t) = ∫ +∞

0 dω Ẽ⊥(ω)e−iωt

{the negative frequency part is then E(−)
⊥ (t) = [E(+)

⊥ (t)]†}.
We use similar notation for the displacement field and we
introduce the Fourier field D̃(ω). In order to achieve the
integration (3.59), the temporal window will be supposed
sufficiently large compared to the typical period 2π/ωc of the
light pulse. This allows us to simplify the calculation and most
contributions cancel out during the integration [44,90,100].
Additionally, to perform the calculation we assume that we
have D̃(ω) = ε̃(ω)Ẽ⊥(ω). This is a usual formula in classical
physics where the term P(0) is supposed equal to zero, but here
we are dealing with a quantized theory and we can not omit
this term. Furthermore, we showed that in the Huttner-Barnett
model when t0 → −∞ only the (s) contributions discussed
in Sec. III C remain [17]. Assuming therefore this regime, the
transverse fields D(s) and E(s) are fully expressed as a function
of operators f

(0)
ω,α,j (t). Equations (3.26) and (3.27) allow us to

define the Fourier fields

D̃(s)(x,ω) =
∑
α,j

ω2
α�α(x)ε̂α,j

ω2
α − ε̃(ω)ω2

√
h̄σω

πω
f

(0)
ω,α,j (t0)eiωαt0 ,

(3.60)

Ẽ(s)
⊥ (x,ω) =

∑
α,j

ω2�α(x)ε̂α,j

ω2
α − ε̃(ω)ω2

√
h̄σω

πω
f

(0)
ω,α,j (t0)eiωαt0

(3.61)

for ω > 0. [For ω < 0 we have D̃(s)(x,ω) = D̃(s)†(x, − ω)
where D̃(s)(x, − ω) is given by Eq. (3.60) at the positive
frequency −ω. Similar symmetries and properties hold for
the electric and magnetic fields.] We thus see that the relation
D̃(ω) 
 ε̃(ω)Ẽ⊥(ω) is approximately fulfilled if we consider
only frequencies near a resonance at ω2

α = ε̃(ω)ω2 [the spectral
distribution in Eq. (3.60) is thus extremely peaked since
losses are weak]. This dispersion relation occurs for transverse
polariton modes ω 
 �α,m (neglecting the imaginary part),
and if the wave packet of spectral extension δω ∼ 1/δt is
centered on such a wavelength, we can replace with a good
approximation ω2

α by ε̃(ω)ω2 in the numerator of Eq. (3.60)
leading thus to D̃(ω) 
 ε̃(ω)Ẽ⊥(ω). After this assumption, the
calculation can be done like in classical textbooks [90,100] and
Eq. (3.59) becomes (this usual calculation will not be repeated
here)

δ

δt
H (t) = δ

δt

{∫
d3x

[
dωcε̃(ωc)

dωc

E(−)
⊥ E(+)

⊥ + B2

2

]}
= 0,

(3.62)
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where ωc denotes now the transverse polariton frequency
ωc 
 Re[�α,m] for the homogeneous medium considered here.
In this formula, the imaginary part of ε̃(ωc) is systematically
neglected in agreement with the reasoning discussed for
instance in Ref. [90]. Alternatively, Eq. (3.62) could be
rewritten using the time average 〈B2〉 
 2E(−)

⊥ E(+)
⊥ in order

to get the classical Brillouin formula for the electric energy
density in the medium but this will not be useful here.
Moreover, we introduce the mode operators

E
(+)
α,j,m(t) =

∫
δωα,m

dω
ω2

ω2
α − ε̃(ω)ω2

√
h̄σω

πω
f

(0)
ω,α,j (t),

(3.63)

where δωα,m is a frequency window centered on the polariton
pulsation ωc 
 Re[�α,m] := �′

α,m. Now, if we suppose that
the electromagnetic field is given by a sum of such transverse
modes (without overlap of the frequency domains δωα,m), then
Eq. (3.62) reads as

δ

δt
H (t) = δ

δt

⎛⎝∑
α,j,m

{
d[�′

α,mε̃(�′
α,m)]

d�′
α,m

+ ω2
α

�′
α,m

2

}
E

(−)
α,j,mE

(+)
α,j,m

)
= 0, (3.64)

where the contribution ω2
α

�′
α,m

2 arises from a modal expansion of

the magnetic field and from using the resonance condition
in the numerator of Eq. (3.32) (which involves ωωα 

ω2ωα/�α,m).

What is also fundamental here is that we have the
commutators (the derivation in the complex plane in given in
Appendix F)

[E(+)
α,j,m(t),E(−)

β,l,n(t)] = δα,βδj,lδm,n

h̄�α,m

2

d�2
α,m

dω2
α

(3.65)

and [E(+)
α,j,m(t),E(+)

β,l,n(t)] = [E(−)
α,j,m(t),E(−)

β,l,n(t)] = 0. These re-
lations imply the existence of effective rising and lowering
operators f

(+)
α,j,m(t) for polaritons defined by E

(+)
α,j,m(t) =√

(h̄�α,m

2
d�2

α,m

dω2
α

)fα,j,m(t).
These relations were phenomenologically obtained by

Milonni [7,9] after quantizing Brillouin’s energy formula.
Here, we justify this result from the ground using the Huttner-
Barnett formalism. Importantly, after defining the optical
index of the polariton mode nα,m 
 √

ε̃(�′
α,m), we can rewrite

d[�′
α,mε̃(�′

α,m)]
d�′

α,m
+ ω2

α

�′
α,m

2 as 2nα,mc/vg(�′
α,m) where vg(�′

α,m) is

the group velocity of the mode defined by d�′
α,m/dkα .

This allows us to rewrite the operators as E
(+)
α,j,m(t) =√

[h̄�α,m

2
vg (�′

α,m)
nα,mc

]fα,j,m(t) [since
vg (�′

α,m)
nα,mc

= d�2
α,m

dω2
α

] and finally to
have

δ

δt
H (t) = δ

δt

⎛⎝∑
α,j,m

h̄�α,mf
†
α,j,mfα,j,m

⎞⎠ = 0. (3.66)

The total energy is thus defined as H (t) = ∑
α,j,m

h̄�α,mf
†
α,j,mfα,j,m which is a constant of motion defined up

to an arbitrary additive constant. This formula involves only
the transverse modes so that actually it gives the energy
H⊥(t) associated with the transverse polariton modes in
weekly dissipative medium and represents a generalization of
Hopfield-Fano results as an effective but approximative model.

Few remarks are here necessary. First, the model proposed
here relies on the assumption that the field is a sum of wave
packets spectrally nonoverlapping. This hypothesis, which was
also made by Garrison and Chio [9], was then called the
“quasimultimonochromatic” approximation. This assumption
is certainly not necessary since Milonni’s model includes as
a limit the rigorous Hopfield-Fano model [23,24] which does
not rely on such an assumption. In order to justify further
Milonni’s approach [7] and relax the hypothesis made, it is
enough to observe first that in Eq. (3.60) the approximation
D̃(ω) 
 ε̃(ω)Ẽ⊥(ω) is quite robust even if the field is spectrally
very broad. Indeed, since losses are here supposed to be very
weak, the resonance will practically cancel out if ω differs
significantly of a value where the condition ω2

α = ε̃(ω)ω2

occurs. Second, if we insert formally Eqs. (3.60) and (3.61)
with the previous assumption into Eq. (3.62), then instead of
the term δ

δt
[
∫

d3x dωcε̃(ωc)
dωc

E(−)
⊥ E(+)

⊥ ] in Eq. (3.62) we get a term
δ
δt

[
∫ +∞

0 dω
∫ +∞

0 dω′ ∫
d3x dωε̃∗(ω)

dω
Ẽ⊥(ω)Ẽ⊥

∗
(ω′)ei(ω′ − ω)t ].

This contribution is in general more complicated because
dωε̃∗(ω)

dω
depends on ω. However, using explicitly Eqs. (3.60)

and (3.61) and especially the Fourier expansion in plane waves,
we see that for the specific fields considered here Eq. (3.64)
still holds. This means that we can again introduce polariton
operators E

(+)
β,l,n(t) and E

(−)
β,l,n(t) defined by Eq. (3.63). As

previously, these operators depend on a frequency window
δωα,m and here these are introduced quite formally for taking
into account the fact that the resonance 1

ω2
α−ε̃(ω)ω2 is extremely

peaked near the different polariton frequencies �α,m. A
product like 1

ω2
α−ε̃(ω)ω2

1
ω2

α−ε̃∗(ω′)ω′2 occurring in the integration
will thus not contribute unless the frequencies ω′ and ω are in
a given window δωα,m. Equation (3.64) thus results as a very
good practical approximation.

Remarkably, as observed in Eq. (3.65) (and explained in
Appendix E), the commutator does not depend explicitly on
the size of these windows (which are only supposed to be
small compared to the separation between the different mode
frequencies and large enough to include the resonance peaks as
explained in Appendix E). Therefore, this allows us to renor-
malize these operators as before by introducing the same rising
and lowering polariton operators fα,j,m such as Eq. (3.66) and
H⊥(t) = ∑

α,j,m h̄�α,mf
†
α,j,mfα,j,m hold identically. We thus

have completed the justification of the Milonni’s approach for
dielectric medium with weak absorption [7].

Another remark concerns the longitudinal electric field
which was omitted here since it does not play an active role
in pulse propagation through the medium. We have indeed∫

d3x E · ∂tD = ∫
d3x E⊥ · ∂tD so that the reasoning was only

done on the transverse modes. However, this was not necessary
and one could have kept the longitudinal electric field all along
the reasoning. Since the transverse part is a constant as we
showed before, this should be the case for the longitudinal
part as well since H (t) − H⊥(t) is also an integral of motion.
Now, a reasoning similar to the previous one for transverse
waves will lead to the Brillouin formula for the longitudinal
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electric energy:

δ

δt
H‖(t) = δ

δt

∫
d3x

∫
d3x E‖ · ∂tD


 δ

δt

{∑
α,m

d[�′
α,mε̃(�′

α,m)]

d�′
α,m

E
(−)
α,m,‖E

(+)
α,m,‖

}
= 0,

(3.67)

where the longitudinal polariton modes are defined by

E(+)
α,m(t) =

∫
δωα,m

dω
−1

ε̃(ω)

√
h̄σω

πω
f

(0)
ω,α,‖(t). (3.68)

In this formalism, the longitudinal polariton frequencies �′
α,m

are the solutions of ε̃′(�′
α,m) 
 0 (where losses are again

supposed to be weak). The commutator can be defined using
a method equivalent to Eq. (3.65) and we get

[E(+)
α,m,‖(t),E(−)

β,n,‖(t)] = δα,βδm,n

h̄

|Mα,m| (3.69)

with Mα,m = dε̃′(ω)
dω

|�′
α,m

. After defining the lowering polariton

operator as E
(+)
α,m,‖(t) = fα,m,‖(t)

√
( h̄
|Mα,m| ) we thus obtain

δ

δt
H‖(t) 
 δ

δt

(∑
α,m

h̄�′
α,mf

†
α,m,‖fα,m,‖

)
= 0 (3.70)

as it should be. Milonni’s approach [7] leads therefore to an
effective justification of longitudinal polaritons as well and
this includes the Hopfield-Fano [24] model as a limiting case
when losses are vanishing outside infinitely narrow absorption
bands.

A final important remark should be done since it concerns
the general significance of the scattered field (s) in the lossless
limit. Indeed, we see from Eq. (3.63) that the transverse mode
operators E

(+)
α,j,m(t) and E

(+)
α,j,m(t) rigorously vanish in the limit

σω → 0 [this is not true for longitudinal operators (3.68) which
are physically linked to bound and Coulombian fields]. In
agreement with Sec. III C, we thus conclude that in the vacuum
limit one should consider the (0) fields as the only surviving
contribution. However, we also see that for all practical needs,
if the losses are weak but not equal to zero, then by imposing
t0 → −∞ the (0) terms should cancel and only will survive
a scattered term which will formally looks as a free photon
in a bulk medium with optical index nω 
 √

εω. Therefore,
we justify the formal canonical quantization procedure used
by Milonni and others [6–9,44,101,102] which reduces to the
historical quantization methods in the (quasi-)nondispersive
limit [1,3]. However, this can only be considered as an
approximation and therefore the original claim presented in
Ref. [33] that the scattered field (s) is sufficient for justifying
the exact limit σω → 0 without the (0) term was actually
unfounded. As we will see, this will become especially relevant
when we will generalize the Langevin-noise approach to an
inhomogeneous medium.

G. Energy conservation puzzle and the interpretation of the
Hamiltonian for a homogeneous dielectric medium

The central issue in this work is to interpret the physical
meaning of quantized polariton modes in the general Huttner-
Barnett framework of Sec. II and this will go far beyond
the limiting Hopfield-Fano [23,24] or Milonni approaches [7]
which are valid in restricted conditions when losses and/or
dispersion are weak enough. For the present purpose we will
focus on the homogeneous medium case (the most general
inhomogeneous medium case is analyzed in the next section).
It is fundamental to compare the mode structure of Eqs. (3.26),
(3.27), (3.30), and (3.32) on the one side and the mode structure
of Eqs. (3.14), (3.15), and (3.16) on the other side which are
associated, respectively, with the free modes “(0)” and the
scattered modes “(s)”. The (0) modes are the eigenstates of
the classical propagation problem when we can cancel the
fluctuating term P(0). This is, however, not allowed in QED
since we are now considering operators in the Hilbert space
and one cannot omit these terms without breaking unitarity.
Inversely, the scattered modes are the modes which were con-
sidered by Huttner and Barnett [17]. Moreover, only these (s)
modes survive here if the initial time t0 is sent into the remote
past, i.e., if t0 → −∞. For all operational needs, it is therefore
justified to omit altogether the (0) mode contribution in the
homogeneous medium case. Clearly, this was the choice made
by Gruner and Welsch [34] and later by more or less all authors
working on the subject (see, however, Refs. [79,80]) which
accepted this rule even for nonhomogeneous media. If we
accept this axiom, then the Hamiltonian of the problem seems
to reduce to H

(0)
M , i.e., in the homogeneous medium case, to

H
(0)
M (t) =

∫
d3x

∫ +∞

0
dωh̄ωf†(0)

ω (x,t)f(0)
ω (x,t)

=
∑
α,j

∫ +∞

0
dωh̄ωf

†(0)
ω,α,j (t),f (0)

ω,α,j (t)

+
∑

α

∫ +∞

0
dωh̄ωf

†(0)
ω,α,‖(t),f (0)

ω,α,‖(t) (3.71)

which depends only on the fluctuating operators
f

(0)
ω,α,‖(t), f †(0)

ω,α,‖(t) in agreement with the Langevin force
and noise approach of Gruner and Welsch [34].

Now, there is apparently a paradox: the complete Hamil-
tonian of the system is in agreement with Eq. (2.13) given
by

H (t) =
∫

d3x :
B(x,t)2 + E(x,t)2

2
:

+
∫

d3x
∫ +∞

0
dωh̄ωf†ω(x,t)fω(x,t). (3.72)

Can we show that H (t) is actually equivalent to H
(0)
M (t)?

This is indeed the case for all practical purposes at least
for the homogeneous medium case treated by Huttner and
Barnett [17] that we analyzed in details before. To see
that, remember that H (t) is actually a constant of motion,
therefore, we should have H (t) = H (t0). This equality reads
as also H (t) = ∫

d3x : B(x,t0)2+E(x,t0)2

2 : +HM (t0). Now, the
central point here is to use the boundary condition at time
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t0 which implies fω(x,t0) = f(0)
ω (x,t0). Furthermore, since the

time evolution of f(0)
ω is harmonic we have f†(0)

ω (x,t)f(0)
ω (x,t) =

f†(0)
ω (x,t0)f(0)

ω (x,t0). Altogether, these relations imply

HM (t0) = H
(0)
M (t0) = H

(0)
M (t) (3.73)

so that we have

H (t) =
∫

d3x :
B(x,t0)2 + E(x,t0)2

2
: +H

(0)
M (t). (3.74)

In other words, we get a description in which the Fock
number states associated with the fluctuating operators f(0)

ω (x,t)
or, equivalently, f

(0)
ω,α,j (t), f (0)

ω,α,‖(t) diagonalize not the full

Hamiltonian but only a part that we noted H
(0)
M (t). However,

this is not problematic since the remaining term

Hrem(t) =
∫

d3x :
B(x,t0)2 + E(x,t0)2

2
: (3.75)

is also clearly by definition a constant of motion since it only
depends on fields at time t0. How can we interpret this constant
of motion? We can clearly rewrite it as Hrem(t) = ∫

d3x :
B(x,t0)2+[D(x,t0)−P(x,t0)]2

2 :. Therefore, in the F potential vector for-
malism defined in Sec. II, this constant depends on both cα,j (t0)
and c

†
α,j (t0), i.e., lowering and rising operators associated with

the transverse D and B fields, and it also depends on the opera-
tors f†ω(x,t0), fω(x,t0) which are associated with the fluctuating
dipole distribution at the initial time t0. Furthermore, since
we have also D(s)(t0) = 0, B(s)(t0) = 0, E(s)(t0) = −P(0)(t0)
and since D(t0) = D(0)(t0) = E(0)(t0), B(t0) = B(0)(t0) we can
alternatively write

Hrem(t) =
∫

d3x :
B(0)(x,t0)2

2
+ [D(0)(x,t0) − P(0)(x,t0)]2

2
: .

(3.76)

This means that the remaining term Hrem(t) depends on the
knowledge of D(0)(t0) and B(0)(t0) electromagnetic free field.
Since in the limit t0 → −∞ these (0) electromagnetic terms
vanish at any finite time t , this would justify to consider
Hrem(t) as an inoperative constant. However, we have also
the contribution of P(0)(t0) which plays a fundamental role in
the determination of D(s)(t), B(s)(t), and E(s)(t) at the finite
time t . Therefore, while Hrem(t) is a constant of motion, it
nevertheless contains quantities which will affect the evolution
of the surviving (s) fields at time t . It is for this reason that
we can say that for “all practical purposes only” Hrem(t) is
unnecessary and that H

(0)
M (t) is sufficient for describing the

energy problem.
There are, however, many remarks to be done here concern-

ing this analysis. First, while the Hamiltonian H
(0)
M (t) gives a

good view of the energy up to an additive inoperative constant,
it is the full Hamiltonian which is necessary for deriving the
equations of motion from Hamilton’s equations or equivalently
from Heisenberg’s evolution like ih̄ d

dt
A(t) = [A(t),H (t)]. It

is also only with H (t) that time symmetry is fully preserved.
In particular, do not forget that in deriving the Fano-Hopfield
[23,24] formalism we introduced [see Eq. (3.43)] the evolution
∇ × ∇ × Ẽ(�) − �2

c2 ε̃(�)Ẽ(�) = �2

c2 P̃(in)(�) which depends

on the causal “in” field P̃(in)(�) and on the causal permittivity
ε̃(�). Since the knowledge of P(in)(t) is equivalent to P(0)(t) in
the limit t0 → −∞, the (forward) Laplace transform method is
leading to the same result that the usual Fano method and this
fits as well with the Gruner and Welsch Langevin’s equations
[34]. However, instead of Eq. (3.43) we could equivalently use
the anticausal equation

∇ × ∇ × Ẽ(�) − �2

c2
ε̃∗(�)Ẽ(�) = �2

c2
P̃(out)(�), (3.77)

where P̃(out)(�) replaces P̃(out)(�) and where the causal
permittivity ε̃(�) becomes now ε̃∗(�) which is associated
with amplification instead of the usual dissipation. The Green
integral equation now becomes

Ẽ(x,�) = �2

c2

∫
d3x′GχT

(x,x′,�) · P̃(out)(x′,�), (3.78)

where χT (t) replaces χ (t) [see Eq. (3.34)] and is associated
with the anticausal dynamics which is connected to the time-
reversed evolution. Both formalisms developed with either
“in” or “out” fields are completely equivalent, but this shows
that we have the freedom to express the scattered field in
terms of f(in)

ω (x,t) and f(in)†
ω (x,t) or in terms of f(out)

ω (x,t) and
f(out)†
ω (x,t). Since there are in general no fully propagative

“free” electromagnetic modes (if we exclude the lossless
medium limit considered by Hopfield and Fano [23,24]),
then the surviving fields at finite time t obtained either
with t0 → −∞ or tf → +∞ correspond to decaying or
growing waves in agreement with the results discussed for
the Laplace transform methods. The full Hamiltonian H (t) is
thus expressed equivalently either as

H (t) =
∫

d3x :
B(x,t0)2 + E(x,t0)2

2
:

+
∫

d3x
∫ +∞

0
dωh̄ωf(in)†

ω (x,t)f(in)
ω (x,t) (3.79)

[with f(in)
ω (x,t) := f(0)

ω (x,t) = fω(x,t0)e−iω(t−t0) the fluctuating
field defined in Sec. II] or as

H (t) =
∫

d3x :
B(x,tf )2 + E(x,tf )2

2
:

+
∫

d3x
∫ +∞

0
dωh̄ωf(out)†

ω (x,t)f(out)
ω (x,t) (3.80)

with f(out)
ω (x,t) = fω(x,tf )e−iω(t−tf ) the fluctuating field using

using a final boundary condition at time tf . In the limits t0 →
−∞, tf → +∞, this leads to

H (t) = Hin,rem(t) +
∫

d3x
∫ +∞

0
dωh̄ωf(in)†

ω (x,t)f(in)
ω (x,t)

(3.81)

or

H (t) = Hout,rem(t) +
∫

d3x
∫ +∞

0
dωh̄ωf(out)†

ω (x,t)f(out)
ω (x,t),

(3.82)

023831-13
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where the remaining terms [see Eq. (3.75)] Hin,rem(t) and
Hout,rem(t) are two different integrals of motion. Therefore,
it shows that the representation chosen by Gruner and Welsch
in Ref. [34] is not univocal and that one could reformulate
all the theory in terms of P̃(out)(�) instead of P̃(in)(�) to
respect time symmetry. Furthermore, we emphasize that while
the two Hamiltonians

∫
d3x

∫ +∞
0 dωh̄ωf(0)†

ω (x,t)f(0)
ω (x,t) and∫

d3x
∫ +∞

0 dωh̄ωf(f )†
ω (x,t)f(f )

ω (x,t) have formally the same
mathematical structure, they are not associated with the same
physical electromagnetic fields since Eqs. (3.45) and (3.78)
correspond, respectively, to decaying and growing radiated
fields. Causality therefore requires to make a choice between
two different representations. It is only the choice on a
boundary condition in the remote past or future together with
thermodynamical considerations which allow us to favor the
decaying regime given by Eq. (3.45).

A different but related point to be discussed here concerns
the Hopfield-Fano limit [23,24] for which the general conduc-

tivity like σ (�) = ∑
n

πω2
p,n

2 [δ(� − ω0,n) + δ(� + ω0)] leads
to quasilossless permittivity [see Eq. (3.56)]. In this regime, we
found that an exact diagonalization procedure can be handled
out leading to genuine transverse and longitudinal polaritons.
These exceptions also fit with the time-symmetry considera-
tions discussed previously since the quasiabsence of absorp-
tion makes the problem much more time symmetrical than in
the cases where the only viable representations involve either
P̃(out)(�) or P̃(in)(�). Of course, the Hopfield-Fano model is
an idealization which, in the context of the Huttner-Barnett
framework, gets a clear physical interpretation only as an
approximation for low-loss media, as explained in Sec. III G.

This leads us to a new problem, which is certainly the
most important in this work: Considering the vacuum limit
χ (t) → 0 discussed after Eq. (3.16) we saw that only the
(0) electromagnetic modes survive in this regime and that
the (s) modes are killed together with P(0)(t) → 0. These
vacuum modes are completely decoupled from the undamped
mechanical oscillator motion Xω(t) = X(0)

ω (t). In this limit,
time symmetry is of course respected and we see that the full
set of eigenmodes diagonalizing the Hamiltonian corresponds
to the uncoupled free photons and free mechanical oscillator
motions. Another way to see that is to use again the Fourier
formalism instead of the Laplace transform method. From
Eq. (3.43) we see that in the vacuum limit it is not the scattered
field defined by Eq. (3.45) which survives [since P(0)(t) → 0]
but an additional term corresponding to free-space photon
modes. While this should be clear after our discussion this
point has tremendous consequences if we want to generalize
properly the Huttner-Barnett approach to an inhomogeneous
medium. In such a medium, the permittivity ε̃(x,�) is position
dependent. Now, generally speaking, in nanophotonics we con-
sider problems where a dissipative object like a metal particle
is confined in a finite region of space surrounded by vacuum.
The susceptibility χ (x,τ ) therefore vanishes outside the object
and we expect electromagnetic vacuum modes associated with
free-space photon to play a important role in the final analysis.
This should contrast with the Huttner-Barnett case for homo-
geneous medium which supposes an unphysical infinite dissi-
pative medium supporting bulk polaritons or plasmons. The in-
homogeneous polariton case will be treated in the next section.

IV. QUANTIZING POLARITONS IN
AN INHOMOGENEOUS MEDIUM

A. The Green dyadic problem in the time domain

In order to deal with the most general situation of polaritons
in inhomogeneous media, we need first to consider the formal
separation between source fields and free-space photon mode.
The separation used here is clearly different from the one
developed in the previous section since we now consider on
the one side as source term the total polarization P(x,t) [see
Eq. (2.9)] which includes both the fluctuating term P(0)(x,t)
but also the induced polarization

∫ t−t0
0 χ (x,τ )dτ E(x,t − τ )

and on the other side as source-free terms some general photon
mode solutions of Maxwell equations in vacuum. In order not
to get confused with the previous notations, we now label (v)
the vacuum modes and (d) the modes induced by the total
dipolar distribution P(x,t).

We start with the second-order dynamical equation

1

c2
∂2
t F(x,t) − ∇2F(x,t) − ∇ × P(x,t) = 0 (4.1)

which can be solved using the method developed for Eq. (3.1).
Indeed, by imposing χ = 0 in Eq. (3.1) and by replacing P(0)

by P, F(0) by F(v), F(s) by F(d), and so on in the calculations of
Sec. III we can easily obtain the formalism needed. Consider
first the vacuum fields F(v), D(v), and B(v). From Eqs. (3.14)
and (3.15) in the limit χ (τ ) → 0 we get a plane-wave modal
expansion for the free-photon field which we write in analogy
with Eq. (3.17) as

F(v)(x,t) =
∑
α,j

ic

√
h̄

2ωα

c
(v)
α,j (t)ε̂α,j�α(x) + c.c.,

D(v)(x,t) =
∑
α,j

−
√

h̄ωα

2
c

(v)
α,j (t)k̂α × ε̂α,j�α(x) + c.c.,

B(v)(x,t) =
∑
α,j

√
h̄ωα

2
c

(v)
α,j (t)ε̂α,j�α(x) + c.c. (4.2)

with the modal expansion coefficients c
(v)
α,j (t) =

cα,j (t0)e−iωα (t−t0) showing the harmonic structure of the
fields. Of course, this transverse vacuum field satisfies
Maxwell’s equations without source terms and in particular
∇ × E(v)(x,t) = −∂tB(v)(x,t)/c with E(v)(x,t) = D(v)(x,t).

We now study the scattered fields E(d), D(d), and B(d). Like
for the calculations presented in Sec. III for the homogeneous
medium case, it appears convenient to use the Green dyadic
formalism which is well adapted for nanophotonics studies,
in particular for numerical computation of fields in complex
dielectric environment where no obvious spatial symmetry
is visible. The details are given in Appendix G. Here, we
only need the expansion for the scattered electric field E(d) =
E − E(v) = D(d) − P:

E(d)(x,t) = −
∫ γ+i∞

γ−i∞

idp

2π
ep(t−t0)

×
∫

d3x′ p
2

c2
Gv(x,x′,ip) · P′(x′,p), (4.3)
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where we used the dyadic Green function for vacuum
Gv(x,x′,ip) which is the solution of Eq. (3.20) for χ (τ ) = 0
[see Appendixes D and G and, in particular, Eqs. (D1) and
(G3)]. In the time domain this can be written [see the derivation
of Eq. (G5) in Appendix G] as

E(d)(x,t) =
∫ t−t0

0
dτ

∫
d3x′Qv(τ,x,x′)

· P(x′,t − τ ) − P(x,t), (4.4)

where Qv(τ,x,x′) is the inverse Laplace transform of
Sv(x,x′,ip) [see Eq. (D7)].

We emphasize here once again the fundamental role played
by the boundary conditions at t0. What we showed (see also
Appendix G) is that at the initial time t0 we have D(d)(x,t0) = 0
and thus D(v)(x,t0) = D(x,t0) which means, by definition of
our vacuum modes, E(v)(x,t0) = D(x,t0). In other words, the
electric field associated with vacuum modes equals the total
displacement fields at the initial time. This is interesting since
it also implies E(x,t0) = E(v)(x,t0) − P(x,t0) [which means
E(d)(x,t0) = −P(x,t0)]. This can be written after separation
into transverse and longitudinal parts as

E⊥(x,t0) = E(v)(x,t0) − P⊥(x,t0)

= D(v)(x,t0) − P⊥(x,t0),

i.e., E(d)
⊥ (x,t0) = −P⊥(x,t0) (4.5)

for the transverse (solenoidal or divergence-free) components
and

E‖(x,t0) = −P‖(x,t0) (4.6)

for the longitudinal (irrotational or curl-free) components.
Equation (4.6) is well known in QED since it rigorously agrees
with the definition of the longitudinal field obtained in usual
Coulomb gauge using the A potential instead of F.

B. Separation between fluctuating and induced current:
Macroscopic versus microscopic description

Until now, we did not specify the form of the dipole
density P(x,t). The separation between source and free terms
for the field was therefore analyzed from a microscopic
perspective where the diffracted fields E(d)(x,t) and B(d)(x,t)
were generated by the full microscopic current. In order
to generalize the description given in Sec. III for the ho-
mogeneous medium, we will now use the separation (2.9)
of P(x,t) into a fluctuating term P(0)(x,t) and an induced
contribution

∫ t−t0
0 χ (x,τ )dτ E(x,t − τ ) of essentially classi-

cal origin. Using the Laplace transform we get P′(x,p) =
P′(0)

(x,p) + χ (x,p)E′(x,p). Now, from the previous section
we have therefore for the Laplace transform of the electric
field the following Lippman-Schwinger integral equation:

E′(x,p) = D′(v)
(x,p) −

∫
d3x′ p

2

c2
Gv(x,x′,ip)

· [χ̄ (x′,p)E′(x′,p) + P′(0)
(x′,p)]. (4.7)

In order to get a meaningful separation of the total field, we
here define

E′(0)
(x,p) = D′(v)

(x,p) −
∫

d3x′ p
2

c2
Gv(x,x′,ip)

· χ̄ (x′,p)E′(0)
(x′,p) (4.8)

and

Gχ (x,x′′,ip) = Gv(x,x′′,ip) −
∫

d3x′ p
2

c2
Gv(x,x′,ip)

· χ̄ (x′,p)Gχ (x′,x′′,ip). (4.9)

We have clearly

∇ × ∇ × Gχ (x,x′,ip) + p2

c2
[1 + χ̄(x′,p)]Gχ (x,x′,ip)

= δ(x − x′) (4.10)

and

∇ × ∇ × E′(0)
(x,p) + p2

c2
[1 + χ̄ (x′,p)]E′(0)

(x,p) = 0.

(4.11)

This allows us to interpret Gχ (x,x′,ip) as the Green function

of the inhomogeneous dielectric medium while E′(0)
(x,p) is a

free solution of Maxwell’s equation in the dielectric medium

in absence of the fluctuating source P′(0)
(x′,p). By direct

replacement of Eqs. (4.8) and (4.9) into (4.7), one gets

E′(x,p) = E′(0)
(x,p) −

∫
d3x′ p

2

c2
Gχ (x,x′,ip) · P′(0)

(x′,p),

(4.12)

meaning that the total field can be seen as the sum of the free

solution E′(0)
(x,p) and of scattering contribution E′(s)

(x,p)

induced by the fluctuating source P′(0)
(x′,p). In Appendix H,

we give the calculations for the electric field in the time domain
by using the inverse Laplace transforms of Gχ (x,x′,ip). Here,
the important point is that the boundary conditions at t0
together with the field equations determine the full evolution
and we have necessarily

E(0)(x,t0) = D(0)(x,t0) = D(v)(x,t0),

D(s)(x,t0) = E(s)(x,t0) + P(0)(x,t0) = 0,

B(s)(x,t0) = 0,

B(0)(x,t0) = B(v)(x,t0) = B(x,t0). (4.13)

We point out that the description of the longitudinal field
should be treated independently in this formalism since at
any time t we have the constraint E‖(x,t) = −P||(x,t) which
shows that fluctuating current and field are not independent.
More precisely, if we insert the constraint E‖(x,t) = −P‖(x,t)
into the Lagrangian formalism developed in Sec. II, we get an
effective Lagrangian density for the longitudinal field which
reads as

L‖(x,t) =
∫ +∞

0
dω

[∂tXω,‖(x,t)]2 − ω2X2
ω,‖(x,t)

2
−P2

‖(x,t)

2
.

(4.14)

023831-15
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From Eq. (4.14) we get the Euler-Lagrange equation

∂2
t Xω,‖(x,t) + ω2Xω,‖(x,t) = −

√
2σω(x)

π
P‖(x,t), (4.15)

with P‖(x,t) = ∫ +∞
0 dω

√
2σω(x)

π
Xω,‖(x,t) and which agrees

with Eq. (2.7) if the constraint E‖(x,t) = −P‖(x,t) is used.
Now, the formal solution of Eq. (4.15) is obtained from
Eq. (4.16):

Xω,‖(x,t) = X(0)
ω,‖(x,t) −

√
2σω(x)

π

×
∫ t−t0

0
dτ

sin ωτ

ω
P‖(x,t − τ ) (4.16)

and allows for a separation between a fluctuating term
X(0)

ω,‖(x,t) and a source term X(s)
ω,‖(x,t). From this we naturally

deduce

P‖(x,t) = P(0)
‖ (x,t) −

∫ t−t0

0
dτ χ (x,τ )P‖(x,t − τ ). (4.17)

Integral equations (4.16) or (4.17) could in principle be
solved iteratively in order to find expressions P‖ and Xω,‖
which are linear functionals of P(0)

‖ and X(0)
ω,‖. Alternatively,

this can be done self-consistently using the Laplace trans-

form of Eq. (4.17) which reads as P′‖(x,p) = P′(0)
‖ (x,p) −

χ̄(x,p)P′‖(x,p) and leads to

P′‖(x,p) = − P′(0)
‖ (x,p)

1 + χ̄(x,p)
. (4.18)

In the time domain, we have thus

P‖(x,t) = P(0)
‖ (x,t) −

∫ t−t0

0
χeff(x,τ )P(0)

‖ (x,t − τ ) (4.19)

with the effective susceptibility defined as

χeff(x,τ ) =
∫ γ+i∞

γ−i∞

idp

2π

epτ χ̄(x,p)

1 + χ̄ (x,p)
. (4.20)

We have equivalently for the effective susceptibility
χeff(x,τ ) = ∫ +∞

−∞
dω
2π

e−iωτ ε̃(x,ω)−1
ε̃(x,ω) . After closing the contour in

the complex plane we get χeff(x,τ ) = i
∑

m
1

∂ε̃(x,ω)
∂ω

|�m

e−i�mτ +
c.c. where the sum is taken over the longitudinal modes
solutions of ε̃(x,�m) = 0 (with �′′

m < 0 and �′
m > 0 by

definition). The frequencies considered here are in general
spatially dependent since the medium is inhomogeneous and
is therefore very often difficult to find. In the limit of the
homogeneous lossless medium, we obtain the Hopfield-Fano
[23,24] model.

We emphasize that the present description of the polariton
field contrast with the integral solution of Eq. (3.43) ∇ ×
∇ × Ẽ(�) − �2

c2 ε̃(�)Ẽ(�) = �2

c2 P̃(in)(�) which was obtained
for the homogeneous medium

Ẽ(x,�) = �2

c2

∫
d3x′Gχ (x,x′,�) · P̃(in)(x′,�) (4.21)

and which included only a scattering contribution (s) due
to the cancellation of the (0) term for t0 → −∞. Here,
we can not neglect or cancel the (0) mode solutions since

in general the medium is not necessarily lossy at spatial
infinity. This will be in particular the case for all scattering
problems involving a localized system such as a metal
or dielectric antenna supporting plasmon-polariton localized
modes. However, mostly all studies, inspired by the success
of the Huttner-Barnett model [17] for the homogeneous lossy
medium, and following the Langevin-noise method proposed
Gruner and Welsch [27–29,32,34], neglected or often even
completely omitted the contribution of the (0) modes. Still,
these (0) modes are crucial for preserving the unitarity of the
full matter field dynamics and can not be rigorously omitted.
Only in those cases where absorption is present at infinity can
we omit the (0) modes.

To clarify this point further, consider a medium made of
a spatially homogeneous background susceptibility χ̄1(p) and
of a localized susceptibility χ̄2(x,p) such as χ̄(x,p) → 0 at
spatial infinity. The electromagnetic field propagating into
the medium with total permittivity χ̄ (x,p) = χ̄1(p) + χ̄2(x,p)
can be thus formally developed using the Lippman-Schwinger
equation as

E′(x,p) = E′(v)
(x,p) −

∫
d3x′ p

2

c2
Gv(x,x′,ip)

· [χ̄(x′,p)E′(x,p) + P′(0)
(x′,p)]

= E′(1)
(x,p) −

∫
d3x′ p

2

c2
Gχ1 (x,x′,ip)

· [χ̄2(x′,p)E′(x,p) + P′(0)
(x′,p)], (4.22)

where we have defined a background free field

E′(1)
(x,p) = D′(v)

(x,p) −
∫

d3x′ p
2

c2
Gv(x,x′,ip)

· χ̄1(x′,p)E′(1)
(x′,p) (4.23)

and a Green dyadic tensor for the background medium

Gχ1 (x,x′′,ip) = Gv(x,x′′,ip) −
∫

d3x′ p
2

c2
Gv(x,x′,ip)

· χ̄1(x′,p)Gχ1 (x′,x′′,ip). (4.24)

We have naturally ∇ × ∇ × Gχ1 (x,x′,ip) + p2

c2 [1 +
χ̄1(x′,p)]Gχ1 (x,x′,ip) = δ(x − x′) and similarly ∇ × ∇ ×
E′(1)

(x,p) + p2

c2 [1 + χ̄1(x′,p)]E′(1)
(x,p) = 0.

Importantly, in the time domain we can write using
Appendix H

E(x,t) = E(1)(x,t) −
∫ t−t0

0
dτ

∫
d3x′ ∂

2
τ Uχ1 (τ,x,x′)

c2

×
[

P(0)(x′,t−τ )+
∫ t−τ

0
dτ ′χ2(x′,τ ′)E(x′,t−τ−τ ′)

]
− P(0)(x,t) +

∫ t

0
dτχ2(x,τ )E(x,t − τ ), (4.25)

where Uχ is the dyadic propagator defined in Eq. (H3).
We can check that we have E(x,t0) = E(1)(x,t0) − P(0)(x,t0).
Moreover, since from Eq. (4.23) (written in the time domain)
we have E(1)(x,t0) = D(v)(x,t0) and since P(0)(x,t0) = P(x,t0),
we deduce that at the initial time t0, D(x,t0) = E(x,t0) +
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P(x,t0) = E(1)(x,t0) = D(v)(x,t0) as it should be to agree with
the general formalism presented in Sec. IV A.

Now, since the background dissipative medium is not
spatially bound, the E(1)(x,t) field associated with damped
modes will vanish if t0 → −∞ as explained before. We could
therefore be tempted [27–29,32,34] to eliminate from the start
E(1)(x,t) and thus get in the Laplace transform language the
effective formula

E′(x,p) = −
∫

d3x′ p
2

c2
Gχ1 (x,x′,ip)

· [χ̄2(x′,p)E′(x,p) + P′(0)
(x′,p)]

= −
∫

d3x′ p
2

c2
Gχ (x,x′,ip) · P′(0)

(x′,p) (4.26)

with the total Green dyadic function

Gχ (x,x′′,ip) = Gχ1 (x,x′′,ip) −
∫

d3x′ p
2

c2
Gχ1 (x,x′,ip)

· χ̄2(x′,p)Gχ (x′,x′′,ip). (4.27)

obeying to Eq. (4.10) with the total permittivity χ̄ (x,p) =
χ̄1(p) + χ̄2(x,p). It is straightforward to check that
Gχ (x,x′′,ip) satisfies also Eq. (4.9) so that it is the same Green
function.

However, removing E(1)(x,t) from the start in Eq. (4.25)
would mean that the boundary conditions at the initial time
t0 have been obliviated since we should now necessarily
have D(x,t0) = E(x,t0) + P(x,t0) = E(1)(x,t0) = 0. This cor-
responds to a very specific boundary condition which is
certainly allowed in classical physics [where we can set
cα,j (t0) = 0] but which in the quantum formalism means that
we break the unitarity of the evolution. To say it differently,
it means that in the Langevin-noise formalism [27–29,32,34],
the photon field F is not anymore an independent canonical
contribution to the evolution since all electromagnetic fields
are induced by the material part. The Green formalism
presented by Gruner and Welsch [34], and abundantly used
since [51–69], represents therefore an alternative theory which
rigorously speaking is not equivalent, contrary to the claim
in Refs. [27–29,32], to the Lagrangian formalism discussed
in Sec. II for the general Huttner-Barnett model [17]. Our
analysis, as already explained in the Introduction, agrees with
the general studies made in the 1970s and 1980s in QED
[43,70–74] since one must include with an equal footing both
the field and matter fluctuations in a self-consistent QED in
order to preserve rigorously unitarity and causality.

C. Discussions concerning unitarity and Hamiltonians

Two issues are important to emphasize here. First, observe
that in the limit where the background susceptibility χ1(x,τ )
vanishes, then the term E(1)(x,t) = D(v)(x,t) in general does
not cancel at any time, and therefore the coupling to photonic
modes can not be omitted even in practice from the evolution at
finite time t . This is is particularly important in nanophotonics
where an incident exiting photon field interact with a localized
nanoantenna. It is therefore crucial to analyze further the
impact of our findings on the quantum dynamics of polaritons

in presence of sources such as quantum fluorescent emitters.
This will the subject of a subsequent article.

The second issue concerns the Hamiltonian definition
in the formalism. Indeed, the definition of the full system
Hamiltonian H (t) was previously given for the homogeneous
medium case in Sec. III G. We showed [see Eq. (3.74)] that
H (t) is given by

H (t) =
∫

d3x :
B(x,t0)2 + E(x,t0)2

2
: +H

(0)
M (t), (4.28)

where H
(0)
M (t) is the material Hamiltonian defined

in Eq. (3.71) and which depends only on the
free mode operators f†(0)

ω (x,t), f(0)
ω (x,t). This H

(0)
M (t) =∫

d3x
∫ +∞

0 dωh̄ωf†(0)
ω (x,t)f(0)

ω (x,t) is the Hamiltonian con-
sidered by the noise-Langevin approach and the remaining
term [see Eq. (3.75)] Hrem(t) = ∫

d3x : B(x,t0)2+E(x,t0)2

2 : is an
additional constant of motion. This constant proved to be
irrelevant for all practical purposes since the only surviving
electromagnetic fields (i.e., if t0 → −∞) are the induced (s)
modes which are generated by the fluctuating dipole density
P(0)(x,t) (see, however, the different remarks concerning time
symmetry at the end of Sec. III G). Now, for the inhomoge-
neous problem the complete reasoning leading to Eq. (4.28) is
still rigorously valid. The main difference being that in general
the constant of motion Hrem(t) = ∫

d3x : B(x,t0)2+E(x,t0)2

2 : is not
irrelevant at all since the (0) electromagnetic modes are not in
general vanishing even if t0 → −∞.

In order to clarify this point, we should now physically inter-
pret the term Hrem(t). We first start with the less relevant term
in optics: the longitudinal polariton. Indeed, the longitudinal
field is here decoupled from the rest and evolves independently
using the Lagrangian densityL‖(x,t) defined in Eq. (4.14) (this
should not be necessarily true if the polaritons are coupled to
external sources such as fluorescent emitters). We thus get the
following Hamiltonian:

H‖(t) = :
∫

d3x

{∫ +∞

0
dω

[∂tXω,‖(x,t)]2

2

+ ω2X2
ω,‖(x,t)

2
+ P2

‖(x,t)

2

}
: . (4.29)

H‖(t) is a constant of motion and can used (with the
Hamiltonian formalism) to deduce the evolution equation [see
Eq. (4.15)] and the solution Eq. (4.16). Since H‖(t) is a constant
of motion, we have H‖(t) = H‖(t0) and from the form of the
solution we obtain the equivalent formula

H‖(t) =
∫

d3x

[∫ +∞

0
dωh̄ωf†(0)

ω,‖ (x,t)f(0)
ω,‖(x,t)

+ : P(0)
‖ (x,t0)2 :

2

]
, (4.30)

where we have clearly by definition

Hrem,‖(t) =
∫

d3x
: P(0)

‖ (x,t0)2 :

2
(4.31)
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and thus H‖(t) = H
(0)
M,‖(t) + Hrem,‖(t) [with H

(0)
M,‖(t) =∫

d3x
∫ +∞

0 dωh̄ωf†(0)
ω,‖ (x,t)f(0)

ω,‖(x,t)]. While Hrem,‖(t) is a con-
stant of motion, it is not irrelevant here since the equivalence of
Eqs. (4.29) and (4.30) leads to the complete solution (4.16) for
Xω,‖(x,t). Oppositely, taking H

(0)
M,‖(t) and omitting Hrem,‖(t)

would lead to the free solution X(0)
ω,‖(x,t) in contradiction

with the dynamical law. This again stresses the importance
of keeping all contributions in the evolution and Hamiltonian.

In order to analyze the transverse field Hamiltonian,
we should comment further on the difference between the
description using the F potential used in this work and the most
traditional treatment using the A potential (in the Coulomb
gauge). Indeed, by analogy with the separation between (d)
and (v) modes discussed in Sec. VI A we can using the
A potential vector representation get a separation between
free-space modes A(v′)(x,t) and source field A(d ′)(x,t). Here,
we label these modes by an additional prime for reasons which
will become clear below. First, the source field contribution
(d ′) is given by

A(d ′)(x,t) = 1

c

∫ t−t0

0
dτ

∫
d3x′�v(τ,|x − x′|) · J⊥(x′,t − τ )

(4.32)

and with by definition J⊥(x,t) = ∂tP⊥(x,t). Importantly, we
have A(d ′)(x,t0) = 0 meaning also A(v′)(x,t0) = A(x,t0). The
free-space modes (v′) are easily obtained using a plane-wave
expansion as

A(v′)(x,t) =
∑
α,j

−ic

√
h̄

2ωα

a
(v)
α,j (t)ε̂α,j�α(x) + c.c., (4.33)

where a
(v)
α,j (t) = aα,j (t0)e−iωα (t−t0). Using the A potential, we

therefore get for the free electromagnetic fields

B(v′)(x,t) =
∑
α,j

√
h̄ωα

2
a

(v)
α,j (t)k̂α × ε̂α,j�α(x) + c.c.,

E(v′)
⊥ (x,t) =

∑
α,j

√
h̄ωα

2
a

(v)
α,j (t)ε̂α,j�α(x) + c.c. (4.34)

These transverse fields satisfy Maxwell’s equation in vacuum
like the free fields given by Eq. (4.2) do as well. However, it
should now be clear that these two sets of free fields given
either by Eq. (4.34) or (4.2) are not equivalent. To see that,
we must express the source field E(d ′)(x,t) and B(d ′)(x,t). The
details are given in Appendix I. The importance is that while
E‖(x,t0) = −P‖(x,t0), which is Eq. (4.6), the transverse field

E(d ′)
⊥ obtained in this representation is not identical to E(d)

⊥ . In
particular, this transverse field vanishes at t0:

E(d ′)
⊥ (x,t0) = 0 (4.35)

and therefore at this initial time it differs by an amount
−P⊥(x,t0) from the scattered field given by Eq. (4.5). We thus
get E(x,t0) = E(v′)

⊥ (x,t0) − P‖x,t0). Importantly, by comparing
Eqs. (4.5) and (4.35) we obtain a relation for the free-space
modes in the two representations using either the F or A

potential vectors:

E(v′)
⊥ (x,t0) = E(v)

⊥ (x,t0) − P⊥(x,t0). (4.36)

This is reminiscent from the relation E⊥(x,t0) = D(x,t0) −
P⊥(x,t0). It shows that while the two fields E(v′)

⊥ and E(v)
⊥

are solutions of the same Maxwell’s equations in vacuum,
they are not defined by the same initial conditions. We must
therefore be extremely careful when dealing with the modes
in order not to get confused with the solutions chosen. We
also mention that the scattered magnetic field B(d ′) given in
Appendix I [see Eq. (I7)] and using the A potential also
differs from the scatted magnetic field obtained using the F
potential. Moreover, a comparison with the formulas obtained
in Sec. VI A shows that B(d ′)(x,t) differs from B(d)(x,t) but
that at time t0 both vanish so that B(d ′)(x,t0) = B(d)(x,t0) = 0.
It implies that B(v′)(x,t0) = B(x,t0) = B(v)(x,t0) so that while
B(v′)(x,t) differs from B(v)(x,t) for t > t0, they become equal
at the initial time t0. Again, this stresses the difference between
the representations based either on F or A.

Now, this description using A leads to a clear interpretation
of Hrem,⊥(t) = ∫

d3x : B(x,t0)2+E⊥(x,t0)2

2 :. Indeed, at time t0
only the (v′) solution survives for the transverse part of the
field. Importantly, the set of free-space solutions (v′) actually
depends on lowering and rising operators a

(v′)
α,j (t), a

†(v′)
α,j (t)

defined such that [a(v′)
α,j (t),a†(v′)

β,k (t)] = δα,βδj,k and a
(v′)
α,j (t) =

a
(v′)
α,j (t0)e−iωα (t−t0) with a

(v′)
α,j (t0) = aα,j (t0). Therefore, by a

reasoning similar to the one leading to Eq. (3.74) we deduce

H⊥(t) =
∫

d3x
∫ +∞

0
dωh̄ωf†(0)

ω,⊥(x,t)f(0)
ω,⊥(x,t)

+
∑
α,j

h̄ωαa
†(v′)
α,j (t)a(v′)

α,j (t). (4.37)

We clearly here get a physical interpretation of the remaining
term Hrem,⊥(t) as an energy sum over the transverse photon
modes propagating in free space. These free photons are
calculated using the A potential vector. From Eq. (4.36) we
know that these modes differ in general from those in the F
potential vector since E(v′)

⊥ (x,t0) is not identical to E(v)
⊥ (x,t0)

unless the polarization density P⊥(x,t0) cancels (which is the
case in vacuum).

Now, in classical physics the meaning of expansion (4.37) is
clear: it corresponds to a diagonalization of the Hamiltonian in
terms of normal coordinates, i.e., like for classical mechanics
[88], and similarly to the Huang, Fano, Hopfield procedure for
polaritons [23–25]. In QED, the problem is different since, as
explained in details in Ref. [75], fields like aα,j (t) and fω,⊥(x,t)
(and their Hermitian conjugate variables) do not commute,
unlike it is for cα,j (t) and fω,⊥(x,t). It is thus not possible
to find common eigenstates of the A(v′) operators for photons
(in the usual representation) and for X(0)

ω associated with the
material fluctuations. This is not true for the representation
using F (v) and X(0)

ω operators, but now the full Hamiltonian
is not fully diagonalized as seen from Eq. (4.28). Only if
one neglects the remaining term Hrem(t), like it was done in
Refs. [27–29,32,34], can we diagonalize the Hamiltonian.
However, then we get the troubles concerning unitarity,
causality, and time symmetry discussed along this paper.
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V. GENERAL CONCLUSION AND PERSPECTIVES

The general formalism discussed in this article using the
F potential provides a natural way for dealing with QED in
dispersive and dissipative media. It is based on a canonical
quantization procedure generalizing the early work of Huttner
and Barnett [16–22] for polaritons in homogeneous media.
The method is unambiguous as far as we conserve all terms
associated with free photons F(0) and material fluctuations
P(0) for describing the quantum evolution. In particular, in
order to preserve the full unitarity and the time symmetry of
the coupled system of equations we have to include in the
evolution terms associated with fluctuating electromagnetic
modes E(0), B(0) which have a classical interpretation as
polariton eigenmodes and can not in general be omitted if the
medium is spatially localized in vacuum. We also discussed an
alternative representation based on the potential A instead of
F. At the end, both representations are clearly equivalent and
could be used for generalizing the present theory to other linear
media including tensorial anisotropy, magnetic properties, and
constitutive equations coupling E and B (magneto and/or
electric media). Moreover, the most important finding of this
article concerns the comparisons between the generalized
Huttner-Barnett approach, advocated here, which involves
both photonic and material-independent degrees of freedom,
and the Langevin-noise method proposed initially by Gruner
and Welsch [34] which involves only the material degrees
of freedom associated with fluctuating currents. We showed
that rigorously speaking the Langevin-noise method is not
equivalent to the full Hamiltonian QED evolution coupling
photonic and material fields. Only in the regime where the
dissipation of the bulk surrounding medium is nonvanishing at
spatial infinity could we, i.e., for all practical purposes, identify
the two theories. However, even with such assumptions, the
Langevin-noise model is breaking time symmetry since it
considers only decaying modes while the full Hamiltonian
theory used in our work accepts also growing waves associated
with antithermodynamic processes. We claim that this is
crucial in nanophotonics and/or plasmonics where quantum
emitters, spatially localized, are coupled to photonic and
material modes available in the complex environment, e.g.,
near nanoantennas in vacuum (i.e., in a spatial domain where
losses are vanishing at infinity). Since most studies consider the
interaction between molecules or quantum dots and plasmon
and/or polaritons using the Langevin-noise approach, we think
that it is urgent to clarify and clean up the problem by analyzing
the coupling regime using the full Hamiltonian evolution
advocated in this work. Finally, we suggest that this work
could impact the interpretation and discussion of pure QED
effects such as the Casimir force or the Lamb shift which
are strongly impacted by polariton and plasmon modes. All
this will be the subject for future works and, therefore, the
present detailed analysis is expected to play an important role
in nanophotonics and plasmonics for both the classical and
quantum regimes.
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APPENDIX A: ABSENCE OF ZEROS IN THE UPPER
HALF-PLANE

The relation

ω2
α − ε̃(ω)ω2 = 0 (A1)

admits zeros �(±)
α,m as postulated in the text. Writing ω = ω′ +

iω′′ one of such zero and ε̃(ω) = ε′ + iε′′ the condition (A1)
means

(ω′2 − ω′′2)ε′ − 2ω′ω′′ε′′ = ω2
α,

(ω′2 − ω′′2)ε′′ + 2ω′ω′′ε′ = 0 (A2)

from which we deduce after eliminating (ω′2 − ω′′2)

2ω′ω′′ ε
′2 + ε′′2

ε′′ = −ω2
α. (A3)

Therefore, a necessary but not sufficient condition for having
zeros is that if ω′ω′′ > 0 for such a zero, then ε′′ < 0 while if
ω′ω′′ < 0, then ε′′ > 0. Actually, we also see from Eq. (A2)
that the zeros are allowed to be located along the real or
imaginary axis of the complex ω plane if ε′′ = 0 along
these axes. This is in general not possible for a large class
of permittivity function. Consider, for example, the quite
general causal permittivity, i.e., satisfying the Kramers-Krönig
relation, defined by

ε̃(ω) = 1 +
∑

n

fn

ω2
n − (ω + iγn)2

(A4)

with fn,γn > 0. Then, we have also

ε̃(ω′ + iω′′)

= 1 +
∑

n

fn

ω2
n − ω′2 + (ω′′ + γn)2 + 2iω′(γn + ω′′)[

ω2
n − ω′2 + (ω′′ + γn)2

]2 + 4ω′2(γn + ω′′)2
.

(A5)

Clearly, ε′′ > 0 if ω′ > 0 and ω′′ � 0 in contradiction with
the necessary condition for zeros’ existence mentioned before.
This reasoning is valid in one quarter plane but now, if ω′ + iω′′
is a zero, −ω′ + iω′′ is also a zero. Therefore, the absence of a
zero in the quarter plane ω′ > 0, ω′′ � 0 implies the absence of
zero in the second quarter plane ω′ < 0, ω′′ � 0 and therefore
Eq. (A1) does not admit any zero in the upper half-plane for
a very usual permittivity like Eq. (A4). Actually, the case
ω′ = 0 should be handled separately. We find from Eq. (A5)
that for such value, ε′′ = 0. This is acceptable in order to
have a zero existence in agreement with Eq. (A2). However,
from Eq. (A2) we find also that if a zero exists along the axis
ω′ = 0, then we should have as well ε′ = −ω2

α/ω′′2 < 0. This
is in contradiction with Eq. (A5) which implies ε′ > 0. This
completes the proof for the permittivity given by Eq. (A4).

The question concerning the generality of the proof is,
however, still open. Huttner and Barnett mentioned the
existence of such a proof in the Landau and Lifschitz textbook
[90] but it is relevant to detail the missing proof here. In order
to get the complete result, we will use a method used by
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AURÉLIEN DREZET PHYSICAL REVIEW A 95, 023831 (2017)

FIG. 1. Integration path deformation leading to the proof that
Eq. (A1) has no solution in the upper frequency half-plane (see
Refs. [90,103]).

Landau and Lifshitz (see Ref. [103], p. 380). In the complex
ω plane, we define Z(ω) = ε̃(ω)ω2. From the properties of
ε̃(ω) we deduce Z(−ω∗) = Z(ω)∗. This implies that Z is
real along the imaginary axis and that Z′(ω′) = Z′(−ω′) and
Z′′(ω′) = −Z′′(−ω′) along the real axis. Furthermore, due
to causality we have ε̃′′(ω′) > 0 and therefore Z′′(ω′) > 0 if
ω′ > 0 along the real axis. Now, we consider the closed contour
integral (see Fig. 1) ∮

C

dω

2iπ

dZ(ω)
dω

Z(ω) − a
(A6)

along C made of the real axis and of the semicircle C+ of
infinite radius R → +∞ in the upper half-plane. However,
a is a real number and since Z is not real along the real axis
there is no pole along C unless a is infinite or null. Therefore,
since Z is analytical in the upper half-plane, Eq. (A6) gives
the numbers of zeros of Z(ω) − a = 0 in this half-space.

We then rewrite Eq. (A6) as an integral in the complex Z

plane: ∮
C ′

dZ

2iπ

1

Z − a
, (A7)

where C ′ is the image of C along the mapping ω �→ Z(ω).
In particular, the origin O is mapped on itself while the
semicircle of radius R is mapped onto the circle of radius
R2. The half real axis OA corresponding to ω > 0 is mapped
onto a complex curve located in the upper half-plane of
the complex Z space (since Z′′ > 0 along this half line).
Similarly, the second half axis OB is mapped in the lower
half-plane. As shown on the figure, if 0 < a < +∞, then the
contour integral omits the point Z = a and there is no pole
involved in the integral which therefore vanishes. We thus
deduce that Eq. (A1) has no solution in the upper half plane
in the ω space, which is the proof needed.

APPENDIX B: POLAR EXPANSION OF A CAUSAL
GREEN FUNCTION

The calculation of Hα(τ ) defined by the Bromwich integral
(3.9) for τ > 0

Hα(τ ) =
∫ γ+i∞

γ−i∞

idp

2π

epτ

ω2
α + [1 + χ̄ (p)]p2

=
∫ +∞

−∞

dω

2π

e−iωτ

ω2
α − ε̃(ω)(ω + iη)2

e+ητ (B1)

can be handled after closing the contour integral in the lower
plane. However, since 1

ω2
α−ε̃(ω)ω2 is not analytical in such lower

plane, we must include the poles �(±)
α,m (all located in the lower

plane, see Appendix A), i.e., the residues, in the integral. We
use the separation

1

ω2
α − ε̃(ω)ω2

= 1

2ωα

[
1

ωα − ω
√

ε̃(ω)
+ 1

ωα + ω
√

ε̃(ω)

]
(B2)

and express it as a function of ω = �(±)
α,m + ρeiϕ near each pole

(i.e., in the limit ρ → 0). We get

1

ωα ± ω
√

ε̃(ω)
≈ ± 1

ρeiϕ ∂[ω
√

ε̃(ω)]
∂ω

∣∣
�

(±)
α,m

. (B3)

From the condition �(±)
α,m

∗ = −�(∓)
α,m and the equality

{ ∂[ω
√

ε̃(ω)]
∂ω

}∗ = ∂[−ω∗√ε̃(−ω∗)]
∂−ω∗ = ∂[ω

√
ε̃(ω)]

∂ω
|−ω∗ we then get for

τ > 0 after integration in the lower plane Eq. (3.10) and
Hα(τ ) = 0 for τ < 0 (after integration in the upper plane where
no pole is present). The value at τ = 0 deserves some careful
analysis. Indeed, if τ = 0 the integration along the semicircle
does not vanish exponentially with it radius R and if we choose
to integrate in the upper half-plane (where there is no pole)
we get

∫ +∞
−∞

dω
2π

1
ω2

α−ω2 ε̃(ω) = − ∫ π

0
idϕR eiϕ

2π
1

ω2−R2e2iϕ = O(1/R)

if R → +∞ since ε̃(R eiϕ) = 1 in this limit in the upper half
plane. Therefore, we have indeed Hα(0) = 0 and the function
is continuous at τ = 0. Of course, the null value for negative
time t ′ has no meaning since the Laplace transform is only
interested in the evolution for positive time.

This leads to the sum rule∑
m

1

ωα

Im

⎧⎨⎩ 1
∂[ω

√
ε̃(ω)]

∂ω

∣∣
�

(−)
α,m

⎫⎬⎭ = 0. (B4)

The free term q
(0)
α,j (t) is defined as

q
(0)
α,j (t) =

∫ γ+i∞

γ−i∞

idp

2π

[1 + χ̄(p)][pq ′
α,j (0) + q̇ ′

α,j (0)]ep(t−t0)

ω2
α + [1 + χ̄ (p)]p2

= Uα(t − t0)q̇α,j (t0) + U̇α(t − t0)qα,j (t0) (B5)

with

Uα(τ ) =
∫ γ+i∞

γ−i∞

idp

2π

[1 + χ̄ (p)]epτ

ω2
α + [1 + χ̄(p)]p2

=
∑
m

−ε̃(�(−)
α,m)

2iωα

e−i�
(−)
α,mτ

∂[ω
√

ε̃(ω)]
∂ω

∣∣
�

(−)
α,m

+ c.c. (B6)

Like for Hα we get Uα(0) = 0. The last line of Eq. (B5) is
therefore justified from the fact that the Laplace transform of
d
dτ

Uα(τ ) is pUα(p) − Uα(0) = pUα(p). Now, the boundary
condition at t = t0 imposes d

dτ
Uα(τ )|τ=0 = 1. Therefore, from

Eq. (C1) we deduce the second sum rule:

∑
m

1

ωα

Re

⎧⎨⎩ ε̃(�(−)
α,m)�(−)

α,m

∂[ω
√

ε̃(ω)]
∂ω

∣∣
�

(−)
α,m

⎫⎬⎭ = 1. (B7)

The value at τ = 0 is not defined univocally since d
dτ

Uα(τ )
defined through the Bromwich integral of Uα(τ ) is discon-
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tinuous. We point out that considering a direct integration at
τ = 0 could lead to contradictions since the integration along
C± does not vanish. If we choose to integrate in the upper
half-plane (where there is no pole), we get

∫ +∞

−∞

dω

2π

−iωε̃(ω)

ω2
α − ε̃(ω)ω2

= −
∫ π

0

dϕR2e2iϕ

2π

1

ω2 − R2e2iϕ
= 1/2 (B8)

if R → +∞ since ε̃(R eiϕ) = 1 in this limit in the upper half-
plane. We would get d

dτ
Uα(τ )|τ=0 = 1/2 (a similar calculation

could be done in the lower space including poles and residues
and we would obtain once again 1 − 1/2 = 1/2). Here, we
considered carefully the limit to prevent us from such a
contradiction.

APPENDIX C: THE SOURCE FIELD: A VECTORIAL
AND SCALAR POTENTIAL DISCUSSION

The source field can be written as F(s) = ∑
α,j q

(s)
α,j ε̂α,j�α .

After some algebras, we get

F(s)(x,t) =
∫ γ+i∞

γ−i∞

idp

2π
ep(t−t0)

∫
d3x′Gχ (|x − x′|,ip)

·∇′ × P′(0)
(x′,p)

=
∫ +∞

−∞
dω e−iωt

∫
d3x′Gχ (|x − x′|,ω + i0+)

·∇′ × P̃
(0)

(x′,ω), (C1)

where we introduced the Green function

Gχ (|x − x′|,ip) = c2
∑

α

�α(x)�∗
α(x′)

ω2
α + [1 + χ̄ (p)]p2

= c2
∫

d3k
(2π )3

eik·(x−x′)

c2k2 + [1 + χ̄(p)]p2

= e−p
√

1+χ̄ (p)|x−x′|/c

4π |x − x′| (C2)

computed by contour integration in the complex plane
and solution of ∇2Gχ (|x − x′|,ip) − [1 + χ̄ (p)]p2

c2 Gχ (|x −
x′|,ip) = δ3(x − x′). Of course, along the real axis γ → 0+

we get Gχ (|x − x′|,ω + i0+) = eiω
√

ε̃(ω)|x−x′ |/c
4π |x−x′ | which is the usual

Green function for a homogeneous medium. We can also write
this field without introducing ω by using the Green propagator
�χ (τ,R) = ∫ γ+i∞

γ−i∞
idp

2π
epτGχ (R,ip) which leads to

F(s)(x,t) =
∫ t−t0

0
dτ

∫
d3x′�χ (τ,|x − x′|)

·∇′ × P(0)(x′,t − τ ). (C3)

We have also

�χ (t − t ′,|x − x′|)
= c2

∑
α

Hα(t − t ′)�∗
α(x′)�α(x)

= c2
∑
α,m

−1

2iωα

e−i�
(−)
α,m(t−t ′)�∗

α(x′)�α(x)
∂[ω

√
ε̃(ω)]

∂ω

∣∣
�

(−)
α,m

+ c.c. (C4)

which represent the generalization of retarded propagator
expansion for a lossy and dispersive medium. The role of
causality is here crucial since the modes are always damped
when the time is growing in the future direction as expected
from pure thermodynamical considerations. This means in
particular that �χ (t,|x − x′|) tends to vanish exponentially as
t goes to infinity. Importantly, in the vacuum limit [χ (τ ) → 0]
we get naturally

�v(τ,R) = c2
∑

α

sin ωατ

ωα

�∗
α(x′)�α(x)

= δ(τ − R/c)

4πR
(C5)

and in the limit t0 → −∞ we obtain the retarded potential

F(s)(x,t) =
∫

d3x′ ∇′ × P(0)(x′,t − |x − x′|/c)

4π |x − x′| . (C6)

However, in the vacuum limit we have also P(0)(x,t) → 0,
therefore, F(s)(x,t) actually vanishes and we get in this limit
F(x,t) = F(0)(x,t) as it should be. Now, from Eq. (C3) and
from the field definition we easily get the integral formulas for
D(s)(x,t) and B(s)(x,t):

D(s)(x,t) = ∇ × ∇ ×
∫ t−t0

0
dτ

∫
d3x′�χ (τ,|x − x′|)

· P(0)(x′,t − τ ),

B(s)(x,t) = ∇ ×
∫ t−t0

0
dτ

∫
d3x′ 1

c
�χ (τ,|x − x′|)

· ∂t−τ P(0)(x′,t − τ )

+∇ ×
∫

d3x′ 1
c
�χ (t − t0,|x − x′|) · P(0)(x′,t0).

(C7)

These equations have a clear interpretation in terms of
generalized Hertz potentials. In particular, taking the limit
t0 → −∞ and using the properties of convolutions, together
with the fact that �χ (t − t0,|x − x′|) → 0, we get

D(s)(x,t) = ∇ × ∇ × �(x,t),

B(s)(x,t) = ∇ × 1

c
∂t�(x,t) (C8)

with

�(x,t) =
∫ +∞

−∞
dt ′

∫
d3x′�χ (t − t ′,|x − x′|)P(0)(x′,t ′).

(C9)
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APPENDIX D: COMPLEMENT CONCERNING THE
GREEN DYADIC TENSOR IN A HOMOGENEOUS MEDIUM

By rewriting Gχ (x,x′,ip) in Eq. (3.20) we get after some
rearrangements

Gχ (x,x′,ip) = Gχ (x,x′,ip)I

− c2

p2[1 + χ̄ (p)]
∇ ⊗ ∇Gχ (x,x′,ip)

= −c2∇ × ∇ × [Gχ (x,x′,ip)I]

p2[1 + χ̄ (p)]
(D1)

which involves the scalar Green function defined in Eq. (C2).
From

Sχ (x,x′,ip) = ∇ × ∇ × Gχ (x,x′,ip)

= −p2

c2
[1 + χ̄(p)]Gχ (x,x′,ip) + Iδ3(x − x′)

(D2)

we have also

Sχ (x,x′,ip) = ∇ × ∇ × [Gχ (x,x′,ip)I] + Iδ3(x − x′). (D3)

These formulas must be taken carefully since they are not
actually valid at the source location, i.e., if x → x′ due to
the bad convergence of the series defining the dyadic Green
function. After regularization, we can obtain the result

Gχ (x,x′,ip) = P.V.

{
Gχ (x,x′,ip)I

− c2

p2[1 + χ̄ (p)]
∇ ⊗ ∇Gχ (x,x′,ip)

}
+ c2

p2[1 + χ̄ (p)]
Lδ3(x − x′) (D4)

and

Sχ (x,x′,ip) = (I − L)δ3(x − x′)

+ P.V.{∇ × ∇ × [Gχ (x,x′,ip)I]} (D5)

with L a dyadic term depending on the way we define the
principal value operator (P.V.) [38,104]:

L =
∮

(�)

n ⊗ R
4πR2

dS. (D6)

For a small exclusion spherical volume surrounding the point
x′ we get L = I/3, i.e., the depolarization field predicted by
the Clausius-Mosotti formula [84].

In the particular case χ = 0 we write Gχ (x,x′,ip) =
Gv(x,x′,ip) and similarly for other Green functions. We also
consider the time evolution which in vacuum relies on the
propagators

Qv(τ,x,x′) =
∫ γ+i∞

γ−i∞

idp

2π
epτ Sv(x,x′,ip),

Uv(τ,x,x′) =
∫ γ+i∞

γ−i∞

idp

2π
epτ Gv(x,x′,ip). (D7)

Explicit calculations lead to

Qv(τ,x,x′) =
∑
α,j

ω2
α

sin (ωατ )

ωα

�α(x)�∗
α(x′)ε̂α,j ⊗ ε̂α,j

(D8)

and similarly for the transverse part of Uv(τ,x,x′):

Uv,⊥(τ,x,x′) =
∑
α,j

c2 sin (ωατ )

ωα

�α(x)�∗
α(x′)ε̂α,j ⊗ ε̂α,j ,

(D9)

while for the longitudinal part we get

Uv,‖(τ,x,x′) = c2τ
∑

α

�α(x)�∗
α(x′)k̂α ⊗ k̂α. (D10)

We deduce automatically the boundary conditions
Uv,⊥(0,x,x′) = Uv,‖(0,x,x′) = Qv(0,x,x′) = 0. We also
obtain

∂τ Uv,⊥(τ,x,x′) =
∑
α,j

c2 cos (ωατ )�α(x)�∗
α(x′)ε̂α,j ⊗ ε̂α,j

(D11)

and

∂τ Uv,‖(τ,x,x′) = c2
∑

α

�α(x)�∗
α(x′)k̂α ⊗ k̂α (D12)

from which we obtain the boundary condition ∂τ Uv

(τ,x,x′)τ=0 = c2I
∑

α �α(x)�∗
α(x′) = c2Iδ3(x − x′). We thus

obtain

Qv(τ,x,x′) = ∇ × ∇ × Uv(τ,x,x′)

= −∂2
τ Uv(τ,x,x′)

c2
. (D13)

Finally, from Eq. (D4) we find explicitly for the time-
dependent Qv(τ,x,x′) field

Qv(τ,x,x′) = (I − L)δ3(x − x′)δ(τ )

+ P.V.{∇ × ∇ × [�v(τ,x,x′)I]}. (D14)

Some important remarks should be done here concerning the
use of inverse Laplace transforms at time τ = 0. Indeed,
rigorously speaking the Bromwich integral in Eqs. (D7)
vanishes for τ < 0. Therefore, it is better to write

θ (τ )Qv(τ,x,x′) =
∫ γ+i∞

γ−i∞

idp

2π
epτ Sv(x,x′,ip),

θ (τ )Uv(τ,x,x′) =
∫ γ+i∞

γ−i∞

idp

2π
epτ Gv(x,x′,ip). (D15)

This implies that a Heaviside function 	(τ ) (defined by 	 = 1
for τ � 0 and 	 = 0 for τ < 0) should be included on both
sides of Eqs. (D8), (D9), and (D10). An important observation
is that with this definition, θ (τ )Qv(τ,x,x′) or θ (τ )Qv(τ,x,x′)
are causal since they vanish for negative time. These functions
are therefore retarded propagator. This is not the case for
Eqs. (D8), (D9) and (D10) without the 	(τ ) function on both
sides. Now, this is important for time derivatives since we have
by definition of the Bromwich integral θ (τ )∂τ Uv(τ,x,x′) =∫ γ+i∞
γ−i∞

idp

2π
epτ [pGv(x,x′,ip) − Uv(0,x,x′)] and similarly
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θ (τ )∂2
τ Uv(τ,x,x′) = ∫ γ+i∞

γ−i∞
idp

2π
epτ [p2Gv(x,x′,ip) − pUv(0,

x,x′) − U̇v(0,x,x′)]. Using the boundary conditions at τ = 0
for Uv we can rederive consistently Eqs. (D11), (D12)
and (D14) which are now understood with Heaviside
functions θ (τ ) on both sides of all equations. In particular,
we have θ (τ )[∇ × ∇ × Uv(τ,x,x′) + 1

c2 ∂
2
τ Uv(τ,x,x′)] = 0.

However, if we define the retarded Green function as
Uret,v(τ,x,x′)θ (τ )Uv(τ,x,x′) and consider directly the second-
order time derivative of Uret,v we get instead − 1

c2 ∂
2
τ Uret,v

(τ,x,x′) = 	(τ )[Qv(τ,x,x′) − Iδ3(x − x′)δ(τ )] and thus

∇ × ∇ × Uret,v(τ,x,x′) + 1

c2
∂2
τ Uret,v(τ,x,x′)

= Iδ3(x − x′)δ(τ ) (D16)

with a singular term in the equation [we removed the θ (τ )
function in the right-hand term since δ(τ )	(τ ) = δ(τ )	(0) =
δ(τ )]. The choice between Uret,v or Uv is unambiguous and
results obtained are therefore equivalent with both definitions.

APPENDIX E: TRANSVERSE POLARITONS IN THE
HOPFIELD MODEL: A CONSISTENCY CHECK

From Eq. (3.38) we deduce in the Hopfield model(
ω2

0 − �2)̃P(�) = ω2
pẼ(�). (E1)

This leads to the solution

P̃(�) = ω2
p[

ω2
0 − (� + i0+)2

] Ẽ(�) + P̃(�)(in) (E2)

and therefore to

∇ × ∇ × Ẽ(�) − �2

c2
ε̃(�)Ẽ(�) = �2

c2
P̃(�)(in), (E3)

where the permittivity is given by the lossless Lorentz-Drude

formula ε̃(�) = 1 + ω2
p

[ω2
0−(�+i0+)2]

. For the transverse fields, we

expand the different fields as

Ẽ⊥(x,�) =
∑
α,j

Ẽα,j (�)ε̂α,j�α(x),

P̃⊥(x,�) =
∑
α,j

P̃α,j (�)ε̂α,j�α(x) (E4)

with Ẽα,j (�)∗ = ηj Ẽ−α,j (−�) and P̃α,j (�)∗ =
ηj P̃−α,j (−�). Now, we write P̃(in)

⊥ (�) = γ δ(� − ω0) +
γ ∗δ(� + ω0) with γ (x) a transverse vector field. We thus
have P̃α,j (�)(in) = γα,j δ(� − ω0) + ηjγ

∗
−α,j δ(� + ω0) with

γα,j = ∫
d3x γ (x) · ε̂α,j�α(x)∗. We thus get the equation[
ω2

α − �2ε̃(�)
]
Ẽα,j (�) = �2P̃α,j (�)(in). (E5)

Near the singularities ω0 we get[
ω2

α − ω2
0−i

πω2
pω0

2
δ(� − ω0)

]
Ẽα,j (�) = ω2

0γα,j δ(�−ω0)

(E6)

and therefore supposing the regularity (as for the longitudinal

case) we have −i
πω2

p

2ω0
Ẽα,j (ω0) = γα,j . The secular equation

[ω2
α − �2̃ε(�)]Ẽα,j,±(�) = 0 associated with the transverse

modes can be easily solved and this indeed leads to

Ẽ⊥(x,�) =
∑
α,j,±

Ẽα,j,±(�)ε̂α,j�α(x) (E7)

with Ẽα,j,±(x,�) = φα,j,±δ(� − �α,±) + ηjφ
∗
−α,j,±δ(� +

�α,±) with φα,j,± an amplitude coefficient for the transverse
polariton mode. Importantly, we again get from the regularity
condition Ẽα,j (ω0) = 0 and thus γα,j = 0 like for the
longitudinal mode. This implies P̃(�)(in) = 0 and from

Eq. (E2) we get P̃⊥(�) = ω2
p

[ω2
0−(�+i0+)2]

Ẽ⊥(�). At the end of

the day, we obtain the following field amplitudes:

Eα,j,±(t) = φα,j,±e−i�α,±t + ηjφ−α,j,±e−i�α,±t ,

Bα,j,±(t) = ωα

�α,±
(ηjφα,j,±e−i�α,±t − φ−α,j,±e−i�α,±t )

(E8)

and

Pα,j,±(t)

ω2
p

= (φα,j,±e−i�α,±t + ηjφ−α,j,±e−i�α,±t )

ω2
0 − �2

α,±
,

iṖα,j,±(t)

ω2
p�α,±

= (φα,j,±e−i�α,±t − ηjφ−α,j,±e−i�α,±t )

ω2
0 − �2

α,±
(E9)

[using definitions similar to Eq. (E7)]. These define
the Hopfield transformation between the old variables
Eα,j,±(t), Bα,j,±(t), Pα,j,±(t), Ṗα,j,±(t) and the new polari-
tonic variables representing the normal coordinates of the
problem φα,j,± and φ−α,j,±. Up to a normalization, this is
equivalent to the work by Hopfield.

APPENDIX F: MILONNI’S MODEL AND RISING AND
LOWERING POLARITON OPERATORS

We start with the amplitude for the transverse polariton field

E
(+)
α,j,m(t) =

∫
δωα,m

dω
ω2

ω2
α − ε̃(ω)ω2

√
h̄σω

πω
f

(0)
ω,α,j (t), (F1)

where δωα,m is a frequency window centered on the polariton
pulsation ωc 
 Re[�α,m] := �′

α,m. This field is equivalently
written as

E
(+)
α,j,m(t) =

∫ +∞

0

dω Fα,m(ω)ω2

ω2
α − ε̃(ω)ω2

√
h̄σω

πω
f

(0)
ω,α,j (t), (F2)

where Fα,m(ω) is a window function such as Fα,m(ω) 
 1 if
ω belongs to the interval δωα,m and Fα,m(ω) 
 0 otherwise.
From the commuting properties of f

(0)
ω,α,j (t) [see Eqs. (2.8)

and (3.29)] we deduce the commutator

[E(+)
α,j,m(t),E(−)

β,l,n(t)]

= h̄

π
δα,βδj,l

∫ +∞

0

dω ω4ε̃′′(ω)∣∣ω2
α − ε̃(ω)ω2

∣∣2 Fα,m(ω)Fβ,n(ω)

(F3)
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with Fα,m(ω)Fβ,n(ω) 
 δn,mFα,m(ω). Now, consider the inte-
gral

I =
∫ +∞

0
dω

ω4ε̃′′(ω)∣∣ω2
α − ε̃(ω)ω2

∣∣2 Fα,m(ω)

=
∫ +∞

0
dω

ω4ε̃′′(ω)[
ω2

α − ε̃′(ω)ω2
]2 + ω4ε̃′′(ω)2

Fα,m(ω). (F4)

Since for weak losses the integrand is extremely peaked on the
value �α,m, we can write I as

I 

∫ +∞

−∞
dω

�4
α,mε̃′′(�α,m)[

ω2
α − ε̃′(ω)ω2

]2 + �4
α,mε̃′′(�α,m)2

. (F5)

We use the approximation ω2
α − ε̃′(ω)ω2 
 ω2

α − ε̃′(�α,m)

�2
α,m− (ω−�α,m) d[ε̃′(ω)ω2]

dω
|�α,m

= − (ω − �α,m) d[ε̃′(ω)ω2]
dω

|�α,m

which is valid near the pole where the condition ω2
α 


ε̃′(�α,m)�2
α,m approximately holds for transverse polaritons.

We thus get

I = 1

ε̃′′(�α,m)

∫ +∞

−∞
du

γ 2

u2 + γ 2

= π�2
α,m

d[ε̃′(ω)ω2]
dω

∣∣
�α,m

= π�α,m

2

d�2
α,m

dω2
α

(F6)

with γ 2 = { �2
α,mε̃′′(�α,m)

d[ε̃′(ω)ω2]
dω

|�α,m

}
2

and u = ω − −�α,m and where

we used the integral
∫ +∞
−∞ du

γ 2

u2+γ 2 = πγ which is easily
calculated in the complex plane. From this we finally obtain
the commutator of Eq. (3.65). We point out that the result
does not explicitly depend on the extension of the frequency
windows δωα,m if losses and dispersion are weak enough to
have γ � δωα,m.

For the longitudinal polariton field, we have a similar
calculation. Starting with the definition

E(+)
α,m(t) =

∫ +∞

0
dω Fα,m(ω)

−1

ε̃(ω)

√
h̄σω

πω
f

(0)
ω,α,‖(t), (F7)

we can calculate the commutator [E(+)
α,m,‖(t),E(−)

β,n,‖(t)]. We
have

[E(+)
α,m,‖(t),E(−)

β,n,‖(t)]

= h̄

π
δα,β

∫ +∞

0
dω

ε̃′′(ω)

|ε̃(ω)|2 Fα,m(ω)Fβ,n(ω) (F8)

with again Fα,m(ω)Fβ,n(ω) 
 δn,mFα,m(ω). We have to evalu-
ate the integral

I =
∫ +∞

0
dω

ε̃′′(ω)

|ε̃(ω)|2 Fα,m(ω)

=
∫ +∞

0
dω

ε̃′′(ω)

[ε̃′(ω)]2 + ε̃′′(ω)2
Fα,m(ω), (F9)

which like for the transverse modes in the limit of weak losses
and dispersion leads after straightforward calculations to

I 
 π∣∣ dε̃′(ω)
dω

∣∣
�′

α,m

∣∣ . (F10)

From this we deduce the commutator given in Eq. (3.69).

APPENDIX G: DERIVING THE TOTAL SCATTERED
FIELD USING THE GREEN DYADIC FORMALISM

Starting with dyadic formalism, we get for the (d) electric
field

D(d)(x,t) =
∫ γ+i∞

γ−i∞

idp

2π
ep(t−t0)

∫
d3x′ · Sv(x,x′,ip) · P′(x′,p).

(G1)

Equivalently, by using the inverse Laplace transform (see Ap-
pendix D for details) Qv(τ,x,x′) = ∫ γ+i∞

γ−i∞
idp

2π
epτ Sv(x,x′,ip),

we obtain in the time domain

D(d)(x,t) =
∫ t−t0

0
dτ

∫
d3x′Qv(τ,x,x′) · P(x′,t − τ ). (G2)

Like before (see Appendix D), we should rigorously introduce
a multiplication by the Heaviside function 	(t − t0) on the
left-hand term (this will be omitted in the following since by
definition we are only interested in the evolution for t � t0).
This analysis implies D(d)(x,t0) = 0 and therefore we have
D(x,t0) = D(v)(x,t0).

Moreover, most studies consider instead of the propagator
Sv(x,x′,ip) the dyadic Green function Gv(x,x′,ip) which is a
solution of

∇ × ∇ × Gv(x,x′,ip) + p2

c2
Gv(x,x′,ip)

= δ(x − x′) = Iδ3(x − x′) (G3)

and which is actually connected to Sv(x,x′,ip) by
Sv(x,x′,ip) = Iδ3(x − x′) − p2

c2 Gv(x,x′,ip). This dyadic
Green function is very convenient since practical calculations
very often involve not the displacement field D, but the
electric field E = D − P. We obtain

E(x,t) = E(v)(x,t) −
∫ γ+i∞

γ−i∞

idp

2π
ep(t−t0)

×
∫

d3x′ p
2

c2
Gv(x,x′,ip) · P′(x′,p). (G4)

Alternatively, in the time domain we have for the scattered
field E(d)(x,t) = E(x,t) − E(v)(x,t)

E(d)(x,t) =
∫ t−t0

0
dτ

∫
d3x′Qv(τ,x,x′) · P(x′,t − τ ) − P(x,t).

(G5)

This can be rewritten by using the propagator Uv(τ,x,x′) =∫ γ+i∞
γ−i∞

idp

2π
epτ Gv(x,x′,ip) together with Eq. (D13) as

E(d)(x,t) = −
∫ t−t0

0
dτ

∫
d3x′ ∂

2
τ Uv(τ,x,x′)

c2

· P(x′,t − τ ) − P(x,t) (G6)

or again if we want to introduce the retarded Green function
[see Eq. (D16)] as

E(d)(x,t) = −
∫ t−t0

0
dτ

∫
d3x′ ∂

2
τ Uret,v(τ,x,x′)

c2
· P(x′,t − τ ).

(G7)
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Finally, we can also use the dyadic formalism to represent
the magnetic field B(d)(x,t). Starting from Eq. (2.6) which
yields ∇ × E′(x,p) = −p

c
B′(x,p) + B(x,t0)

c
and therefore

B′(x,p) = B′(v)
(x,p) +

∫
d3x′ p

c
∇ × Gv(x,x′,ip)

· P′(x′,p), (G8)

where we introduced the definition B′(v)
(x,p) = ∇×D′ (v)

(x,p)
−p/c

+
B(x,t0)

p
[here we used the condition B(x,t0) = B(v)(x,t0)]. In the

time domain, we thus directly obtain

B(d)(x,t) =
∫ t−t0

0
dτ

∫
d3x′ 1

c
∇ × ∂τ Uv(τ,x,x′) · P(x′,t − τ )

(G9)

which yields B(d)(x,t0) = 0 as expected.

APPENDIX H: EVOLUTION OF THE
ELECTROMAGNETIC FIELD IN THE TIME DOMAIN

In the time domain we get for the electric field discussed in
Sec. IV B

E(0)(x,t) = D(v)(x,t) −
∫ t−t0

0
dτ

∫
d3x′ ∂

2
τ Uv(τ,x,x′)

c2

×
∫ t−τ−t0

0
dτ ′χ (x′,τ ′)E(0)(x′,t − τ − τ ′)

−
∫ t−t0

0
χ (x,τ ′)dτ ′E(0)(x,t − τ ′) (H1)

and for the magnetic field

B(0)(x,t) = B(v)(x,t) +
∫ t−t0

0
dτ

∫
d3x′ 1

c
∇ × ∂τ Uv(τ,x,x′)

×
∫ t−τ−t0

0
dτ ′χ (x′,τ ′)E(0)(x′,t − τ − τ ′), (H2)

which are completed by the constitutive relation D(0)(x,t) =∫ t−t0
0 dτ χ (x′,τ )E(0)(x,t − τ ) + E(0)(x,t). Similarly, we obtain

for the new propagator

Uχ (τ,x,x′) =
∫ γ+i∞

γ−i∞

idp

2π
epτ Gχ (x,x′,ip) (H3)

the integral formula

Uχ (t,x,x′′) = Uv(t,x,x′′) −
∫ t

0
dτ

∫
d3x′ ∂

2
τ Uv(τ,x,x′)

c2

×
∫ t−τ

0
χ (x′,τ ′)dτ ′Uχ (t − τ − τ ′,x′,x′′)

−
∫ t

0
dτ ′χ (x,τ ′)Uχ (t − τ ′,x,x′′) (H4)

We have the important properties Uχ (t = 0,x,x′′) =
0, ∂tUχ (t,x,x′)|t=0 = c2δ3(x − x′)I. The total electromagnetic

field in the time domain is thus expressed as

E(x,t) = E(0)(x,t) −
∫ t−t0

0
dτ

∫
d3x′ ∂

2
τ Uχ (τ,x,x′)

c2

· P(0)(x′,t − τ ) − P(0)(x,t), (H5)

B(x,t) = B(0)(x,t)

+
∫ t−t0

0
dτ

∫
d3x′ 1

c
∇ × ∂τ Uχ (τ,x,x′) · P(0)(x′,t−τ )

(H6)

with E = E(s) + E(0), B = B(s) + B(0). Finally, the consti-
tutive relation for the scattered displacement field D(s) =
D − D(0) reads as D(s)(x,t) = ∫ t−t0

0 dτ χ (x′,τ )E(s)(x,t − τ ) +
E(s)(x,t) + P(0)(x,t).

APPENDIX I: DESCRIPTION OF THE SCATTERED FIELD
USING THE STANDARD COULOMB GAUGE

In the usual Coulomb gauge representation, the longitudinal
contribution E(d ′)

‖ (x,t) is given by the usual instantaneous
Coulomb field

E(d ′)
‖ (x,t) = −∇[V (x,t)]

= ∇
[∫

d3x′ ∇′ · P(x′,t)
4π |x − x′|

]
= −P‖(x,t). (I1)

Since there is no other longitudinal contribution, this leads
to E‖(x,t0) = −P‖(x,t0) which is Eq. (4.6). As mentioned al-
ready, this is the usual result. However, the most important term
here is the transverse source field E(d ′)

⊥ (x,t) = − 1
c
∂A(d ′)(x,t).

We get for this term

E(d ′)
⊥ (x,t) = − 1

c2

∫ t−t0

0
dτ

∫
d3x′�v(τ,|x − x′|)

· ∂2
t−τ P⊥(x′,t − τ ) − 1

c2

∫
d3x′�v(t − t0,|x − x′|)

· ∂t0 P⊥(x′,t0), (I2)

which is also written as

E(d ′)
⊥ (x,t) = − 1

c2

∫ t−t0

0
dτ

∫
d3x′Uv,⊥(τ,x,x′)

· ∂2
t−τ P(x′,t − τ ) − 1

c2

∫
d3x′Uv,⊥(t − t0,x,x′|)

· ∂t0 P(x′,t0). (I3)

Equivalently, we have in the frequency domain

E(d ′)
⊥ (x,t) = −

∫ γ+i∞

γ−i∞

idp

2π
ep(t−t0)

∫
d3x′Gv(x,x′,ip)

·
[
p2

c2
P′(x′,p) − pP⊥(x′,t0)

]
. (I4)
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The scattered magnetic field B(d ′) is given by

B(d ′)(x,t) = ∇ ×
∫ t−t0

0
dτ

∫
d3x′ 1

c
�v(τ,|x − x′|) · ∂t−τ P⊥(x′,t − τ )

=
∫ t−t0

0
dτ

∫
d3x′ 1

c
∇ × Uv(τ,x,x′) · ∂t−τ P(x′,t − τ ) (I5)

or, equivalently, by

B(d ′)(x,t) =
∫ t−t0

0
dτ

∫
d3x′ 1

c
∇ × ∂τ Uv(τ,x,x′) · P(x′,t − τ ) −

∫
d3x′ 1

c
∇ × Uv(t − t0,x,x′) · P(x′,t0). (I6)

In the frequency domain, this gives

B(d ′)(x,t) =
∫ γ+i∞

γ−i∞

idp

2π
ep(t−t0)

∫
d3x′∇ × Gv(x,x′,ip) ·

[
p

c
P′(x′,p) − P(x′,t0)

c

]
. (I7)
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[51] S. Scheel, L. Knöll, and D.-G. Welsch, Phys. Rev. A 58, 700

(1998).

023831-26

https://doi.org/10.1103/PhysRev.74.950
https://doi.org/10.1103/PhysRev.74.950
https://doi.org/10.1103/PhysRev.74.950
https://doi.org/10.1103/PhysRev.74.950
https://doi.org/10.1103/PhysRevA.36.3803
https://doi.org/10.1103/PhysRevA.36.3803
https://doi.org/10.1103/PhysRevA.36.3803
https://doi.org/10.1103/PhysRevA.36.3803
https://doi.org/10.1103/PhysRevA.43.467
https://doi.org/10.1103/PhysRevA.43.467
https://doi.org/10.1103/PhysRevA.43.467
https://doi.org/10.1103/PhysRevA.43.467
https://doi.org/10.1103/PhysRevA.68.013822
https://doi.org/10.1103/PhysRevA.68.013822
https://doi.org/10.1103/PhysRevA.68.013822
https://doi.org/10.1103/PhysRevA.68.013822
https://doi.org/10.1103/PhysRevA.42.6845
https://doi.org/10.1103/PhysRevA.42.6845
https://doi.org/10.1103/PhysRevA.42.6845
https://doi.org/10.1103/PhysRevA.42.6845
https://doi.org/10.1088/0953-8984/5/31/020
https://doi.org/10.1088/0953-8984/5/31/020
https://doi.org/10.1088/0953-8984/5/31/020
https://doi.org/10.1088/0953-8984/5/31/020
https://doi.org/10.1080/09500349514551741
https://doi.org/10.1080/09500349514551741
https://doi.org/10.1080/09500349514551741
https://doi.org/10.1080/09500349514551741
https://doi.org/10.1103/PhysRevA.54.2419
https://doi.org/10.1103/PhysRevA.54.2419
https://doi.org/10.1103/PhysRevA.54.2419
https://doi.org/10.1103/PhysRevA.54.2419
https://doi.org/10.1103/PhysRevA.70.053826
https://doi.org/10.1103/PhysRevA.70.053826
https://doi.org/10.1103/PhysRevA.70.053826
https://doi.org/10.1103/PhysRevA.70.053826
https://doi.org/10.1103/PhysRevA.47.3346
https://doi.org/10.1103/PhysRevA.47.3346
https://doi.org/10.1103/PhysRevA.47.3346
https://doi.org/10.1103/PhysRevA.47.3346
https://doi.org/10.1103/PhysRevA.57.2134
https://doi.org/10.1103/PhysRevA.57.2134
https://doi.org/10.1103/PhysRevA.57.2134
https://doi.org/10.1103/PhysRevA.57.2134
https://doi.org/10.1103/PhysRevA.67.043811
https://doi.org/10.1103/PhysRevA.67.043811
https://doi.org/10.1103/PhysRevA.67.043811
https://doi.org/10.1103/PhysRevA.67.043811
https://doi.org/10.1103/PhysRevLett.101.190504
https://doi.org/10.1103/PhysRevLett.101.190504
https://doi.org/10.1103/PhysRevLett.101.190504
https://doi.org/10.1103/PhysRevLett.101.190504
https://doi.org/10.1103/PhysRevA.79.053845
https://doi.org/10.1103/PhysRevA.79.053845
https://doi.org/10.1103/PhysRevA.79.053845
https://doi.org/10.1103/PhysRevA.79.053845
https://doi.org/10.1103/PhysRevA.82.012325
https://doi.org/10.1103/PhysRevA.82.012325
https://doi.org/10.1103/PhysRevA.82.012325
https://doi.org/10.1103/PhysRevA.82.012325
https://doi.org/10.1209/0295-5075/16/2/010
https://doi.org/10.1209/0295-5075/16/2/010
https://doi.org/10.1209/0295-5075/16/2/010
https://doi.org/10.1209/0295-5075/16/2/010
https://doi.org/10.1103/PhysRevA.46.4306
https://doi.org/10.1103/PhysRevA.46.4306
https://doi.org/10.1103/PhysRevA.46.4306
https://doi.org/10.1103/PhysRevA.46.4306
https://doi.org/10.1209/0295-5075/18/6/003
https://doi.org/10.1209/0295-5075/18/6/003
https://doi.org/10.1209/0295-5075/18/6/003
https://doi.org/10.1209/0295-5075/18/6/003
https://doi.org/10.1103/PhysRevLett.68.3698
https://doi.org/10.1103/PhysRevLett.68.3698
https://doi.org/10.1103/PhysRevLett.68.3698
https://doi.org/10.1103/PhysRevLett.68.3698
https://doi.org/10.1103/PhysRevA.52.4823
https://doi.org/10.1103/PhysRevA.52.4823
https://doi.org/10.1103/PhysRevA.52.4823
https://doi.org/10.1103/PhysRevA.52.4823
https://doi.org/10.1103/PhysRevA.53.4567
https://doi.org/10.1103/PhysRevA.53.4567
https://doi.org/10.1103/PhysRevA.53.4567
https://doi.org/10.1103/PhysRevA.53.4567
https://doi.org/10.1103/PhysRev.103.1202
https://doi.org/10.1103/PhysRev.103.1202
https://doi.org/10.1103/PhysRev.103.1202
https://doi.org/10.1103/PhysRev.103.1202
https://doi.org/10.1103/PhysRev.112.1555
https://doi.org/10.1103/PhysRev.112.1555
https://doi.org/10.1103/PhysRev.112.1555
https://doi.org/10.1103/PhysRev.112.1555
https://doi.org/10.1098/rspa.1951.0166
https://doi.org/10.1098/rspa.1951.0166
https://doi.org/10.1098/rspa.1951.0166
https://doi.org/10.1098/rspa.1951.0166
https://doi.org/10.1103/PhysRevA.63.043809
https://doi.org/10.1103/PhysRevA.63.043809
https://doi.org/10.1103/PhysRevA.63.043809
https://doi.org/10.1103/PhysRevA.63.043809
https://doi.org/10.1103/PhysRevA.70.013816
https://doi.org/10.1103/PhysRevA.70.013816
https://doi.org/10.1103/PhysRevA.70.013816
https://doi.org/10.1103/PhysRevA.70.013816
https://doi.org/10.1209/epl/i2004-10131-8
https://doi.org/10.1209/epl/i2004-10131-8
https://doi.org/10.1209/epl/i2004-10131-8
https://doi.org/10.1209/epl/i2004-10131-8
https://doi.org/10.1088/1751-8113/40/13/025
https://doi.org/10.1088/1751-8113/40/13/025
https://doi.org/10.1088/1751-8113/40/13/025
https://doi.org/10.1088/1751-8113/40/13/025
https://doi.org/10.1103/PhysRevA.73.063808
https://doi.org/10.1103/PhysRevA.73.063808
https://doi.org/10.1103/PhysRevA.73.063808
https://doi.org/10.1103/PhysRevA.73.063808
https://doi.org/10.1103/PhysRevA.87.033824
https://doi.org/10.1103/PhysRevA.87.033824
https://doi.org/10.1103/PhysRevA.87.033824
https://doi.org/10.1103/PhysRevA.87.033824
https://doi.org/10.1088/1367-2630/12/12/123008
https://doi.org/10.1088/1367-2630/12/12/123008
https://doi.org/10.1088/1367-2630/12/12/123008
https://doi.org/10.1088/1367-2630/12/12/123008
https://doi.org/10.1103/PhysRevA.51.3246
https://doi.org/10.1103/PhysRevA.51.3246
https://doi.org/10.1103/PhysRevA.51.3246
https://doi.org/10.1103/PhysRevA.51.3246
https://doi.org/10.1103/PhysRevA.53.1818
https://doi.org/10.1103/PhysRevA.53.1818
https://doi.org/10.1103/PhysRevA.53.1818
https://doi.org/10.1103/PhysRevA.53.1818
https://doi.org/10.1103/PhysRevA.54.5227
https://doi.org/10.1103/PhysRevA.54.5227
https://doi.org/10.1103/PhysRevA.54.5227
https://doi.org/10.1103/PhysRevA.54.5227
https://doi.org/10.1088/0034-4885/59/5/002
https://doi.org/10.1088/0034-4885/59/5/002
https://doi.org/10.1088/0034-4885/59/5/002
https://doi.org/10.1088/0034-4885/59/5/002
https://doi.org/10.1103/PhysRev.83.34
https://doi.org/10.1103/PhysRev.83.34
https://doi.org/10.1103/PhysRev.83.34
https://doi.org/10.1103/PhysRev.83.34
https://doi.org/10.1103/PhysRevA.81.033812
https://doi.org/10.1103/PhysRevA.81.033812
https://doi.org/10.1103/PhysRevA.81.033812
https://doi.org/10.1103/PhysRevA.81.033812
https://doi.org/10.1103/PhysRevA.11.230
https://doi.org/10.1103/PhysRevA.11.230
https://doi.org/10.1103/PhysRevA.11.230
https://doi.org/10.1103/PhysRevA.11.230
https://doi.org/10.1103/PhysRevA.30.1185
https://doi.org/10.1103/PhysRevA.30.1185
https://doi.org/10.1103/PhysRevA.30.1185
https://doi.org/10.1103/PhysRevA.30.1185
https://doi.org/10.1103/PhysRevLett.82.1160
https://doi.org/10.1103/PhysRevLett.82.1160
https://doi.org/10.1103/PhysRevLett.82.1160
https://doi.org/10.1103/PhysRevLett.82.1160
https://doi.org/10.1063/1.1370118
https://doi.org/10.1063/1.1370118
https://doi.org/10.1063/1.1370118
https://doi.org/10.1063/1.1370118
https://doi.org/10.1038/nphoton.2009.144
https://doi.org/10.1038/nphoton.2009.144
https://doi.org/10.1038/nphoton.2009.144
https://doi.org/10.1038/nphoton.2009.144
https://doi.org/10.1088/1464-4258/4/5/356
https://doi.org/10.1088/1464-4258/4/5/356
https://doi.org/10.1088/1464-4258/4/5/356
https://doi.org/10.1088/1464-4258/4/5/356
https://doi.org/10.1103/PhysRevA.58.700
https://doi.org/10.1103/PhysRevA.58.700
https://doi.org/10.1103/PhysRevA.58.700
https://doi.org/10.1103/PhysRevA.58.700


QUANTIZING POLARITONS IN INHOMOGENEOUS . . . PHYSICAL REVIEW A 95, 023831 (2017)
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