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Metastability in the driven-dissipative Rabi model
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We explore the long-time dynamics of the quantum Rabi model in a driven-dissipative setting and show that, as
the atom-cavity coupling strength becomes larger than the cavity frequency, a new time scale emerges. This time
scale, much larger than the natural relaxation time of the atom and the cavity, leads to long-lived metastable states
susceptible to being observed experimentally. By applying a Floquet-Liouville approach to the time-dependent
master equation, we systematically investigate the set of possible metastable states. We find that the properties of
the metastable states can differ drastically from those of the steady state and relate these properties to the energy
spectrum of the Rabi Hamiltonian.
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I. INTRODUCTION

In the context of cavity quantum electrodynamics (QED),
a common way to probe the quantum nature of the interaction
between light and matter is to drive the system with a classical
light field and record the statistics of the photons emitted from
the cavity. For example, a sub-Poissonian statistics of output
photons is an important evidence of effective photon-photon
interactions induced by the atom-cavity coupling [1]. Such
genuine quantum effects have been observed in a variety of
systems, in the so-called strong-coupling regime of cavity
QED, when the atom-cavity coupling strength is larger than
any dissipation rate [2–5].

Recently, experimental progress in tailoring the light-matter
interaction has made it possible to achieve a coupling strength
that is comparable to or even larger than the cavity frequency
ωc [6–14]. From a theoretical perspective, the possibility
of exploring this so-called ultrastrong-coupling regime has
stimulated numerous studies on the quantum Rabi model that
takes into account the counter-rotating terms in the atom-cavity
interaction [15–21]. Since dissipation also plays a crucial role
in most quantum optical setups, a meaningful description in
this context involves a driven-dissipative scenario [22–26], in
which the interplay between cavity losses and the external field
drives the system into a steady state.

In such a driven-dissipative setting of the Rabi model, it
was shown recently in Ref. [27] that, as the coupling strength
increases from 0.1ωc to 3ωc, a series of transitions occurs in
the output photon statistics, leading to a breakdown and revival
of the so-called photon blockade effect and to a reversion
to noninteracting photons. It demonstrates that the intricate
interplay among the ultrastrong light-matter coupling, the
external coherent driving, and the dissipation stabilizes the
system into a steady state exhibiting a rich quantum-optical
phenomenology. In this paper, going beyond the study of
steady-state properties, we investigate the transient dynamics
of the driven-dissipative Rabi model and show that it exhibits
metastability in the ultrastrong-coupling regime. Namely, we
find that the convergence to the steady state is governed by a
time scale significantly larger than the decay times of the atom
and the cavity, giving rise to long-lived metastable states.

When the atom-cavity coupling is much smaller than the
cavity frequency, the time dependency of the Liouvillian
can be eliminated by a change of reference frame [1]. All
the information on the dynamics and metastable states is

then encoded in the eigenvalues and eigenfunctions of the
time-independent Liouvillian [28–33]. The breakdown of the
rotating-wave approximation in the ultrastrong coupling does
not allow for such a simple transformation and the master
equation remains time dependent [25,27]. To circumvent this
issue we employ a Floquet-Liouville approach [34,35]: By
applying Floquet theory to the Lindblad master equation
we reduce the time-dependent master equation to a time-
independent eigenvalue problem in an enlarged Hilbert space.

Within this theoretical framework, we compute the long-
time dynamics in the weak-excitation regime, for a driving field
resonant with the second available transition. We find that the
corresponding Liouvillian gap becomes significantly smaller
than the natural decay rates as one increases the atom-cavity
coupling strength and we relate this feature to the dressed-state
properties of the Rabi Hamiltonian. More specifically, a central
role is played by a parity shift occurring in the spectrum, result-
ing in the existence of two distinct decay channels. Metasta-
bility stems from the interplay between the two different time
scales involved in these two channels. The Floquet-Liouville
formalism also allows us to derive analytical expressions for
the set of all possible metastable states in terms of eigenvectors
of the Floquet-Liouvillian and to set bounds on the deviations
from the steady state. Finally, we discuss practical implications
of our analysis for future experiments probing the steady-state
properties of the driven-dissipative Rabi model.

The paper is organized as follows: The model is introduced
in Sec. II. The first numerical evidence of a separation of
time scales in the dynamics and the emergence of metastable
states are presented in Sec. III. Section IV is devoted to the
Floquet-Liouville formalism, which is applied in Sec. V to
a more thorough and systematic analysis of metastability. In
Sec. VI we evaluate the robustness of our findings when pure
dephasing noise is included in the model and we conclude
in Sec. VII. More details on Floquet theory are presented in
Appendix A and the proofs of some spectral properties of the
Floquet-Liouville operator are provided in Appendix B.

II. THE MODEL

We consider a single cavity mode coupled to a two-level
atom described by the Rabi Hamiltonian,

Hr = ωca
†a + ωaσ+σ− − g(a + a†)σx, (1)
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where we have introduced the photon annihilation operator
a, and the Pauli matrices σx, σy [with σ± = 1

2 (σx ± iσy)].
Here, ωc is the cavity frequency, ωa the atomic transition
frequency, and g the atom-cavity coupling strength. In the
following we focus on a resonant case, i.e., ωc = ωa . Note that
there is no general explicit expression for the eigenstates and
eigenvalues of the Rabi model. In the following, it is convenient
to label them by using an important symmetry property of
the Hamiltonian, namely that the parity of the total number
of excitations, � = exp[iπ (a†a + σ+σ−)], is a conserved
quantity. We denote by |�±

j 〉 the j th eigenstate (j = 0,1, . . .)
of the ± parity subspace and by E±

j the corresponding energy.
With these notations, the ground state of Hr is the state |�+

0 〉,
which is the lowest energy state of the + parity subspace, while
the first excited state of Hr , which corresponds to the lowest
energy state of the − parity subspace, is |�−

0 〉.
We focus in this paper on a driven-dissipative scenario

where the cavity is driven by a monochromatic coherent
field and both the cavity and the atom are coupled to their
environments, leading to dissipation. The total time-dependent
Hamiltonian of the system is

H (t) = Hr + F cos(ωdt)(a + a†), (2)

where F is the intensity of the driving field and ωd its
frequency. The time evolution of the density matrix ρ(t) is
governed by a master equation of the form

∂tρ = i[ρ,H (t)] + Laρ + Lσ ρ, (3)

where the term Laρ + Lσ ρ describes the dissipation of the
system excitations into the environment. In the ultrastrong-
coupling regime, it is crucial to take fully into account the
coupling between the atom and the cavity in the derivation
of the master equation [23,24]. In particular, the atom and
the cavity can no longer be regarded as being independently
coupled to their own environment and the jump operators must
involve transitions between eigenstates of the total atom-cavity
Hamiltonian [24]. A natural basis to express the correct master
equation is therefore the dressed-state basis {|�p

j 〉} with p =
±, in which the Hamiltonian (without driving) is diagonal. In
this basis, the dissipative part reads

Laρ + Lσ ρ =
∑
p=±

∑
k,j

	
(



pp̄

jk

)(
�

pp̄

jk + K
pp̄

jk

)
D

[∣∣�p

j

〉〈
�

p̄

k

∣∣],
(4)

where 	(x) is a step function, i.e., 	(x) = 0 for x � 0 and
	(x) = 1 for x > 0, and p̄ = −p. We have also introduced
the following notation:D[O] = OρO† − 1

2 (ρO†O + O†Oρ).
The quantities �

pp̄

jk and K
pp̄

jk denote the rates of transition from

a dressed-state |�p̄

k 〉 to |�p

j 〉 due to the atomic and cavity decay,
respectively; the transition rates are defined as [24,25]

�
pp̄

jk = γ



pp̄

jk

ωc

∣∣〈�p

j

∣∣(a − a†)
∣∣�p̄

k

〉∣∣2
,

K
pp̄

jk = κ



pp̄

jk

ωc

∣∣〈�p

j

∣∣(σ− − σ+)
∣∣�p̄

k

〉∣∣2
, (5)

where 

pp̄

jk = E
p̄

k − E
p

j is the transition frequency and γ and
κ are respectively the cavity and the atomic decay rates. Note

that the transition between states belonging to the same parity
space is forbidden because both operators a − a† and σ− − σ+
change the parity of the state. In Eqs. (4) and (5), the usual
quantum-optical master equation in which the jump operators
are simply a and σ− is recovered when the coupling strength
is much smaller than the cavity frequency.

In the following, we are interested in the long-time
dynamics of Eq. (3). As in most quantum-optical setups, the
relevant observables to characterize the system are correlation
functions of the output field. As shown in Ref. [25], the output
field in the ultrastrong coupling is proportional to an operator
Ẋ+, defined in the dressed-state basis as

Ẋ+ =
∑
p=±

∑
k,j

	
(



pp̄

jk

)



pp̄

jk

∣∣�p

j

〉〈
�

p

j

∣∣i(a† − a)
∣∣�p̄

k

〉〈
�

p̄

k

∣∣.
(6)

The two main correlation functions that we consider are the
intensity of the emitted photons, which is proportional to Iout =
〈Ẋ−Ẋ+〉, and the second-order correlation function, which
reads

g(2)(0) = 〈Ẋ−Ẋ−Ẋ+Ẋ+〉
〈Ẋ−Ẋ+〉2

. (7)

Note that except for a sufficiently small g, where the rotating
approximation on qubit-cavity coupling can be applied, Eq. (3)
generally does not have a particular rotating frame where the
equation becomes time independent. Therefore, the solution
has a residual oscillation at the driving frequency ωd even in
the t → ∞ limit. The steady-state properties are then obtained
by averaging the solution over several driving periods, which
corresponds to a time-integrated measurement in an actual
experiment [25].

III. LONG-TIME DYNAMICS AND SEPARATION
OF TIME SCALES

In Ref. [27] we have shown that in terms of output photon
statistics, the most interesting properties are obtained when
driving the second available transition, |�+

0 〉 → |�−
1 〉 (see

Fig. 5). We therefore also focus on this driving scenario in
all that follows. One of the main characteristics of the steady
state is then that the g(2)(0) function exhibits a nonmonotonic
behavior as a function of the coupling strength. More precisely,
four different phases of photon emission can be identified:
The photon blockade effect that is well known to occur in the
strong-coupling regime (γ /ωc,κ/ωc � g/ωc � 1) persists up
to a coupling strength g/ωc ∼ 0.45. It is then followed by
a breakdown and revival of the photon blockade effect (for
0.45 � g/ωc � 1 and 1 � g/ωc � 2.5, respectively) and a
transition to a noninteracting regime (for g/ωc � 2.5). These
results are summarized in Fig. 1, where the blue solid line
shows the output intensity Iout and g(2)(0) in the steady state as
a function of the coupling strength g/ωc. The intensity of the
driving field and the dissipation rates are chosen such that the
system stays in a weak-excitation regime: γ = κ = 10−2ωc

and F/γ = 0.1.
Figure 1 also shows the same quantities obtained for long

but finite simulation times τ (where the system is assumed to
be in the ground state at t = 0). For both finite-time and steady-
state values, fast oscillations are eliminated by averaging over
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FIG. 1. (a) Output intensity Iout and (b) second-order correlation
function g(2)(0) as a function of g/ωc for different simulation times
τ . The external driving field is resonant with the transition |�+

0 〉 →
|�−

1 〉 and its intensity is F/γ = 0.1. The dissipation parameters are
γ = κ = 10−2ωc.

one period of the driving frequency (a time much smaller
than the decay time) [25,27]. Surprisingly, we observe that
the long-time dynamics in the regime where 1 � g/ωc � 2.5,
often called the deep strong-coupling regime [18], sharply
stands out from other coupling strengths: The output intensity
and the correlation function are far from having reached their
steady-state values even after a time significantly longer than
the natural relaxation time, i.e., τ = 1000/γ , while for both
g < 1 and g > 2.5 the steady-state values are already reached
for γ τ = 10.

These unexpected, large discrepancies between the exact
steady-state values and the finite-time simulations in the
deep strong-coupling regime suggest the emergence of a new
relaxation time scale. To explore this further, we compute
numerically the exact long-time dynamics of the output
intensity for different values of g/ωc. In Fig. 2(a) Iout is shown
as a function of time τ , for times up to τγ = 1 × 105, and for
g/ωc = 1, 1.2, and 1.5. The driving and dissipation parameters
are the same as in Fig. 1. For g/ωc = 1 (blue dashed-dotted
line), there is only one time scale in the transient dynamics and
the steady-state value is reached for 1 < τγ < 10. This is a
common feature for any coupling strength g < 1. For g = 1.2
(dashed red lines), this simple picture is significantly modified.
The steady-state value is only reached for τγ > 1 × 103 and
two distinct phases in the transient dynamics are visible: A
first evolution leads the system to an intermediate state for
τγ ≈ 10, followed by a slower decay to the steady state.
This separation of time scales in the dynamics is greatly
amplified for g/ωc = 1.5 (solid yellow line). In this case,
the intermediate state is a long-lived metastable state. The
output intensity is quasiconstant for a large time interval
10 � τγ � 1 × 103 and reaches its asymptotic value only for
τγ ≈ 1 × 105. The transient dynamics is thus characterized
by a gap between the two time scales for fast and slow decay
processes, giving rise to metastable states.

The numerical results presented in Figs. 1 and 2 are one of
the main findings of the present paper. They are of significant
experimental relevance for any setup in which the time scale
of the experiment is shorter than the time necessary to reach
the steady state. In this case, the measured properties of the
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FIG. 2. Long-time dynamics. (a) Iout as a function of time for
different values of the coupling strength. For each point the result is
obtained by averaging over one period (of the driving field). There is
a clear emergence of metastability as g is increased. (b) The quantity
δIout = |Iout(τ ) − Iout(∞)|/Iout(∞) as a function of time. The same
averaging procedure over one period is applied. Black dotted lines
are exponential fits ∝e�0,1τ , where �0,1 is the nonzero eigenvalue of
the Floquet-Liouvillian with the smallest absolute real part.

system in the long-time limit would be that of metastable states
and not of the true steady state.

The principal aim of the remaining part of the paper is to
establish a proper understanding of our numerical observations
and explore the metastability in the driven-dissipative Rabi
model in a systematic fashion. In the case of a time-
independent master equation, the time scale of the transient
dynamics and the properties of the metastable states can be
understood in terms of spectral properties of the Liouvillian
governing the time evolution [33]. To tap into this existing
framework and investigate metastability in our time-dependent
setting, the master equation in Eq. (3) should therefore be cast
into a time-independent form. However, due to the presence
of the counter-rotating terms, there does not exist a reference
frame where the time dependency is eliminated. Instead, as we
see in the next section, a time-independent formulation can be
established by employing a Floquet-Liouville approach [34].

In this framework, eigenvalues of a Floquet-Liouvillian op-
erator will play the same role as those of the usual Liouvillian.
To illustrate this idea and motivate further the use of Floquet
theory, we anticipate what follows and show in Fig. 2(b) the
quantity δIout = |Iout(τ ) − Iout(∞)|/Iout(∞) as a function of
time. The different values of the coupling strength and the
other parameters correspond to that of Fig. 2(a). For each value
of g/ωc, the black dotted lines show an exponential fit with
the corresponding eigenvalue � of the Floquet-Liouvillian
operator, which is introduced in the following section. The
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perfect agreement in the long-time limit is consistent with
the separation of time scale described previously; after a
sufficiently long time, only one slow-decaying component
remains.

IV. FLOQUET-LIOUVILLE APPROACH

Floquet theory applies to linear differential equations with
periodic coefficients [36] and, in the present context, can be
used to reduce the time-dependent master equation to a time-
independent eigenvalue problem in an enlarged Hilbert space.
Although this so-called Floquet-Liouville approach is known
and has found applications in various fields [35,37], it has
not, to the best of our knowledge, been directly applied to the
current setting of the driven and dissipative Rabi model. We
therefore find it useful to present in this section the general
formalism that lies at the core of our analysis. Further details
on Floquet theory have also been included in Appendix A.
As a useful comparison we refer to Ref. [38], where Floquet
theory is applied to a closed Rabi model under strong driving.

The master equation given in Eq. (3) can be written as

∂tρ = L (t)ρ, (8)

where L is a periodic linear superoperator acting on the
density matrix ρ and satisfying L (t + T ) = L (t), where
T = 2π/ωd . In the following we denote by H the Hilbert
space of the system. (ρ is then an element of H2.)

The Floquet theorem states that there exist solutions of
Eq. (8) of the form

ρ(t) =
∑

α

cαe�αtRα(t). (9)

Here, Rα(t) is a periodic function of period T and �α is a
complex number, which are eigenfunctions and eigenvalues,
respectively, of the following operator:

[L (t) − ∂t ]Rα(t) = �αRα(t). (10)

Note that this last equation does not define a unique set
of eigenvalues and eigenfunctions {�α,Rα}; the following
transformation,

�α → �α − ikωd, (11)

Rα(t) → eikωd Rα(t), (12)

with k ∈ Z, gives exactly the same solution for ρ(t). In the
remainder of this section we therefore label the eigenvalues and
eigenfunctions with two indices α and k, the sets {�α,0Rα,0}
and {�α,k,Rα,k} being linked by the above transformation.

The key element in Eq. (10) is that all the functions
appearing in it are periodic. The problem can therefore be made
time independent by applying a Fourier transform. Equation
(10) becomes

∞∑
m=−∞

L (n−m)R
(m)
α,k + inωdR

(n)
α,k = �αR

(n)
α,k, (13)

where we have used the following convention for
the Fourier series: Rα,k(t) = ∑∞

n=−∞ R
(n)
α,ke

−inωd t , L (t) =∑∞
n=−∞ L (n)e−inωd t .
Equation (13) is an eigenvalue problem in an enlarged

Hilbert space and is sufficient, in this formulation, to find

the expression of ρ(t). For practical purposes, it is useful to
go one step further and make the structure of the enlarged
Hilbert space more explicit. This Hilbert space, sometimes
called Floquet space, is the space of T -periodic matrices onH2.
Formally, it is the tensor product H2 ⊗ T , where T denotes
the Hilbert space of T -periodic functions.

As a basis for the space T , a natural choice is obviously the
functions φn(t) = e−inωd t . Following Refs. [35,39], we denote
φn by |n) and write φn(t) = (t |n). With these notations, we
represent the periodic matrix Rα,k(t) by a vector |Rα,k〉〉 in
H2 ⊗ T , defined as

|Rα,k〉〉 =
∞∑

n=−∞
R

(n)
α,k ⊗ |n), (14)

and we have Rα,k(t) = (t |Rα,k〉〉 by definition. This equation
can therefore be seen as another way of writing the Fourier
series of a periodic function. Within this framework, the
eigenvalue problem of Eq. (13) can be written as

L̃ |Rα,k〉〉 = �α,k|Rα,k〉〉, (15)

where the operator L̃ acts on element of H2 ⊗ T .
As L̃ is not Hermitian, it is necessary to distinguish the

right eigenvectors defined above from the left eigenvectors
obeying

L̃ †|Lα,k〉〉 = �∗
α,k|Lα,k〉〉. (16)

We also introduce a scalar product on H2 ⊗ T ,

〈〈A|B〉〉 =
∑

n

Tr[A(n)†B(n)], (17)

which derives from the usual scalar product on T , (f |g) =
1
T

∫ T

0 f ∗(t)g(t)dt , and the scalar product on H2, 〈A|B〉 =
Tr[A†B].

Putting all this together, we can finally express the time
evolution of the density matrix, i.e., the solution of Eq. (8), in
terms of the eigenvalues and the left and right eigenfunctions of
the Floquet-Liouville operator L̃ . The first step is to express
an initial density matrix of the system ρ0 in Floquet space,
e.g., |ρ0〉〉 = ρ0 ⊗ |0), and then decompose it in terms of
eigenfunctions of L̃ ,

|ρ0〉〉 =
∑
α,k

cα,k|Rα,k〉〉, (18)

with cα,k = 〈〈Lα,k|ρ0〉〉. Note that for a given initial density
matrix ρ0, the choice of the |ρ0〉〉 is not unique, but this arbi-
trariness has no influence on the dynamics (see Appendix A
for a proof of this statement).

The time evolution of this initial state then immediately
follows as

|ρ(t)〉〉 =
∑
α,k

cα,ke
�α,k t |Rα,k〉〉, (19)

which is the solution of Eq. (8) expressed in the Floquet
space. In this expression, the nonperiodic part of the dynamics
appears explicitly in e�α,k t , while the periodic part of the
dynamics is implicitly encoded in |Rα,k〉〉. As a final step, the
solution can be expressed in the original Hilbert space using
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ρ(t) = (t |ρ(t)〉〉 and Rα,k(t) = (t |Rα,k〉〉; that is,

ρ(t) =
∑
α,k

cα,ke
�α,k tRα,k(t). (20)

Note that in Eq. (20) the summation is performed over both
indices α and k, while the Floquet theorem as expressed in
Eq. (9) involves only a sum over α. The sum over k can be
suppressed by using Eq. (12) and writing Eq. (20) in terms
of eigenvalues and eigenvectors belonging only to the “first
Brillouin zone”, �α,0 and |Rα,0〉〉. The final expression is then
strictly equivalent to Eq. (9) and reads

ρ(t) =
∑

α

cαe�α,0tRα,0(t), (21)

where we have introduced the more compact notations cα =∑
n cα,n.
The structure of L guarantees that one of the eigenvalues,

e.g., �0,0, is equal to zero [34]. The other eigenvalues are
complex with a negative real part that determines the different
time scales of the transient dynamics. Taking the limit t →
+∞ in Eq. (21), we also see that the asymptotic density matrix
is periodic and given by ρ∞(t) = c0R0,0(t). In addition, the
condition Tr[ρ∞(t)] = 1 implies that the coefficient c0 does
not depend on the initial state and is simply a normalization
constant. Absorbing it in the definition of R0(t), we can write
ρ∞ as

ρ∞(t) = R0,0(t). (22)

Equations (21) and (22) show that the theory presented in
this section gives the appropriate framework for investigating
long-time properties of the system. It provides a direct access
to the time scales involved and an efficient way to compute the
time evolution of ρ(t) for arbitrary long times without having to
perform any time integration of the master equation. In the next
section, we use these results to systematically investigate the
long-time dynamics and metastability in the driven-dissipative
Rabi model.

V. METASTABLE STATES

To apply the results of the previous section to our specific
setting, let us first give a more explicit expression for the
Liouville-Floquet operator corresponding to Eq. (3). Making
use of the notation introduced in Sec. II, the matrix elements
of ρ are expressed in the dressed-state basis as 〈�p

i |ρ|�p′
i ′ 〉,

where i,i ′ ∈ N and p,p′ ∈ {±}, and are therefore labeled by
a set of four indices {i,p,i ′,p′}. To simplify the notation in
the corresponding Floquet space we denote by a single greek
letter such a set of indices. Using also the basis |n) introduced
in the previous section for periodic functions, we deduce from
Eq. (13) that the matrix elements of the Floquet-Liouville
operator L̃ read

〈〈η,n|L̃ |β,m〉〉 = L (n−m)
ηβ + inωdδnmδηβ, (23)

where here L = i[·,H ] + La + Lσ . As in Sec. IV, L (k) refers
to the kth Fourier component of L . Note that the driving
frequency appears explicitly in L̃ in the form of a diagonal
term. Moreover, since the time dependency of the driving field

g/ω
c
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e[
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FIG. 3. Separation of time scales and Liouvillian gap. Real part of
the first three nonzero eigenvalues, �1,0 (dashed blue line), �2,0 (solid
red line), and �3,0 (yellow dotted line), as a function of g/ωc. The
eigenvalues are labeled in such a way that |Re[�α,0]| < |Re�α+1,0|.

is expressed through a cosine function, only matrix elements
of L̃ with n − m = 0 or ±1 are nonvanishing.

All the numerical results presented in this paper have
been obtained by diagonalizing L̃ as expressed in Eq. (23)
and computing the dynamics through Eq. (21). Within this
framework, the results of Fig. 2 are straightforward to interpret.
In particular, in the long-time limit, the reported exponential
decay is governed by the eigenvalue �α,0 of L̃ that satisfies
Re[�α,0] �= 0 and that has the smallest absolute real part.

More importantly, we can now define a general criterion
for the appearance of metastability in the system: Metastable
states exist if there is at least one nonzero eigenvalue �α,0

of L̃ satisfying |Re[�α,0]| � γ . For convenience, let us
label the eigenvalues of L̃ in such a way that |Re[�α,0]| <

|Re�α+1,0|. We show in Fig. 3 the real part of the first three
nonzero eigenvalues, �1,0, �2,0, and �3,0, as a function of
g/ωc. Remarkably, |Re[�1,0]| (blue dashed line) decreases
sharply for 1 � g/ωc � 2, and reaches 1 × 10−6γ while
|Re[�3,0]| and |Re[�2,0]| rapidly saturate around γ and 0.01γ ,
respectively. This predicts that metastable states are likely to
be observed for g � 1, and it is in good agreement with our
previous numerical observation shown in Fig. 1.

To go further, it is important to keep in mind that, unlike the
steady state, metastable states are not unique; the one observed
in an experiment will depend on the initial state. A natural
task is then to determine the set of all possible metastable
states and their properties. Once again, the Floquet-Liouville
formalism will prove to be the appropriate tool. Let us begin the
discussion by recalling two general results that can be deduced
from the structure of the master equation. These results are a
generalization to Floquet-Liouville formalism of metastability
theory as presented, e.g., in Ref [33]:

(i) If � is an eigenvalue of Eq. (10) and R(t) a correspond-
ing eigenfunction, then R†(t) is also an eigenfunction, and the
associated eigenvalue is �∗.

(ii) If � ∈ R, the left and right eigenfunctions R(t) and
L(t) can be chosen Hermitian. In terms of Fourier component,
this translates into R(−n) = R(n)†.
Proofs of these results are provided in Appendix B. A first
consequence is that the matrix R0,0 appearing in Eq. (22) is
Hermitian.

To find the general expression for the metastable states, we
rely on an additional property of �1,0 visible in Fig. 3: for
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g/ωc � 1.3, �1,0 not only satisfies |Re[�1,0]| � γ , but also
|Re[�1,0]| � |Re[�α,0]| for α > 1. This means that, after a
sufficiently long time, the density matrix will take the form

ρ(t) ≈ R0,0(t) + c1R1,0(t). (24)

Another important feature of �1,0 is that it is purely real.
The eigenfunction R1,0(t) can therefore be chosen Hermitian.
Moreover, we know from Eq. (22) that Tr[R0,0(t)] = 1 for
every time t , which in turn implies that Tr[R1,0(t)] = 0. Since
R1,0(t) is Hermitian, we have also c1 ∈ R.

Conversely, any matrix taking the form of Eq. (24) with
c1 ∈ R and satisfying the positivity requirement of the density
matrix is a possible metastable state. In particular, the set M
of metastable states is a convex subset of the set of density
matrices, D. Furthermore, M is parametrized by a single real
coefficient. The set of all possible values of c1 is therefore a
segment [cmin,cmax] ⊂ R.

To find cmax and cmin, let us go back to the general expression
for the coefficients cα = ∑

k cα,k . Using Eq. (17) for the scalar
product defining cα,k and assuming that the initial state |ρ0〉〉
is of the form ρ0 ⊗ |0), the coefficients cα can be written as

cα =
∑

k

Tr
[
L

(0)†
α,k ρ0

]
. (25)

As previously, it is more convenient to express every quantity
in terms of eigenfunctions Lα,0 only. It is possible through the
relation L

(0)
α,k = L

(k)
α,0, which is equivalent to Eq. (12). We find

cα =
∑

k

Tr
[
L

(k)†
α,0 ρ0

] = Tr[Lα,0(t = 0)ρ0], (26)

where the last equality follows from the definition of Lα,0(t)
and the fact that ρ0 is Hermitian. Applying this last result to
L1,0, we find that cmin is given by cmin = minρ∈D Tr[L1,0(t =
0)ρ]. A similar expression holds for cmax. Given the positivity
of ρ, the minimum is simply the smallest eigenvalue of
L1,0(t = 0) (which exists and is real since L1,0(t) is Hermi-
tian). We have therefore the final result,

cmin = min Sp[L1,0(t = 0)], (27)

cmax = max Sp[L1,0(t = 0)], (28)

where Sp denotes the spectrum. Any metastable state will then
be a convex combination of two extremal states:

ρmin = R0(t) + cminR1(t), (29)

ρmax = R0(t) + cmaxR1(t). (30)

Note that the results presented above are valid when
�1,0 satisfies |Re[�1,0]| � |Re[�α,0]| for α > 1. Figure 3
shows that it is not the case for g/ωc ∼ 1. Indeed, around
this value of the coupling strength, the three eigenvalues
�1,0, �2,0, and �∗

2,0 are of the same order of magnitude
and are all much smaller than γ . Hence, the general form
of the metastable states in this regime of parameters is
ρ(t) ≈ R0,0(t) + c1R1,0(t) + c2R2,0(t) + c∗

2R
†
2,0(t). However,

numerical simulations show that the eigenvalues of L2,0(t = 0)
are always much smaller than those of L1,0(t = 0) and thus
c2,c

∗
2 � c1. Therefore, R2,0(t) and R

†
2,0(t) do not contribute

g/ω
c
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FIG. 4. Extremal metastable states. The output intensity and
g(2)(0) of all possible metastable states for an arbitrary initial state lie
in between the extremal metastable states values (the orange dashed
line and the yellow solid line), which can be drastically different from
the steady-state value (blue dotted line). The observation time is set
to τγ = 1 × 103.

significantly to the dynamics, and the analysis of metastable
states based on Eq. (24) remains valid.

An overview of the properties of the metastable states is
given in Fig. 4. The output intensity and g(2)(0) in ρ∞, ρmin,
and ρmax are plotted as a function of the coupling strength. Note
that, by definition of the extremal states, all the information on
the set of metastable states is contained in ρmin and ρmax. The
values shown in Fig. 4 set bounds on the deviation from the
true steady-state value that can be observed in an experiment.
As expected from our previous results, it is for 1 � g/ωc � 2
that the differences between these three states in terms of
observables are the highest. In particular the photon statistics
differs radically, being sub-Poissonian for ρmin and strongly
super-Poissonian for ρmax. Although metastable states also
exist for higher values of g (g � 2), the value of Iout and g(2)(0)
converge to the steady-state value in this case. Comparing the
results of Fig. 1 and Fig. 4, we find that the metastable state
observed when the system is in its ground state at t = 0 is very
close to the state ρmin. Conversely, a metastable state close to
ρmax is obtained when the initial state is the first excited state
|�−

0 〉 (not shown).
A qualitative explanation for the difference in photon

statistics for ρmin and ρmax can be drawn from the dressed-
state properties of the Rabi model and the competing decay
processes at play. As shown in Fig. 5(a), when the transition
|�+

0 〉 → |�−
1 〉 is driven, there appear two decay channels for

g/ωc � 0.45, after a parity shift in the spectrum has occurred
[27]. The first decay channel involves the direct transition
|�−

1 〉 → |�+
0 〉, while the second one involves the cascaded

transition |�−
1 〉 → |�+

1 〉 → |�−
0 〉 → |�+

0 〉. Because the di-
rect transition involves only the emission of one photon, it
leads to sub-Poissonian statistics, while the cascaded transition
gives rise to additional fluctuations in the number of emitted
photons that lead to super-Poissonian statistics [27]. We
therefore expect that the competition between these two
decay processes will ultimately determine the output photon
statistics. More precisely, numerical simulations show that the
metastable state ρmin is mainly a statistical mixture of |�+

0 〉
and |�−

1 〉, namely ρmin ≈ λ0|�+
0 〉〈�+

0 | + λ3|�−
1 〉〈�−

1 |, with
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FIG. 5. (a) Energy spectrum of the Rabi Hamiltonian (without
driving). Black dotted lines indicate energy levels with an even
number of excitations while red solid lines correspond to an odd
number of excitations. Arrows show the available decay channels
when driving the second transition |�+

0 〉 → |�−
1 〉. The colors match

the one used in the lower panel for the transition rates. (b) Transition
rates between the different dressed states, χ+−

00 (green squares), χ+−
11

(blue circles), χ−+
01 (inverted purple triangles), and χ+−

01 (yellow
triangles), as a function of the coupling strength.

λ3 � λ0. The metastable state ρmax, on the other hand, is a
statistical mixture of |�−

0 〉 and |�+
1 〉, ρmax ≈ λ1|�−

0 〉〈�−
0 | +

λ2|�+
1 〉〈�+

1 |, with λ3/λ0 ≈ λ2/λ1. This means that ρmin and
ρmax can be reached when the dominant relaxation process is
the direct transition or the cascaded transition, respectively.
Therefore, ρmin leads to a pronounced photon blockade that
can be even stronger than in the steady state while, in contrast,
ρmax shows photon bunching [see Fig. 4(b)].

The observed metastable state depends sensitively on the
initial state. For example, when the initial state is the ground
state, the eigenstates |�−

0 〉 and |�+
1 〉 can be populated only

through the cascaded transition. We show in Fig. 5(b) that
the transition rates χ+−

00 and χ+−
11 for |�−

0 〉 → |�+
0 〉 and

|�−
1 〉 → |�+

1 〉, respectively, drop sharply for g/ωc � 1, while
the transition rates χ+−

01 and χ−+
01 for |�−

1 〉 → |�+
0 〉 and

|�+
1 〉 → |�−

0 〉 are much higher and satisfy χ+−
01 ∼ χ−+

01 .
Therefore, the processes leading to the system being in the
subspace {|�−

0 〉,|�+
1 〉} take place at a much slower rate. Hence,

on the relatively short time scale on which metastability is
observed, this subspace does not play a significant role in
the dynamics and the metastable state is very close to ρmin

[Fig. 1(b)].
To summarize, the general physical picture is the following:

the steady state is reached when the pumping mechanisms
exactly compensate the losses induced by the different decay
channels. In the Rabi model, the parity shift occurring in
the Hamiltonian for g/ωc ≈ 0.45 leads to the existence of
two distinct decay channels [Fig. 5(a)]. Furthermore, the time

scales involved in these two channels become widely separated
as the coupling strength becomes larger than the cavity
frequency (g/ωc � 1) [Fig. 5(b)]. As a result, there exists an
intermediate time scale in which losses from the fast decay
channel are already compensated by the driving field while
the other channel has not yet come into play. In such a time
interval, which is long enough to be observed experimentally,
the system is in a metastable state whose properties can differ
radically from those of the true steady state. Discrepancies
between metastable states and the steady state are particularly
sharp in the regime of coupling strength where the revival
of the photon blockade takes place [1 � g/ωc � 2], since in
this regime the two decay channels have opposite effects on
the photon statistics: the fast one favors the photon blockade
effect, while the slower one destroys it by inducing additional
fluctuations.

This picture, however, breaks down for g � 1 where the
energy spectrum of the Rabi model becomes quasilinear
[40]; in this case, the states |�+

j 〉 and |�−
j 〉 are quaside-

generate and the relaxation processes also involve transitions
between higher-energy states. The decay channels are now two
distinct “ladders”: |�−

j 〉 → |�+
j−1〉 → · · · → |�−

1 〉 → |�+
0 〉

when the initial state is the ground state, and |�+
j 〉 →

|�−
j−1〉 → · · · → |�+

1 〉 → |�−
0 〉 when the system is initially

in its first excited state. A separation of time scales still exists
in this regime; it stems from the very low probability of
transition between the two ladders through processes such
as |�+

j 〉 → |�−
j 〉. However, the two channels both lead to

a quasicoherent statistics, explaining the convergence of the
metastable-states properties to those of the steady state.

Although we have focused here on a specific driving
scenario, resonant with the second available transition, the
separation of time scales and the metastable behavior are
general and also occur when driving higher excited states.
Since the number of transitions involved will be larger for
higher excited states, it is possible in that case that more than
two time scales come into play in the dynamics, leading to a
richer structure for the set of metastable states.

Note that we have chosen not to include a diamagnetic
A2 term in the Hamiltonian of the system, having primarily
in mind circuit QED architectures where the atom-cavity
coupling is realized inductively [7,9]. In such experiments,
the diamagnetic term does not play a significant role, even
for large values of the coupling strength [13]. Nevertheless,
when the diamagnetic term becomes dominant for a very large
coupling strength, it has been shown that the effective cavity
frequency becomes much larger than the coupling strength,
leading to an effective decoupling of the cavity and the atom
[41]. Our findings show that such a phenomenon is already
present in the quantum Rabi model without the diamagnetic
term, as the energy spectrum becomes effectively linear. In
this respect, the diamagnetic term is not expected to introduce
significant qualitative changes to the results reported here.

VI. EFFECT OF PURE DEPHASING NOISE

In this section we evaluate the robustness of our findings
against pure dephasing noise, inevitably present in any exper-
imental setup. Following Ref. [24] we model the dephasing
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FIG. 6. Liouvillian gap when dephasing noise is included. Real
part of the first three nonzero eigenvalues, �1,0 (solid blue line), �2,0

(dashed red line), and �3,0 (yellow dotted line), as a function of g/ωc

when dephasing noise is included. The eigenvalues are labeled in
such a way that |Re[�α,0]| < |Re�α+1,0|. The noise parameters are
γφ(
pp

jk ) = γ .

noise by including an additional term in the Liouvillian. Its
general form is

Lφρ = D
[∑

p=±

∑
k

�
p

k

∣∣�p

k

〉〈
�

p

k

∣∣] (31)

+
∑
p=±

∑
k,j

	
(



pp

jk

)
�

pp

jk D
[∣∣�p

j

〉〈
�

p

k

∣∣]. (32)

For this type of noise, the transition rates depend on the
matrix elements of the operator σz in the dressed-state basis
and are given by

�
p

k =
√

γφ(0)

2

〈
�

p

k

∣∣σz

∣∣�p

k

〉
, (33)

�
pp

jk = γφ

(



pp

jk

)
2

∣∣〈�p

j

∣∣σz

∣∣�p

k

〉∣∣2
. (34)

These coefficients depend on the spectral density of the bath
at the different transition frequencies 


pp

jk , expressed by the
function γφ(
pp

jk ). Just as in the case of the other dissipative
terms, we assumed that the spectral density of the bath
vanishes at negative frequency, since the system is in thermal
equilibrium at zero temperature. Note that, in contrast with the
operators a and σ−, the operator σz can induce transitions only
between states of the same parity. In principle, the additional
transitions between dressed states induced by the dephasing
noise can affect the transient regime and reduce the lifetime of
the metastable states. We show in Fig. 6 numerical simulations
of the Floquet-Liouvillian eigenvalues for a white dephasing
noise, whose rate is comparable to the other noise sources
(γφ = γ = κ). Globally, the real part of the eigenvalues is
larger, which means that the time to reach state is indeed
reduced compared to the results of Fig. 3. However, the clear
separation of time scales is still visible and the lifetime of
the metastable states is long enough to allow for experimental
observation. Hence, there is no qualitative change and our
results remain valid even when this additional noise channel
is included in the model.

VII. CONCLUSION

In this paper, we have investigated the long-time dynamics
and metastability of the driven-dissipative Rabi model in
the ultra-strong-coupling and deep strong-coupling regimes
within the framework of Floquet-Liouville theory. In these
coupling regimes, the counter-rotating terms make the master
equation for the driven Rabi model explicitly time dependent,
and the Floquet-Liouville theory allows one to eliminate this
explicit time dependence by considering the time evolution
in an enlarged Hilbert space of periodic matrices. Our work
demonstrates that the use of Floquet-Liouville theory in the
driven-dissipative Rabi model not only makes an efficient
calculation of arbitrarily long time evolution possible, but
also enables one to obtain analytical results and a qualitative
understanding.

More specifically, we have considered a driving scenario in
which the external field is resonant with the second available
transition and have shown that, as the atom-cavity coupling
strength becomes larger than the cavity frequency, g/ωc � 1,
the time necessary to reach the steady state becomes much
larger than the natural relaxation time 1/γ . Within the frame-
work of Floquet-Liouville theory, the different time scales
of the transient dynamics are understood by investigating
the eigenvalues of the time-independent Floquet-Liouvillian
operator. For g/ωc > 1, one nonzero eigenvalue with zero
imaginary part (purely dissipative mode) was found to be
several orders of magnitude smaller than all the other eigenval-
ues, explaining the emergence of long-lived metastable states.
We attributed this feature of the Floquet-Liouvillian to the
existence of two decay channels for the system with different
transition rates. In particular, the transition rates for the first
and third parts of the cascaded transition |�−

1 〉 → |�+
1 〉 →

|�−
0 〉 → |�+

0 〉 go to zero as g/ωc increases. As a result, this
decay channel starts to play a significant role only in the
long-time dynamics. During the large time interval for which
the other decay channel, |�−

1 〉 → |�+
0 〉, dominates, the system

reaches a metastable state, which eventually decays into the
true steady state when the second channel comes into play.

By extending the recently developed metastability theory
[33] to our time-dependent setting through the Floquet-
Liouville approach, we also derived analytical expressions for
the set of all possible metastable states in terms of eigenvectors
of the Floquet-Liouvillian. This enabled us to set bounds
on the deviation from the true steady state that could be
observed in an experiment. More specifically, we showed
that for 1 � g/ωc � 2 the photon statistics in the metastable
states can differ drastically from that of the steady state; it
can either show an enhanced antibunching or, conversely,
strong bunching. All these results were derived by considering
dissipation coming from the coupling of the cavity and the
atom to the environment at zero temperature. We have also
performed additional simulations including pure dephasing
noise and have shown that our findings remain unchanged
when this extra noise channel is included in the model.

In a circuit QED experiment with a typical cavity frequency
ωc of the order of gigahertz and dissipation rates similar to
the one considered here (κ = γ = 10−2ωc), the time scale on
which metastability will be observed is of the order of 0.1 ms,
a time sufficiently short to be reached experimentally.
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APPENDIX A: FLOQUET THEORY AND DYNAMICS
IN FLOQUET SPACE

We give in this Appendix a more detailed and self-contained
presentation of Floquet theory and its formulation in the
Floquet space introduced in the main text. To simplify the
notations, we consider the case of a usual Schrödinger equation
on a Hilbert space H of finite dimension N ,

i∂t |X〉 = A(t)|X〉, (A1)

where A is a periodic matrix of period T and X a vector in
H. The Floquet theorem states that there exist solutions of the
form

|Xα(t)〉 = e−iεα t |pα(t)〉, (A2)

with |pα(t)〉 periodic, of period T , and εα a complex number.
The functions |pα(t)〉 are eigenfunctions of the following
operator:

[A(t) − i∂t ]|pα(t)〉 = εα|pα(t)〉. (A3)

Since all the functions that appear in Eq. (A3) are periodic,
this equation translates the original problem into an eigenvalue
problem in a space of periodic functions. Let us therefore
introduce the space F = H ⊗ T of periodic functions on H.
This space is a Hilbert space whose scalar product derives
for the one defined on H and T . Following the notations of
Refs. [35,39], we define the scalar product on T as

(f |g) = 1

T

∫ T

0
f ∗(t)g(t) dt, (A4)

and the scalar product on H ⊗ T as

〈〈·|·〉〉 = 1

T

∫ T

0
〈·|·〉 dt. (A5)

This definition coincides with the usual definition of the scalar
product on a tensor-product space. Indeed, for two factorized
states |�1〉〉 = f1(t)|φ1〉 and |�2〉〉 = f2(t)|φ2〉, with f1,f2 ∈
T and |φ1〉,|φ2〉 time independent, we have

〈〈�1|�2〉〉 = 〈φ1|φ2〉 1

T

∫ T

0
f ∗

1 (t)f2(t) dt = 〈φ1|φ2〉(f1|f2).

(A6)
A natural basis on T is obviously φn(t) = e−inωd t , for which
we use the notation |n). By analogy with usual Dirac notations,
we also write φn(t) = (t |n). Let {|μ〉} denote a basis of H; the
vectors |μ,n〉〉 = |μ〉 ⊗ |n) then form a basis of F and the
projection on this basis coincides with the Fourier transform.
In other words, with these notations, any periodic state vector
|ψ(t)〉 of H is represented in F by a vector |ψ〉〉 whose
components are given by

〈〈μ,n|ψ〉〉 = 1

T

∫ T

0
einωpt 〈μ|ψ(t)〉 = 〈μ|ψ (n)〉, (A7)

where |ψ (n)〉 is the nth Fourier component.

Coming back to the eigenvalue problem of Eq. (A3), it has
a time-independent formulation in F and can be written as

Ã|pα〉〉 = εα|pα〉〉. (A8)

In the basis introduced above, the matrix elements of the
operator Ã are given by

〈〈α,n|Ã|β,m〉〉 = A
(n−m)
αβ − nωdδnmδαβ. (A9)

If Ã is diagonalizable, we can find a basis of eigenvector in F .
SinceF is infinite dimensional, let us label the eigenvalues and
eigenvectors of Eq. (A8) with a double index, {|pα,k〉〉,εα,k},
where 1 � α � N and k ∈ Z. In principle, for every such
eigenvector and eigenvalue, one can define a solution of
Eq. (A1) given by

|Xα,k(t)〉 = eiεα,k t (t |pα,k〉〉. (A10)

However, we know from the theory of ordinary differential
equations that only N such functions are linearly independent.
This is reflected in the following relation between eigenvalues
and eigenvectors in F : Let pα,0 denote the eigenfunctions
whose eigenvalue satisfies |εα,0| < ωd/2; the other eigenvalues
and eigenvectors are given by

εα,k = εα,0 + kωd, (A11)

|pα,k〉〉 =
∞∑

n=−∞

∣∣p(k+n)
α,0

〉 ⊗ |n), (A12)

or equivalently,

(t |pα,k〉〉 = eikωpt (t |pα,0〉〉. (A13)

This simply means that for any k ∈ Z, |Xα,k(t)〉 = |Xα,0(t)〉.
The advantage of introducing the Floquet space is that

Eq. (A8) is time independent. The dynamics inH can therefore
be computed in the following way: Let |X0〉〉 denote a periodic
function satisfying (t |X0〉〉|t=0 = |X(0)〉 [a possible choice is
the constant function |X(0)〉 ⊗ |0)]. The time evolution of |X〉
is then given by

|X(t)〉 = (t |e−itÃ|X0〉〉. (A14)

The freedom in the choice of |X0〉〉 comes from the infinite
dimension of F . Let us prove that it has no consequence on the
dynamics in H. For any initial vector |X0〉〉 we can introduce
the following decomposition:

|X0〉〉 =
∑
α,k

λα,k|pα,k〉〉. (A15)

The initial condition then reads

|X(0)〉 =
∑
α,k

λα,k(t |pα,k〉〉|t=0. (A16)

Using Eq. (A13), we find

|X(0)〉 =
N∑

α=1

λα(t |pα,0〉〉t=0 (A17)

with λα = ∑∞
n=−∞ λα,n. This last decomposition is unique

since the functions e−iεα,0t (t |pα,0〉〉 form a basis of solutions
of Eq. (A1). Therefore, the coefficients λα do not depend on
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the choice of |X0〉〉. Moreover, they completely determine the
dynamics. Indeed, using again Eq. (A13) we can write

|X(t)〉 =
N∑

α=1

λαe−iεα,0t (t |pα,0〉〉. (A18)

Similarly, Eq. (A14) can be extended to any initial time t ′,

|X(t)〉 = (t |e−i(t−t ′)Ã|X(t ′),0〉〉, (A19)

where we have use the notation |X(t ′),0〉〉 = |X(t ′)〉 ⊗ |0).
Equation (A19) thus defines the propagator U (t,t ′) such that
|X(t)〉 = U (t,t ′)|X(t ′)〉. The matrix elements of U (t,t ′) in the
basis {|μ〉} then read

Uμ,ν(t,t ′) =
∑
α,n,m

〈〈μ,m|pα,n〉〉〈〈pα,n|ν,0〉〉e−iεα,n(t−t ′)−imωd t .

(A20)

APPENDIX B: SPECTRAL PROPERTIES
OF THE FLOQUET-LIOUVILLE OPERATOR

In this Appendix we prove the following properties of the
periodic functions Rα,k(t) and Lα,k(t) introduced in the main
text as left and right eigenfunctions of the operator L (t) − ∂t :

(1) If �α,k is an eigenvalue such that Re[�α,k] �= 0, then
Tr[Rα,k(t)] = 0 for all t .

(2) If �α,k in an eigenvalue, �∗
α,k is also an eigenvalue and

the corresponding eigenfunction is R
†
α,k(t).

(3) If �α,k is a real eigenvalue, Rα,k(t) and Lα,k(t) can both
be chosen Hermitian.

We assume that the operator L (t) is of Lindblad form,
i.e., L (t)ρ = i[H (t),ρ] + 1/2

∑
j (2CiρC

†
i − ρCiC

†
i −

CiC
†
i ρ), for some jump operators Ci .

Proof of Property 1. This property follows from the fact that
L is trace preserving: For any time t and any matrix ρ, we
have Tr[L (t)ρ] = 0. Injecting this relation into the eigenvalue
equation satisfied by Rα,k(t), we find

∂tTr[Rα,k(t)] = −�α,kTr[Rα,k(t)]. (B1)

In addition, Tr[Rα,k(t)] must be periodic [just as Rα,k(t)]. As a
result, if Re[�α,k] �= 0, the only solution to Eq. (B1) satisfying
this condition is Tr[Rα,k(t)] = 0.

Proof of Property 2. Due to the Lindblad structure, the
operator L (t) is invariant under Hermitian conjugation. More
precisely, for any matrix ρ we have

[L (t)ρ]† = L (t)ρ†. (B2)

The result then follows by taking the Hermitian conjugate of
the equation obeyed by Rα,k(t). We directly find

[L (t) − ∂t ]R
†
α(t) = �∗

αR†
α(t). (B3)

Proof of Property 3. Let �α,k be a real eigenvalue and Rα,k

a corresponding eigenfunction. We deduce from Property 2
that R

†
α,k(t) is also an eigenfunction with the same eigenvalue.

Hence, if R′
α,k = 1/2[Rα,k(t) + R

†
α,k(t)] is not constant and

equal to zero, then it is a proper Hermitian eigenfunction.
In the case where R′

α,k(t) = 0, then iRα,k(t) is a Hermitian
eigenfunction. Suppose now that Rα,k(t) is Hermitian. In terms
of Fourier components, this is equivalent to R

(−n)
α,k = R

(n)†
α,k . Let

us show that the corresponding left eigenfunction Lα,k(t) is
also Hermitian. Given its expression in Floquet space, Lα,k(t)
is uniquely defined by the following set of relations involving
its Fourier components:∑

n

Tr
[
L

(n)†
α,k R

(n)
β,l

] = 0 for β �= α, l �= k, (B4)

∑
n

Tr
[
L

(n)†
α,k R

(n)
α,k

] = 1. (B5)

From the fact that for every β and l, R
†
β,l is also an

eigenfunction, we find that∑
n

Tr
[
L

(n)†
α,k R

(−n)†
β,l

] =
∑

n

Tr
[
L

(−n)
α,k R

(n)
β,l

] = 0. (B6)

Similarly, using the relation R
(−n)
α,k = R

(n)†
α,k , we have∑

n

Tr
[
L

(n)†
α,k R

(−n†)
α,k

] =
∑

n

Tr
[
L

(−n)
α,k R

(n)
α,k

] = 1. (B7)

Combining these last two results, we see that the function
L(t)†α,k , defined in terms of Fourier components by (L†

α,k)(n) =
L

(−n)†
α,k , satisfies the same set of relation as Lα,k(t). Hence

Lα,k(t) = L
†
α,k(t).
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[27] A. Le Boité, M.-J. Hwang, H. Nha, and M. B. Plenio, Phys. Rev.
A 94, 033827 (2016).

[28] H. Risken, C. Savage, F. Haake, and D. F. Walls, Phys. Rev. A
35, 1729 (1987).

[29] K. Vogel and H. Risken, Phys. Rev. A 38, 2409 (1988).
[30] H. Risken and K. Vogel, Phys. Rev. A 38, 1349 (1988).
[31] K. Vogel and H. Risken, Phys. Rev. A 39, 4675 (1989).
[32] W. Casteels, F. Storme, A. Le Boité, and C. Ciuti, Phys. Rev. A
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