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In the existing parity-time (PT ) symmetry with the balanced gain and loss, the gain is derived from
semiclassical but not full quantum theories, which significantly restricts the applications of PT symmetry
in quantum fields. In this work, we propose and analyze a theoretical scheme to realize full quantum oscillator
PT symmetry. The quantum gain is provided by a dissipation optical cavity with a blue-detuned laser field.
After adiabatically eliminating the cavity modes, we give an effective master equation, which is a complete
quantum description compared with the non-Hermitian Hamiltonian, to reveal the quantum behaviors of such
a gain oscillator. This kind of PT symmetry can eliminate the dissipation effect in the quantum regime. As an
example, we apply PT -symmetric oscillators to enhance optomechanically induced transparency.
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I. INTRODUCTION

In recent years, the notion of parity-time (PT ) sym-
metry has attracted considerable interest due to its po-
tential applications in the fields of quantum optics and
quantum information processing (QIP) [1–4]. Since Bender
and Boettcher proved that a PT -symmetric non-Hermitian
Hamiltonian (Ĥ † �= Ĥ ,[Ĥ ,PT ] = 0) can also have a real
eigenvalue spectrum [5,6], realizing PT -symmetric complex
quantum systems has become a rapidly developing issue in
both theoretical and experimental studies [7–13]. Currently,
non-Hermitian-based complex quantum mechanics is still
debated [14]; however, it is significant to test thePT symmetry
in open quantum systems or optical systems. Recent experi-
ments have already demonstrated PT -symmetry behaviors
in a variety of physical systems [15–19]. Among them, a
simple and intuitive scheme is to link two quantum open
systems with gain and loss [2,10,16,17,20]. As reported in
Refs. [2,10], experimentalists observed that a mode splitting
between two supermodes will occur with degenerate effective
dissipations once the coupling intensity passes through the
exceptional point (EP). Ideally, the balanced gain and loss
make the eigenvalues appear on the real axis. The system
supermodes perform similar to a closed quantum system in
this case, and some environmental damage effects can be
suppressed by quantum gain. So far, a similar mechanism
has already been applied in several quantum investigations,
including enhancing optics nonlinearity [15,21], intensifying
photon blockade [16], and realizing quantum chaos [17] by
using an extra optical gain.

Although PT symmetry has made progress in optimizing
the QIP scheme, it is regrettable that the common non-
Hermitian Hamiltonian is not a complete quantum description
for open gain or loss quantum systems [14]. In previous
works, the gains were generally introduced by classical am-
plification effects (e.g., parameter amplifier or erbium-doped
waveguide or microcavity amplifiers) [2,10,16,17,20–22].
Correspondingly, a dissipation non-Hermitian Hamiltonian
can be deduced by adopting a Markovian quantum master
equation after neglecting its jump term or by utilizing quantum
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Langevin equations without input operators. However, it still
remains difficult to discuss the quantum effect of such a
PT -symmetric system when our focus is not restricted to
the semiclassical level [16,17,20–22]. Realizing a gain and
then realizing a PT -symmetric system in the quantum regime
become natural desires in the research field of PT symmetry.

In the past decade, quantized mechanical oscillators have
already provided critical resources for studying basic quantum
theory and QIP [23–27]. It is well known that oscillators
can constitute so-called optomechanical systems via the
radiation pressure interaction between electromagnetic and
mechanical systems [28]. Because of this radiation pressure,
cavity optomechanics plays an indispensable role in the QIP
scheme, and an instructive discovery is that the oscillators
can be enhanced and heated (suppressed and cooled) under
the blue (red) sideband by tuning the detuning of the driving
fields [29–31]. This implies that the oscillator will function
to obtain an effective gain in this case [32], and more
importantly, a quantum description for this gain can be found
after eliminating the cavity field.

In this study, we adopt the above idea to realize PT -
symmetric oscillators in the quantum regime. After adia-
batically eliminating the cavity modes, we give an effective
master equation to describe the effective gain of the oscillator.
For some particular quantum states (e.g., Gaussian state),
this master equation is strict, which indicates that some
quantum effects that cannot be calculated accurately by the
non-Hermitian Hamiltonian can be discussed perfectly in this
PT -symmetry system. In contrast to Ref. [32], here, the
quantum properties can be considered without reconsidering
the eliminated system. Therefore, our PT -symmetric oscil-
lators can be applied in existing QIP schemes more simply
and intuitively. As an example, we apply PT -symmetric
oscillators to enhance optomechanically induced transparency
(OMIT). We believe this system can provide a promising
platform for QIP.

II. REALIZATION OF OSCILLATOR GAIN
IN THE QUANTUM REGIME

Let us start by focusing on the realization of oscillator gain
in the quantum regime. As shown in Fig. 1(a), we consider
a typical optomechanical system consisting of a mechanical
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FIG. 1. (a) A typical dissipative optomechanical system and its corresponding model after linearization. This type of system can also be
considered a hybrid system consisting of a transmission line resonator and a superconducting qubit. (b) Two schemes for realizing oscillator
gain, corresponding to a dissipative cavity optomechanical system under the blue sideband and a gain cavity optomechanical system under the
red sideband, respectively. (c) Level diagram of the blue sideband. Here, |n,m〉 denotes the state of n photons and m phonons in the displaced
frame. (d) A gain and a dissipation mutually interacting through a phonon tunneling term of intensity μ.

oscillator and a Fabry-Pérot resonator. For the convenience
of studying the effects in the gain process, we transform the
Hamiltonian into a displaced oscillator representation in the
strong driving condition, which, along with the corresponding
energy-level structure, is shown in Fig. 1(c). We note that
there is a quantum backaction heating process under the
blue-resolved sideband (� = ωm): the heat-exchange process
transits the oscillator from state |m,n〉 to |m + 1,n + 1〉, and
a strong optical dissipation causes the oscillator to transit
irreversibly from state |m + 1,n + 1〉 to |m,n + 1〉. After
eliminating the cavity modes, this process is equivalent to
gaining the oscillator from |n〉 to |n + 1〉 with a gain rate |�eff|
[see Fig. 1(b)]. Because the gain comes from the eliminated
cavity mode whose quantum properties can be completely
described by a certain Hamiltonian, it can be regarded as a
full quantum but not a semiclassical theory similar to previous
works.

In a general dissipative system, the low-temperature bath
makes the oscillator decay from |n〉 to |n − 1〉; that is, it is an
inverse process compared with the effective gain. Therefore,
under appropriate parameters, the gain can be well balanced
with dissipation and can provide the potential to achieve PT
symmetry. For example, if we consider two identical oscillators
that correspond to gain and dissipation and interact mutually
through phonon tunneling, then the Hamiltonians can exhibit a
real eigenvalue spectrum, and the oscillators are transited into
the PT -symmetric phase.

Now we analyze the above discussion quantitatively; the
total Hamiltonian corresponding to the optomechanical system
in Fig. 1(a) is (h̄ = 1) [28,29]

H = −�â†â + ωb̂†b̂ + gâ†â(b̂ + b̂†) + (�â† + �∗â†) (1)

after a frame rotation. Here, � = ω − ωc is the input cavity
detuning; â (b̂) is the annihilation operator of the optical
(mechanical) mode with the corresponding angular resonance

frequency ωc (ωm). g is the single-photon optomechanical
coupling rate, and � = √

κexP/(h̄ω)eiφ is the driving intensity,
with the input laser power P and the initial input laser phase
(cavity coupling) φ (κex). Based on Eq. (1), the quantum
Langevin equations can be expressed as

˙̂a =
(

i� − κ

2

)
â − igâ(b̂ + b̂†) − i� − ξ̂ ,

˙̂b =
(

−iωm − γ

2

)
b̂ − igâ†â − √

γ bin, (2)

where γ denotes the intrinsic oscillator dissipation. κ =
κex + κ0 is the total cavity dissipation rate, where κ0 is
the intrinsic cavity dissipation; ξ̂ = √

κexain,ex + √
κ0ain,0 and

bin are the input noise operators describing the dissipative
effects, including intrinsic cavity dissipation, external cavity
dissipation, and mechanical dissipation [29]. If the optome-
chanical coupling is quite weak in the quantum regime, the
motion of the oscillator and optical field can be regarded
as perturbations on their respective steady states, implying
that each operator in Eq. (2) can be rewritten as a sum of a
c-number steady-state value and a perturbation operator, i.e.,
â = α + a and b̂ = β + b. Substituting these relations into
Langevin equations and neglecting the high-order perturbation
terms, the system can be linearized by separating the steady
states and perturbation components, and then the dynamics of
the perturbation operator will satisfy a linear Hamiltonian (see
Appendix A for details),

H = −�′a†a + ωb†b + Ga†b† + G∗ab, (3)

under the blue-sideband condition �′ > 0 [29] [system at the
top of Fig. 1(b)]. Here, we assume �′ = � − 2gRe(β) � �.
Unlike the common linearization process, in which c numbers
are set as the operator expectation values, here, 〈a〉 = 0 and
〈b〉 = 0 are not always tenable in this case. According to
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Eq. (3), the master equation reads

ρ̇ = −i[H,ρ] + κ

2
L[a]ρ + γ

2
(nth + 1)L[b]ρ

+ γ

2
nthL[b†]ρ, (4)

where L[o]ρ = (2oρo† − o†oρ − ρo†o) is the standard form
of the Lindblad superoperator. By making premultiplications
with mechanical quantity operators on both sides of Eq. (4),
evolutions of the system dynamics can be described by a set
of partial differential equations instead of solving all elements
of the density matrix ρ. Here, we consider only the first- and
second-order mechanical quantities for convenience, and the
linear Hamiltonian ensures dynamic equations are closed in
each order. Using the master equation, we can get the following
differential equations of first-order mechanical quantities by
performing premultiplication with each observable operator:

d

dt
〈a〉 =

(
i� − κ

2

)
〈a〉 − iG〈b〉∗,

d

dt
〈b〉 =

(
−iωm − γ

2

)
〈b〉 − iG〈a〉∗. (5)

Correspondingly, the second-order mechanical quantities are
described by

d

dt
〈a†a〉 = −κ〈a†a〉 − i[G〈ab〉∗ − G∗〈ab〉],

d

dt
〈b†b〉 = −γ 〈b†b〉 + γ nth − i[G〈ab〉∗ − G∗〈ab〉],

d

dt
〈ab〉 =

[
i(� − ωm) − κ + γ

2

]
〈ab〉

− iG[〈a†a〉 + 〈b†b〉 + 1]. (6)

Here, 〈· · · 〉 implies taking the expectation value with respect
to the density matrix of the quantum system. Note that, in
the above calculations, a cutoff of the density matrix is not
necessary and the solutions are exact. Here, for convenience
in following discussion, we define a constant factor

η = 4|G|2
4(� − ωm)2 + κ2

(7)

to describe the optomechanical-induced modifications of the
oscillator dynamics. After an iteration, the evolution equations
of the first- and second-order mechanical quantities can be
simplified, respectively, as

d

dt
〈b〉 =

(
−iωeff − �eff

2

)
〈b〉 (8)

and

d

dt
〈b†b〉 = −�eff〈b†b〉 + γ nth + ηκ (9)

by adiabatically eliminating the optical-field freedom. The
coefficients of 〈b〉 and 〈b†b〉 on the right-hand sides of Eqs. (8)
and (9) correspond to the contributions of the non-Hermitian
Hamiltonian

Heff =
(

ωeff − i
�eff

2

)
b†b, (10)

with an effective frequency ωeff = ωm + η(� − ωm) and an
effective dissipation �eff = γ − ηκ . Moreover, the last two
terms in Eq. (9) are modified noise terms caused by jump
operators in the master equation. Therefore, the mechanical
oscillator can finally be described by the following master
equation:

ρ̇ = −i[ωeffb
†b,ρ] + �eff

2
(n′

th + 1)L[b]ρ

+ �eff

2
n′

thL[b†]ρ, (11)

where the modified thermal phonon number is

n′
th = γ nth + ηκ

�eff
(12)

and the modified initial conditions of the oscillator

〈b〉′t0 �
√

〈b†b〉′t0 ,

〈b†b〉′t0 = (1 + 2η)〈b†b〉t0 + η〈a†a〉t0 − 2η(� − ωm)

G∗ 〈ab〉t0
(13)

describe an optomechanical-induced energy translation.
We emphasize here that the only approximation used in the

above deduction is the elimination of the optical field. There-
fore, unlike the non-Hermitian Hamiltonian, Eq. (11) contains
all properties of the second-order expectation values of the
oscillators (〈b†b〉, 〈bb〉, and 〈b†b†〉), which indicate that some
quantum properties, e.g., quantum fluctuation, can also be
discussed by using Eq. (11). Because we iterate only the first-
and second-order expectation value equations, Eq. (11) is still
incomplete if it is used to solve density-matrix or high-order
expectation values (e.g., 〈b†bb〉). If � 	 ωm, the constant
factor can be approximated as η = 4|G|2/(4�2 + κ2), which
is the same conclusion as that of treating the auxiliary mode as
a steady state [33]. However, linearization approximation will
limit the conditions occurring for such kinds of parameters in
the optomechanical system.

We note that the effective dissipation is reduced by the
factor ηκ = 4|G2|κ/[4(� − ωm)2 + κ2] due to the heating
process. If the linearized optomechanical coupling strength
satisfies |G2| > γ [4(� − ωm)2 + κ2]/κ, �eff will no longer
be a positive but a negative dissipation. The non-Hermitian
Hamiltonian now describes a gain effect, and the mechanical
oscillations display antidamping.

In Fig. 2, we show the effective dissipation rates of the
system under different parameters after adiabatic elimination.
One can observe directly that the effective dissipation can
take on a negative value, which corresponds to a gain effect.
Under certain parameters, it can be found from Fig. 2(a)
that �eff/γ = −1 and the quantum dissipation is completely
balanced by such a gain. To demonstrate the accuracy of
the approximation, we plot Figs. 2(b) and 2(c) to compare,
respectively, the evolutions of the first- and second-order
mechanical quantities in the approximate system and original
system; it is known that two mechanical quantities gradually
exhibit remarkably consistent evolutions. For a Gaussian state,
both the first- and second-order mechanical quantities are
accurately described, meaning that it is a complete quantum
description. In Fig. 2(d), we plot the Gaussian fidelity [34,35]
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FIG. 2. (a) Changes in the effective dissipation coefficient with
varied linear coupling coefficient G. Comparisons of evolutions
corresponding to (b) the first-order and (c) second-order mechanical
quantities. Here, the blue dotted lines denote mechanical quantities of
the original system, and red solid lines denote the approximate system
after adiabatic elimination. The black line in the inset is the evolution
without bath correction. (d) The fidelity between the oscillator states
corresponds to the original and approximate systems. The inset in (d)
shows the time-averaged fidelities with varied coupling coefficient
G (blue solid line) and the detuning � (red dotted line). Here, the
horizontal axis is 100G (�) for the blue (red) line. In this simulation,
we set ωm = 1 as the unit; the other dimensionless parameters are
κ = 0.1, nb = 1000. In (a), we set � = 2 (3) for the red lines (blue
lines) and γ = 5×10−5 (10−4, 10−5) for the solid line (dashed line,
line with circles). In (b), (c), and (d), we set γ = 10−5,G = 0.04 and
� = 3. The blue line in the inset in (d) corresponds to � = 3, and
the red line is under G = 0.04.

to illustrate that this description is complete and quantum
due to F → 100%, which indicates that it does not need
to reconsider the eliminated system to obtain the system’s
quantum properties, like in Ref. [32], and that the physical
processes in our picture are more intuitive.

Let us reexamine the effective bath phonon number in
Eq. (12). A negative dissipation rate will change the heat-flow
direction between the system and the bath, and a modified bath
phonon number can also change the polarity of the phonon-
number difference. Such double corrections ensure the correct
direction of the heat flow. In the inset of Fig. 2(c), we show
the system evolution corresponding to an incorrect heat-flow
direction without correcting the bath phonon number. It shows
that the system that should be heated is cooled, which implies
that effective dissipation alone is not enough for the quantum
description of the PT -symmetric system.

III. PT -SYMMETRIC OSCILLATOR
WITH EFFECTIVE GAIN

Up to now, we have discussed a technique that can realize
oscillator gain, and it is potentially useful in a wide range
of phononic engineering systems, e.g., producing coherent
phonon lasing. Instead of this, here, we study its impact on a

PT -symmetric oscillator. Generally, a PT -symmetric system
can be achieved by connecting a passive system and a positive
system [see Fig. 1(d)] with a linear phonon coupling. The
non-Hermitian Hamiltonian corresponding to such a system
can be expressed as

H =
(

ω − i
γ

2

)
b
†
1b1 +

(
ω + i

γ ′

2

)
b
†
2b2 + μ(b†1b2 + H.c.),

(14)

where γ is an ordinary oscillator dissipation and γ ′ = −�eff

denotes the quantum gain of the oscillator. Based on Eq. (14),
the corresponding eigenvalues can be calculated as

λ± = ω − i(γ − γ ′)
4

±
√

μ2 −
(

γ + γ ′

4

)2

, (15)

and their real and imaginary parts correspond to effective
frequency and dissipation, respectively. Equation (15) reflects
that the system will be divided into two dynamic phases
by μ = (γ + γ ′)/4. When μ < (γ + γ ′)/4, the third term in
Eq. (15) will be a pure imaginary number, which leads to two
different dissipation coefficients. Conversely, μ > (γ + γ ′)/4
makes the system have a degenerated effective dissipation rate
(γ − γ ′)/2 with resolved normal-mode splitting. In particular,
λ± can both be real numbers under the condition γ = γ ′, and
the non-Hermitian Hamiltonian in this case is PT symmetric.

Physically, once the coupling intensity μ is weak enough to
support energy transfer from the active oscillator to the passive
oscillator, the field localization will induce the dynamical
accumulation of the acoustical energy in the passive oscillator.
This accumulated energy will not be able to balance dissipation
effectively, which causes the whole system to lose its PT
symmetry and come into the PT -symmetry-breaking phase.
With the gradually enhanced μ, the stronger phonon-tunneling
effects will replace the localization gain (decay) effects in
each oscillator. The oscillator dynamics at this time show
more collective behavior as supermodes; simultaneously, the
system enters into the PT -symmetry phase because the gain
and dissipation of each supermode are balanced. Therefore,
μ = (γ + γ ′)/4 is exactly the exceptional point transforming
from the PT -symmetric phase (PT SP) to the PT -symmetry-
breaking phase (PT BP).

In Figs. 3(a) and 3(b), we plot λ± as a function of μ to
show the mode splitting and degenerate dissipation in the
PT SP regime more intuitively. Figure 3 also illustrates that the
bifurcations of real and imaginary parts of the eigenvalues are
still similar to the PT SP and PT BP for the unbalanced case,
in which the loss and gain parameters γ and γ ′ are unequal.
This case should be regarded as a physically realistic scenario,
while γ = γ ′ is an idealization; that is, a closedPT -symmetric
system is placed in a hot bath with an effective dissipation
rate (γ − γ ′)/2 [36,37]. In Figs. 3(c) and 3(d), we plot the
dynamic behaviors of the two oscillators to investigate the
transitions of PT SP and PT BP. When μ = γ + γ ′, the two
oscillators are in the PT SP regime, shown in Fig. 3(c), and an
obvious energy exchange process occurs; that is, the amplitude
of each oscillator is intensified and weakened alternately.
Two amplitudes have identical boundaries (roughly [−4,4]),
and the evolution of each oscillator is stable within its own
boundary. This indicates that the energy gain and dissipation
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FIG. 3. (a) Real and (b) imaginary parts of the eigenfrequencies of
supermodes as a function of coupling μ. Here, blue lines correspond
to ideal PT symmetry (γ = γ ′ = 0.001). Red lines denote that the
system is not strictly PT symmetric but has an effective dissipation
rate (γ ′ = 0.8γ ). (c) and (d) The dynamical behaviors of the two
oscillators corresponding to PT SP and PT BP, respectively. Here,
the unit is ω = 1.

are delivered and balanced, which is quite different from the
case in PT BP. In Fig. 3(d), we find that the gain oscillator is
heated with exponentially increasing energy. However, weak
coupling [μ = 0.1(γ + γ ′)] causes the energy to be bound in
one oscillator; the other oscillator cannot be heated until after
a long duration of initial decrease. In PT BP, the system can
easily become unstable.

Now we compare our PT -symmetry scheme with the
others reported in previous works. According to the different
gain sources, the existing implementations of PT -symmetry
schemes can be classified into the following three kinds:
(i) Semiclassical gain is introduced directly into system
Hamiltonian as a non-Hermitian term. The representative
theoretical research of this type was reported recently in
Refs. [17,20–22,36,38]. A fundamental limit in their perfor-
mance is given by phenomenological gain. Quantum noise and
quantum fluctuation cannot be calculated in this frame, and the
second-order mechanical quantity can be estimated only by
mean-field approximation after ignoring self-correlation. (ii)
Quantum gain is provided by transferring a semiclassical gain
to the target system via quantum coupling. A similar approach
is usually adopted in the investigations of a phonon laser, and
this theory can also provide a quantum dynamic equation to
study system evolution. What needs to be explained is that the
suitable range of the second scheme is subjected mainly to the
limitation of the gain-induced dynamic modification because
the origin of the gain is still semiclassical. For example, in
Ref. [16], the gain system is solved by the effective master
equation

ρ̇ = −i[H,ρ] + �′

2
(nth + 1)L[b]ρ + �′

2
nthL[b†]ρ. (16)

By using an idea similar to that in Ref. [39], we can also give
an effective Langevin equation for describing the gain device
at the bottom of Fig. 1(b):

ḃ1 =
(

−iω − �′

2

)
b1 − iμb2 + √

γ bin, (17)

FIG. 4. (a) δ1 given by the exact dynamic equation and our
effective master equation (11). (b) and (c) Comparisons of the density
matrices obtained by solving dynamic equations (11) (black solid
lines), (16) (blue solid lines), and (17) (red dotted lines) under
different bath phonon numbers. In (b), we set nth = 0, and in (c)
nth = 10. The curves in the inset are the evolutions of δ based on
exact dynamic equations (blue) and master equation (16) (red). (d)
Fidelity between the system states calculated from the exact dynamic
equation and effective Langevin equation (17) under γ = 10−4. Here,
the blue solid line and the red dotted line correspond to nth = 0 and
nth = 10, respectively. In the simulations, we set �′ = γ − ηκ . In
(b), (c), and (d), we set μ = 0.2γ , and in (d) G = 0.1. The other
parameters and the units are the same as those in Fig. 3.

where �′ is a negative value to denote a gain rate and bin

is the standard Gaussian input operator. In this case, those
QIP schemes that depend on the dynamic phase are still
restricted. (iii) The whole system is strictly described by a
complete Hamiltonian, and the gain comes up from the heating
mechanism in the interior of the system. In a waveguide
system, quantization amplifying medium can be approximated
as a special reservoir [40]; however, it is difficult to achieve
similar gain in a oscillator system.

Based on the exact dynamic equation of PT -symmetric
oscillators, we analyze the validity scope of the semiclassical
approximation in the above-mentioned three types of PT -
symmetry schemes and discuss the correction of quantum
dynamics caused by the quantum noise term. For a quantitative
presentation, we first concentrate on δi = 〈b†i bi〉 − 〈b†i 〉〈bi〉,
i.e., energy fluctuation of each oscillator corresponding to
Hamiltonian (14). Figure 4(a) shows that the relevance of
the system will continue to increase, implying that the
mean-field approximation is ineffective and the non-Hermitian
Hamiltonian is incapable of analyzing a pure quantum system.

Compared to the non-Hermitian Hamiltonian, the second
type of PT -symmetry schemes can also answer the evolution
of quantum fluctuation, which allows us to further examine its
validity by calculating corresponding fidelity. In Fig. 4(b),
we present a comparison of the exact dynamic equation,
effective dynamic equations (16) and (17), and our effective
master equation with low bath phonon number (nb = 0) and
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dissipation rate (γ = 10−5). We find that the results obtained
from the dynamic equations (16) and (17) and our effective
master equation are in good agreement (F > 98%) with those
from the exact equation for any time scale. In Fig. 4(c), we
repeat the same calculation with nth = 10, which, according to
nth = [exp(h̄ω/kbT ) − 1]−1, corresponds to high-temperature
reservoirs. We again find good agreement among the three
approaches on the short-time scale, but the result based
on the master equation (16) deviates from others and even
exhibits nonphysical conclusion (F > 100%) on a long-time
scale. As we mentioned above, physically, this is because
Eq. (16) cannot correct the heat-flow direction, which causes
the covariance matrix to have negative diagonal elements
[inset of Fig. 4(c)]. Finally, in Fig. 4(d), we show the case
corresponding to larger dissipation rate γ . The comparison
results prove that the accuracy of dynamic equation (17) has
an obvious decline trend with the increase of the dissipation
rate. The reason lies in the fact that a higher dissipation rate
requires a larger effective gain to balance it; correspondingly, η
should also be enlarged by setting stronger coupling intensity
G. The neglected shift terms will also be amplified in this
case, and they will significantly affect system dynamics.
Figure 4(d) illustrates that Eq. (17) will recover its accuracy
when nth is increased because the shift terms can be regarded
as perturbations again when nth is large enough. The results
of Figs. 4(c) and 4(d) suggest that Eq. (17) with correct heat
flow is indeed better than Eq. (16) under a wider range of
parameters.

To sum up, we emphasize here again that semiclassical
gain is insufficient for the study of PT symmetry in the
quantum regime. Whether using the non-Hermitian Hamil-
tonian directly or transferring a semiclassical gain to the target
system via quantum coupling, the obtained results are likely
sometimes inaccurate, even nonphysical. In contrast, the main
advantage of our scheme is to present a quantum gain that
can be fully described by the effective principal equation.
Therefore, the quantum fluctuation can be calculated directly
and conveniently, which makes sure that our scheme has
potential application for QIP.

IV. EXAMPLE OF APPLYING PT -SYMMETRIC
OSCILLATORS

We have provided a general scheme to realize PT -
symmetric oscillators in the quantum regime. This system
has the interesting property of undergoing an abrupt phase

transition, where the system obtains or loses its PT symme-
try. In PT BP, the field localization induces the dynamical
accumulations in the two oscillator modes; this effect corre-
sponds to an increasing optical-oscillator nonlinearity in an
optomechanical system [41]. Previous works have used this
characteristic to realize enhancements of oscillator chaos and
photon blocking [17]. However, effectively using semiclassical
gain in the PT SP regime is rarely discussed in QIP. Unlike the
efforts to improve coupling intensity in PT BP, in this section,
we apply our PT -symmetric oscillators in the PT SP regime.

Let us reexamine the master equation (11); except for
reducing dissipation, the highlights of our scheme are more
concentrated in its correction terms. Among them, Eq. (12)
shows that the sensitivity of the system to the environment
is not significantly weakened even though the effective
dissipation of the oscillator is reduced. This property provides
favorable support for optomechanical sensing because the
decline in dissipation can also lower the sensitivity in a
normal system [42]. Equation (13) describes the phonon
spontaneous-generation effect, which offers the theoretic basis
for the control of phonons [40].

Another perspective on our PT symmetry is that a negative
dissipation factor and modified phonon number allow infor-
mation reflux into the system. Thus, physically, the effective
dissipation of undemanding PT symmetry is more similar
to a non-Markovian system because of the elimination of the
cavity field. In some special cases, a number of characteristics
typical of a non-Markovian system, for example, entanglement
sudden death and resurrection, may also be observed in our
system [43,44], which means some QIP schemes with a
non-Markovian oscillator environment may be well extended
to our PT -symmetric systems.

We also introduce an enhanced optomechanically induced
transparency scheme as an example of our work. Electro-
magnetically induced transparency (EIT) is a remarkable
interference phenomenon in quantum optics and provides a
promising platform for coherent manipulation and slow-light
operation. In recent years, OMIT has been widely explored
both in theory and in experiment because of its better
controllability [22,45–48]. However, a constraint for realizing
OMIT is that OMIT windows require strong single-photon
couplings that are too difficult to realize in an experiment.

Unlike the efforts to improve the single-photon cou-
pling [41], we find that OMIT can still open in the weak-
coupling regime with the help of PT -symmetric oscillators.
As shown in Fig. 5, we consider PT -symmetric oscillators

FIG. 5. (a) Optical-cavity-coupled PT -symmetric oscillators with nonlinear radiation pressure. (b) Level diagram of the OMIT.
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coupled with a cavity. The total Hamiltonian of such a system
can be given by the following non-Hermitian Hamiltonian in
a rotating framework:

H =
(

�c − i
κ

2

)
a†a +

∑
j=1,2

[ω′
mb

†
j bj − g0a

†a(b†j + bj )]

+μ(b†1b2 + H.c.) − i
γ

2
b
†
1b1 + i

γ ′

2
b
†
2b2 + Hd + Hp,

(18)

where Hd = i�d (a† − a) and Hp = i(a†εpe−iδt − aε∗
peiδt )

denote, respectively, the Hamiltonians of driving and probe
fields. The variables a, b1, b2, κ, γ, γ ′, and μ are defined
the same as in the previous section. γ and γ ′ are small
compared to the coupling and the oscillator frequency.
The oscillator Hamiltonian can be diagonalized in terms of
the symmetric [c = (b1 + b2)/

√
2] and antisymmetric modes

[d = (b1 − b2)/
√

2] as [49]

H =
(

�c − i
κ

2

)
a†a +

(
ωm − i

γm

2

)
c†c

− ga†a(c† + c) + Hd + Hp. (19)

Here, we have already set g = √
2g0, ωm = ω′

m + μ and γm =
(γ − γ ′)/2 for convenience. Note that the antisymmetric mode
has also been neglected because it has no direct interaction
with the optical mode. The steady-state solution of such a
system can be expanded to contain many Fourier components.
Under the limitation of weak strength of the probe field,
each operator in Eq. (19) will have the following form:
o = o0 + o+εpe−iδt + o−ε∗

peiδt by neglecting the high-order
terms of εp [48,50,51]. Substituting this relation into the
semiclassical Langevin equations [52,53] and using the steady-
state condition, the optical field can be solved as

a+ =
{(

ω2
m − δ2 − iδγm/2

)[−i(� + δ) + κ
2

] + β
}

(
ω2

m − δ2 − iδγm/2
)[

i(� − δ) + κ
2

][ − i(� + δ) + κ
2

] + i2β�
(20)

by using the input-output relation εout(t) + εpe−iδt + �d =
κa. In the above expression, β = i2g0ωmx0 is a characteristic
parameter proportional to the photon number. Like in previous
works, we concentrate on the behaviors of a+ and define
χ = κa+ to describe the response of the cavity optomechanical
system to the probe field. According to the absorption and
dispersion theory, one can determine that the real and imagery
parts of χ represent, respectively, the behaviors of absorption
and dispersion [46], and an OMIT window should satisfy
Re(χ ) → 0 and Im(χ ) → 0 simultaneously.

In Figs. 6(a) and 6(b), we plot the behaviors of Re(χ ) →
0 and Im(χ ) → 0, respectively, for both PT -symmetric
oscillators and ordinary oscillators. It can be known that the
PT -symmetric case offers an obvious transparent window at
the modified sideband δ = ωp − ωd = ω′

m + μ. This OMIT
phenomenon emerges in the weak-coupling regime but will
not exist if the oscillator dissipation is not balanced by gain. In
Figs. 6(c) and 6(d), one can find that for a similar transparent
window, the single-photon coupling intensity in the dissipation
system must be amplified approximately 40 times, which is a
harsh condition for an experiment. From this point of view,
we conclude that the PT -symmetric oscillators can indeed
enhance the OMIT phenomenon in the weak-coupling regime.

Now we discuss the physical mechanism corresponding
to PT -symmetric oscillator-enhanced OMIT. The underlying
physics of OMIT are formally similar to those of ordinary EIT
in an atomic system. Huang and Agarwal [45] discussed this
relation and sketched three conditions for OMIT to occur: (i)
The driving frequency must be set in the red sideband, (ii)
the optical-field loss needs to be much greater than that of
oscillator dissipation, and (iii) the steady-state of oscillator
displacement cannot be zero. The first and third conditions
are combined to ensure a similar energy-level structure with a
�-type atom [see Fig. 5(b)], and the first and second conditions
protect the interference between driving and probe fields.

For a normal optomechanical system, oscillator displace-
ment is proportional to the cavity photon number, which

causes there to be a conflict between the last two conditions
in this case. A larger cavity dissipation satisfying condition
(ii) will reduce the photon number significantly, indicating
that condition (iii) is violated. With the same intercavity
photon number, the only way to push the oscillator farther
from its equilibrium position is to try to further enhance

FIG. 6. (a) Real and (b) imaginary parts of χ corresponding
to PT -symmetric oscillators (blue and green lines) and dissipative
oscillators (red lines). (c) and (d) Depths of transparent windows with
varied single-photon coupling intensity g and oscillator dissipation
rate γm. The insets illustrate the changes of absorption spectra
under different γeff [in (c)] and g [in (d)]. In this simulation, the
parameter unit is set as � = ωm = 1, and other parameters are
g0 = 2.5×10−4, E = 10, κ = 0.15, and γ = 0.02. In (a) and (b),
the corresponding single-photon coupling is 2g0, and green lines
are under κ = 0.2.
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optical-oscillator coupling. This is the reason why previous
works have required strong single-photon coupling intensity
to satisfy the two contradictory OMIT conditions.

However, if we use PT -symmetric oscillators instead of
dissipative oscillators in the OMIT system, oscillator dissi-
pation is reduced effectively in the PT SP regime. Thus, the
requested cavity dissipation can also be reduced, which leads
to there being enough intercavity photons to ensure nonzero
steady-state oscillator displacement with weak coupling. In
other words, the contradictory OMIT conditions can be
well met simultaneously, which is why the PT -symmetric
oscillators can enhance OMIT.

V. DISCUSSION

Now we give the feasibility analyses regarding our param-
eters used in the above discussions. First, for the linearization,
good correspondence between the nonlinear Hamiltonian (1)
and linear Hamiltonian (3) has been introduced in recent
experimental studies. Recent experiments have successfully
realized optomechanical cooling based on the linear Hamilto-
nian (3) [54,55], and the latest theoretical work also noted that
the linearized coupling coefficient G can even be controlled
as a control field [31]. In addition to the oscillator gain, the
BS coupling between the oscillators has also been widely
discussed [24,56,57]. Therefore, the heating effect and the
PT -symmetric scheme in our work can be easily realized via
experiments.

In the OMIT part, the dimensionless parameters are adopted
according to the existing experimental parameters of OMIT
and chaos in an optomechanical system, i.e., ωd + �c =
195 THz (1573 nm), ωm/2π = 3.68 GHz, κ/2π = 500 MHz,
and g0/2π = 910 kHz, which correspond to κ/ωm =
0.1359 � 0.15 and g0/ωm = 2.473×10−4 � 2.5×10−4, re-
spectively [54,58]. As discussed above, our OMIT scheme
does not require an oscillator with a high Q factor. Therefore,
some low-Q-factor oscillators (for example, the oscillator
reported in Ref. [59]) can also be utilized to realize OMIT.
Although realizing strong optomechanical interaction requires
sacrificing the Q factor of the oscillator in some experiments,
our scheme can alleviate this contradiction to a certain extent,
which is equivalent to indirectly improving the system cou-
pling. In the comparison part, the relation γ /ωm ∼ 10−3,10−4

has also been established in many recent experiments [23,60].
In summary, we think that the parameters in our scheme are
feasible.

In summary, we have proposed a theoretical scheme to
realize the PT -symmetric oscillators in the quantum regime.
The oscillator gain originates from an optomechanical system
corresponding to a heating effect, and we can provide a
quantum description for such a gain by eliminating the cavity
modes, which is quite different from those in previous works,
in which the gain was considered only as a semiclassical
amplification. We also prove this advantage by comparing our
method with the previous schemes. Subsequently, we present
an effective master equation for such a gain system containing
effective dissipation, the bath phonon number, and the initial
state. This master equation allows us to obtain a complete
quantum description of the PT -symmetric oscillators, indi-
cating that some QIP schemes can be well optimized by using

our PT -symmetric oscillator even if the semiclassical gain is
powerless. As an example, we have shown how to enhance
optomechanically induced transparency based on the PT -
symmetric oscillators. The results illustrate that Re(χ ) ∼ 0
and Im(χ ) ∼ 0 are easily satisfied even if both driving and
nonlinear coupling are extremely weak. We thus believe the
scheme proposed here may provide a promising choice for the
unachievable strong nonlinear coupling in quantum optical de-
vices and is of potential application for coherent manipulation,
slow-light operation, and other utilizations in QIP.

We also note that the gain oscillator and the dissipative
oscillator coconstruct a closed-like system, implying that
an additional oscillator may be regarded as a special non-
Markovian environment of the dissipative oscillator. In a
recent experiment [61], a narrowband spectral density was
observed, and the corresponding dynamic property was very
similar to a single-mode environment [30]. Therefore, we can
predict that most QIP schemes with a non-Markovian oscillator
environment (e.g., Refs. [30,43]) can be well extended to our
PT -symmetric systems. The possibility of the idea will be
further verified in subsequent studies.
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APPENDIX A: LINEARIZED OPTOMECHANICAL
HAMILTONIAN

The splittings of operators â(t) = α(t) + a(t) and b̂(t) =
β(t) + b(t) can be regarded as a displacement transformation
on the system dynamic operators, where α and β are c numbers
denoting the displacements of the optical and mechanical
modes; a and b are the displaced operators representing the
quantum fluctuations of the optical and mechanical modes
around their classical values. By separating the classical and
quantum components, the classical Langevin equations are
written as

α̇ =
(

i�′ − κ

2

)
α − i�, β̇ =

(
−iωm − γ

2

)
β − ig|α|2.

(A1)

If the optomechanical coupling is quite weak in the quantum
regime, the motion of the oscillator and optical field can be
regarded as perturbations on their respective steady states.
Under this conditions, we obtain

αt→∞ = i�(
i�′ − κ

2

) , βt→∞ = ig|α|2(−iωm − γ

2

) , (A2)

and the dynamics of a and b satisfy

ȧ =
(

i�′ − κ

2

)
a − igα(b + b†) − iga(b + b†) − ξ̂ ,

ḃ =
(

−iωm − γ

2

)
b − ig(α∗a + αa†) − iga†a − √

γ bin.

(A3)
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Under a strong driving condition, the nonlinear terms iga(b +
b†) and iga†a can be neglected and the linearized Hamil-
tonian H = −�′a†a + ωb†b + (Ga† + G∗a)(b† + b) can be
obtained, where G = αg is the linearized optomechanical
coupling strength. After a rotating-wave approximation, we

finally get

H = −�′a†a + ωb†b + Ga†b† + G∗ab (A4)

under the blue-sideband condition �′ > 0. Equation (A4) is
exactly Eq. (3) in the main text.

APPENDIX B: DERIVATION OF THE OSCILLATOR EFFECTIVE GAIN

With the master equation (4) in the main text, we first consider the first-order parts in Eq. (5), and these equations can be
formally integrated as

〈a〉(t) = 〈a〉t0 exp

(
i� − κ

2

)
t + exp

(
i�t − κ

2
t

)∫ t

0
−iG〈b〉∗(τ ) exp

(
−i�τ + κ

2
τ

)
dτ,

〈b〉∗(t) = 〈b〉∗t0 exp

(
iωm − γ

2

)
t + exp

(
iωmt − γ

2
t

)∫ t

0
iG〈a〉(τ ) exp

(
−iωmτ + γ

2
τ

)
dτ. (B1)

In the case of � − ωm 	 G or κ 	 γ , the optical field is a high-frequency oscillation term or a highly dissipative term. Then the
mode a can be regarded as a perturbation of the mechanical mode. The slight influence by a can be neglected, and the following
approximated expression can be further obtained: 〈b〉∗(t) = 〈b〉∗t0 exp (iωm − γ /2)t . Substituting it into 〈a〉(t) in Eq. (B1) and
finishing the integral inside it, an approximate solution of the optical mode can be expressed as

〈a〉(t) � −2iG

2i(ωm − �) + κ − γ
〈b〉∗t0 exp

(
iωm − γ

2

)
t � −2iG

2i(ωm − �) + κ
〈b〉∗(t) (B2)

under the condition � − ωm 	 G or κ 	 γ . Substituting this approximate solution into Eq. (5), we can get the following
effective first-order expectation value equation:

d

dt
〈b〉 =

[
−i

(
ωm + 4|G|2(� − ωm)

4(� − ωm)2 + κ2

)
− 1

2

(
γ − 4|G|2κ

4(� − ωm)2 + κ2

)]
〈b〉. (B3)

Equation (B3) is exactly the same as Eq. (8) in the main text. Now we consider the second-order mechanical quantities. Like for
the case of the first order and after substituting the approximate solutions of 〈a†a〉(t) and 〈b†b〉(t) into 〈ab〉(t), we obtain

〈ab〉(t) � −iG

{ 〈b†b〉(t)
−i(� − ωm) + κ/2

+ 1

−i(� − ωm) + κ/2

}
+ O(t), (B4)

where

O(t) = 〈ab〉t0 exp

[
i(� − ωm) − κ

2

]
t + −iG

−i(� − ωm) + κ/2

{
−〈b†b〉t0 exp

[
i(� − ωm) − κ

2

]
t

}

+ −iG

−i(� − ωm) − κ/2

{
〈a†a〉t0 exp(−κt) − 〈a†a〉t0 exp

[
i(� − ωm) − κ

2

]
t

}
. (B5)

We first neglect the O(t) term in Eq. (B4) because it is a time-oscillation term with dissipation; then the modified second-order
equation is exactly the same as Eq. (9) in the main text, and we find that the effective dissipation in this case is self-consistent
with the first-order effective dissipation. By using it, we have

〈b†b〉(t) = 〈b†b〉t0 exp(−�eff)t + exp(−�eff t)
∫ t

0
{−i[GO∗(τ ) − G∗O] + �effn

′
th} exp(�effτ )dτ. (B6)

After completing integration in the above expression, we achieve the following relationship:∫ t

0
{−i[GO∗(τ ) − G∗O]} exp(�effτ )dτ � 4|G|2〈a†a〉t0

4(� − ωm)2 + κ2
− 8G(� − ωm)〈ab〉t0

4(� − ωm)2 + κ2
+ 8|G|2〈b†b〉t0

4(� − ωm)2 + κ2
. (B7)

Here, the final equal relationship in Eq. (B7) requires that G and 〈ab〉(0) are both real and κ2/4  (� − ωm)2. Then substituting
Eq. (B7) into Eq. (B6), we obtain

〈b†b〉(t) = 〈b†b〉′t0 exp(−�eff)t + exp(−�eff t)
∫ t

0
{�effn

′
th} exp(�effτ )dτ, (B8)

and

〈b†b〉′t0 =
(

1 + 8|G|2
4(� − ωm)2 + κ2

)
〈b†b〉(0) + 4|G|2〈a†a〉(0)

4(� − ωm)2 + κ2
− 8G(� − ωm)〈ab〉(0)

4(� − ωm)2 + κ2
(B9)
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can be considered a modified initial condition of the oscillator phonon number. Correspondingly, we assume 〈b〉′t0 =
√

〈b†b〉′t0
for convenience. Equation (B9) is exactly the same as the modified initial condition in Eq. (13) in the main text.
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