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Temporal solitons in air
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Analysis of the group-velocity dispersion (GVD) of atmospheric air with a model that includes the entire
manifold of infrared transitions in air reveals a remarkably broad and continuous anomalous-GVD region in
the high-frequency wing of the carbon dioxide rovibrational band from approximately 3.5 to 4.2 μm where
atmospheric air is still highly transparent and where high-peak-power sources of ultrashort midinfrared pulses
are available. Within this range, anomalous dispersion acting jointly with optical nonlinearity of atmospheric air is
shown to give rise to a unique three-dimensional dynamics with well-resolved soliton features in the time domain,
enabling a highly efficient whole-beam soliton self-compression of such pulses to few-cycle pulse widths.
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I. INTRODUCTION

Among a vast variety of ultrafast phenomena found in
the complex spatiotemporal nonlinear dynamics of high-
intensity laser fields, physical scenarios whereby spatially and
temporally confined high-peak-power solitary field waveforms
can be isolated are of special interest for nonlinear optical
physics and ultrafast photonic technologies. As an important
example, light bullet formation [1,2] stands out as a generic
scenario where nonlinear dynamics gives rise to solitary light
waves localized in space and time. When the laser field
intensity is high enough to generate free charge carriers in
a nonlinear medium through ultrafast photoionization, laser-
induced filamentation [3,4] provides a universal scenario of
nonlinear dynamics where beam divergence due to diffraction
is suppressed due to dynamic self-action effects and field
waveform confinement in the time domain is possible in certain
regimes, leading to filamentation-assisted pulse compression
[5,6]. Outside the parameter space of laser filamentation,
nonlinear spatiotemporal dynamics involving spatial and
temporal localizations of ultrashort field waveforms has been
shown to enable pulse self-compression through adiabatic
pulse self-steepening within long propagation paths [7] as well
as pulse compression to subcycle pulse widths in carefully
designed stacks of solid materials with suitable dispersion
properties [8].

In anomalously dispersive solids, spatial localization pro-
vided by spatial self-action and laser filamentation can be
combined with temporal field confinement due to a solitonic
dynamics of laser pulses in the time domain [9]. For carefully
optimized parameters of input laser pulses, light bullets
can be generated in anomalously dispersive solids as a
part of laser-induced filamentation [10,11]. If they could be
extended to atmospheric air, these concepts and methods
would open new avenues for a long-distance transmission
of high-peak-power laser pulses and remote sensing of the
atmosphere. Such an extension, however, is anything but
trivial. For Ti:sapphire laser pulses, used in the overwhelming
majority of laser filamentation experiments in the atmosphere,
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dispersion of atmospheric air is normal, leaving no parameter
space for soliton dynamics. The midinfrared range where
efficient sources of high-peak-power ultrashort pulses are now
available [12,13] seems to offer much more promise in this
regard. In this wavelength region, rovibrational molecular
modes within and near atmospheric absorption bands give
rise to rapidly varying sign-altering group-velocity dispersion
(GVD), creating expectations that some of the minibands
where the air GVD is anomalous would be broad enough
to support soliton dynamics of ultrashort midinfrared field
waveforms.

An accurate analysis of GVD of atmospheric air in the
midinfrared is central for a correct identification of wave-
length ranges where solitonic effects are possible. Because
of the complex behavior of air refractivity within molecular
absorption bands and in the wings of these bands [14], such
an analysis is difficult both conceptually and technically. With
full calculations of air refractivity using the high-resolution
transmission molecular absorption (HITRAN) database of in-
frared line transitions [15] being time and labor consuming, a
useful polynomial-fit approximation has been developed [16]
to facilitate such calculations, providing a reasonable accuracy
of refractive-index calculations for atmospheric air within a
broad spectral range. As an important step toward finding
an adequate model for the air GVD, this polynomial-fit ap-
proximation has been applied to GVD calculations, predicting
an anomalous GVD of air within the range of wavelengths
from approximately 3.0 to 3.3 μm [17]. Numerical simulations
suggest [18,19] that, had this anomalous-GVD region existed,
generation of ultrashort midinfrared light bullets in air would
have been possible within this spectral range.

Here, we revisit the air GVD in the midinfrared range
using the full model of air refractivity including the entire
HITRAN-database manifold of infrared transitions. We show
that, although the polynomial-fit model provides a useful
tool for approximate calculations of air dispersion within
a remarkably broad spectral range, the accuracy of this
approximation is inevitably limited, especially when it is
extended beyond refractive-index calculations and employed
for GVD analysis. As a result of unavoidable approximation
errors, the midinfrared GVD profile calculated using the full
model of air refractivity deviates from GVD calculations
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based on the polynomial-fit approximation. The most drastic
deviations are observed within the regions where radiation is
resonantly coupled to molecular modes. As one of the most
dramatic findings, full-air-refractivity-model calculations do
not confirm the existence of continuous anomalous GVD of air
within the 3.0–3.3-μm region, predicted by the polynomial-fit
model. Instead, full-model calculations suggest that such a
continuously anomalous GVD occurs within a reasonable
broad spectral range in the high-frequency wing of the
carbon dioxide rovibrational band from approximately 3.5
to 4.2 μm where atmospheric air is still highly transparent.
Our numerical analysis of spatiotemporal field evolution
within this wavelength range reveals physical scenarios that
provide a long-distance temporal-soliton transmission of sub-
terawatt ultrashort pulses and enable highly efficient whole-
beam self-compression of such pulses to few-cycle pulse
widths.

II. GROUP-VELOCITY DISPERSION OF AIR

For an accurate analysis of the dispersion of atmospheric
air, we calculate the refractive index of atmospheric air as [14]

n(ω) ≈ 1 + e2

2meε0

∑
k

Nk

∑
i

fik(ωik)

2ω0ik

×
(

1

ω + ω0ik − i
2�ik

− 1

ω − ω0ik − i
2�ik

)
+ nvis(ω).

(1)

Here, Nk is the density of molecules of sort k, ωik , �ik ,
and fik are the frequency, the linewidth, and the oscillator
strength of the ith resonance in the spectrum of molecules
of sort k, me and e are the electron mass and charge,
ε0 is the dielectric permittivity of vacuum, and nvis(ω)
is the refractive index of air in the visible-near-infrared
range, calculated with the standard formula [20–22] nvis(λ) =
B1(C1 − λ−2)−1 + B2(C2 − λ−2)−1 with B1 = 0.057 921 05,
B2 = 0.001 679 17, C1 = 238.0185, and C2 = 57.362 μm−2

[23].
In the full model of air refractivity, we calculate the

refractive index of air with Eq. (1) including the entire HITRAN-
database manifold of molecular transitions in air [15]. The
GVD of atmospheric air can then be found as β2 = ∂2k/∂ω2,
k and ω being the wave number and the frequency entering the
dispersion relation k(ω), calculated with the use of Eq. (1) as
a function of the wavelength.

With each molecular band in atmospheric absorption
consisting of a large number of individual rovibrational
transition lines, the refractivity of air displays rapid oscillations
[Figs. 1(a) and 1(b)] within and near molecular absorption
bands [Fig. 1(c)]. In Fig. 1(a), we compare predictions of the
polynomial-fit model of air refractivity [16] with the results
of full-model calculations that include the entire HITRAN-
database manifold of infrared transitions in air [15]. As an
important result, Fig. 1(a) helps appreciate how powerful the
polynomial-fit approximation is when applied to refractive-
index calculations. The refractive index of air calculated with
the use of this model is seen to reproduce, with adequate
accuracy, the results of the full-model calculation within a

FIG. 1. (a) The refractive index of atmospheric air calculated
with the full model including the entire manifold of HITRAN-database
infrared transitions (blue solid line) and the polynomial-fit model
(magenta dashed line). (b) Blowup of the refractive index of
atmospheric air within the 2.6–4.2-μm wavelength range calculated
with the full model including the entire manifold of HITRAN-database
infrared transitions (blue solid line) and the polynomial-fit model
(magenta dashed line). (c) Absorption spectrum of atmospheric air
κ(λ) calculated with the full model including the entire manifold of
HITRAN-database infrared transitions. (d) Group-velocity dispersion
β2 of atmospheric air within the 2.6–4.2-μm wavelength range cal-
culated with the full model including the entire manifold of HITRAN-
database infrared transitions (blue solid line) and the polynomial-fit
model (magenta dashed line). The 3.0–3.3-μm anomalous-GVD
artifact is contoured by a dashed circle. Full-model calculations are
performed for atmospheric air at a temperature of 17.5 ◦C, humidity
of 10%, pressure of 101 325 Pa, and CO2 content of 370 ppm;
n0 ≈ 1.000 269 919 is the refractive index of air at λ = 3.9 μm.

remarkably broad range of wavelengths from the visible to the
long-wavelength infrared. However, the GVD calculation is
a very different matter as the polynomial-fit model is simply
not designed to include the fine details of the dispersion profile
related to individual molecular transitions within rovibrational
bands. These features may be almost invisible in the refractive
index [Fig. 1(a)] but show up in a very prominent way, upon
differentiation, in the GVD [Fig. 1(d)], giving rise to dramatic
discrepancies between the GVD profiles calculated using the
full and polynomial-fit models [cf. blue solid and magenta
dashed lines in Fig. 1(d)]. Furthermore, a blowup of the
refractive-index profile in Fig. 1(b) visualizes small-amplitude
oscillations of the polynomial fit [magenta dashed line in
Fig. 1(b)] relative to full-model calculations [blue solid line
in Fig. 1(b)]. These oscillations are, of course, typical of any
polynomial-fitting procedure. One of such oscillatory features
[dashed circle in Fig. 1(b)] translates into a 3.0–3.3-μm
anomalous-GVD artifact [dashed circle in Fig. 1(d)]. When
plugged into a pulse-evolution model, this artifact gives rise to
solitonic effects, including light bullets generation [18,19].
However, the full-air-refractivity-model prediction for the
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GVD β2 within this wavelength region is very different
[Fig. 1(d)]. It suggests a rapidly varying GVD profile with
multiple β2 sign reversals—a GVD behavior that does not
support any solitonic effects or light bullets on the femtosecond
time scale.

Still, a full-model analysis suggests that the dispersion of air
does offer a parameter space for ultrashort solitons and related
solitonic phenomena. As can be seen in Fig. 1(d), full-model
calculations reveal a remarkably broad and continuous region
of anomalous GVD that covers a range of wavelengths from
approximately 3.5 to 4.2 μm in the high-frequency wing of
the CO2 rovibrational band. Although this wavelength range is
close to the CO2 absorption band, atmospheric air is still highly
transparent in the central part of this anomalous-GVD region
with the absorption length of 3.9-μm radiation estimated
as la ≈ 40 km. For comparison, the absorption length at the
center of the CO2 absorption band at λ = 4.26 μm is only
la ≈ 1 m. The bandwidth of this region is broad enough to
support temporal solitons as short as ∼200−250 fs (assuming a

central wavelength of λ ≈ 3.9 μm), although perturbations
due to high-order dispersion are inevitable, especially near
the CO2 absorption band edge [Fig. 1(d)]. As a stroke of luck,
the central wavelength of high-peak-power optical parametric
chirped-pulse amplifier (OPCPA) sources capable of generat-
ing such short pulses in the midinfrared [12,13], λ ≈ 3.9 μm,
falls right into this wavelength range, promising practical
technologies for long-distance transmission of subterawatt and
terawatt midinfrared pulses and pulse compression based on
solitonic effects in atmospheric air.

III. MODEL OF SPATIOTEMPORAL FIELD EVOLUTION

Our numerical analysis of spatiotemporal field evolution
in atmospheric air is based on the three-dimensional (3D)
time-dependent generalized nonlinear Schrödinger equation
(GNSE) [3,4,24,25] for the complex amplitude of the field,
which is referred to hereinafter as the GNSE model,

∂

∂z
Ã =

[
ic

2ωn0
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]
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c

[
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−
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(
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2

)
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Here, A ≡ A(η,x,y,z) is the field envelope, Ã ≡
Ã(ω,x,y,z) is its Fourier transform, x,y are the transverse
coordinates, z is the coordinate along the propagation axis, η

is the retarded time, ω = 2πc/λ is the radiation frequency,
λ is the wavelength, F̃ is the Fourier-transform operator,
	⊥ = ∂2/∂x2 + ∂2/∂y2 is the diffraction operator, D̃ =
k(ω)−k(ω0)−∂k/∂ω|ω0(ω−ω0) is the dispersion operator, ω0

is the central frequency, k(ω) = ωn(ω)/c, n(ω) is the refractive
index, n0 = n(ω0), n2 and n4 are the Kerr nonlinearity
coefficients, T̃ = 1 + iω−1

0 ∂/∂η, R(η) is the delayed nonlinear
response, ρ ≡ ρ(η,x,y,z) is the electron density, ρ0 is the
neutral gas density, ρc = ω2

0meε0/e
2 is the critical electron

density, Ui = U0 + Uosc, Ui is the ionization potential, Uosc is
the energy of field-induced electron oscillations, W (I ) is the
photoionization rate, I is the field intensity, σ (ω) is the impact
ionization cross section, and e and me are the electron charge
and mass, respectively.

The field evolution equation [Eq. (2)] is solved jointly
with the rate equation for the electron density ∂ρ/∂t =
W + σ (ω0)Ui

−1ρI , which includes impact ionization and
photoionization with the photoionization rate W calculated
using the Keldysh formalism [26]. When supplemented with
this equation for ρ, our GNSE-based model includes all the
key physical phenomena that have been identified as signifi-
cant factors behind a truly three-dimensional spatiotemporal
evolution of ultrashort optical pulses in nonlinear media, such
as dispersion and absorption of the medium, beam diffraction,
Kerr and Raman nonlinearities, pulse self-steepening, spatial
self-action phenomena, as well as ionization-induced loss,
dispersion, and optical nonlinearities.

The way the dispersion of atmospheric air is included in
Eq. (2) is, perhaps, the most significant distinctive feature

of our approach. Since our main focus here is to identify
negative dispersion and, in particular, solitonic phenomena in
the dynamics of ultrashort laser pulses in air, dispersion of the
atmosphere needs to be included into our model as accurately
as possible. The frequency-domain representation of the
dispersion operator D̃ is ideally suited to achieve this goal.
Indeed, there is simply no way that the standard time-domain
approach using a polynomial expansion of k(ω) about ω0 with
constant dispersion coefficients could possibly be tailored to
describe the realistic dispersion profile of atmospheric air in its
entire complexity as defined by modern databases, such as the
HITRAN database. By contrast, when written in the frequency
domain, the dispersion operator can be defined in such a
way as to accommodate all the fine details of atmospheric
dispersion in the spectral domain of interest that influence the
dynamics of optical-field waveforms on the subpicosecond
time scale. In simulations presented below in this paper, the D̃

operator was programmed to include all the pertinent features
of air refractivity from the HITRAN database [15] related
to the asymmetric-stretch rovibrational band of atmospheric
CO2 (with a density of NCO2 = 1016 cm−3) as well as all the
rovibrational bands of water (NH2O = 5.4×1016 cm−3) falling
within the range from 1.8 to 4.5 μm [Figs. 1(b) and 1(d)].
Although individual rovibrational components within these
bands appear almost as discontinuities in Figs. 1(a)–1(d),
their linewidths [�ik in Eq. (1)] are finite and are typically
on the order of �ik/(2π ) ∼ 2 GHz for the asymmetric-stretch
rovibrational band of atmospheric CO2 [27,28].

Simulations are performed for typical parameters of
the atmospheric air—the ionization potential molecular
oxygen Ui = 12.063 eV and the Raman function R(η) =
(τ 2

1 + τ 2
2 )τ−1

1 τ−2
2 exp(−η/τ2)sin(η/τ1) with fR=0.5, τ1=62.5,
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τ2 = 70 fs [3,4,29]. The Kerr-effect nonlinear refractive-index
coefficients n2 and n4 have never been characterized accurately
in this wavelength range. In simulations presented here, we
use the n2 and n4 coefficients n2 ≈ 2.8×10−19 cm2/W, n4 ≈
−1×10−33 cm4/W2 that provide the best fit simultaneously for
the spectra, pulse shapes, and beam profiles measured for ul-
trashort 3.9-μm laser pulses transmitted through atmospheric
air [13,30,31].

The field evolution Eq. (2) is solved by the split-step
method. The linear diffraction and dispersion operators in this
equation are computed using the Fourier method. The nonlin-
ear part of the field evolution equation as well as the equation
for the electron-density dynamics are solved by the fifth-order
Runge-Kutta method. Simulations are performed using a
message passing interface parallel programming interface and
the compute unified device architecture graphical architecture
on the Lomonosov and Lomonosov-2 supercomputer clusters
of Moscow State University (see Refs. [32,33] for the details of
parallel algorithms and optimization of computer resources).

In freely propagating laser beams, soliton dynamics occurs
as a part of complex spatiotemporal field evolution. In this
regime, soliton field transformations in the time domain
are often strongly coupled to nonlinear beam dynamics.
As a result, canonical soliton effects known from textbook
nonlinear fiber optics are very rarely observed in their pure
form. Still, with a careful choice of input laser parameters, a
decrease in the field intensity due to diffraction-induced beam
divergence can significantly be reduced by self-focusing. In
this regime, the soliton effects, as we will show below, can
be decoupled from beam dynamics, helping isolate soliton
phenomena in three-dimensional field evolution in freely
propagating laser beams.

IV. RESULTS AND DISCUSSION

Envisaging experiments with midinfrared OPCPA sources
[12,13] as, perhaps, the most realistic option for nearest-future
experimental studies of solitonic effects in atmospheric air,
we examine the spatiotemporal evolution of laser pulses in a
nonfocused beam with a central wavelength of λ0 = 3.9 μm,
an input pulse width of τ0 = 250 fs, and an initial pulse
energy of W0 = 25 mJ. The input peak power P0 = 100 GW
is adjusted to be right above the critical power of self-focusing
Pcr ≈ 80 GW at λ0 = 3.9 μm, which, along with the choice of
the input beam diameter d0 = 14 mm, helps reduce diffraction
beam divergence, avoiding, at the same time, filamentation of
the laser beam [Fig. 2(a)] and any noticeable photoionization
of air.

In Fig. 2(a), along with the map of overall beam dynamics,
we present the effective mean beam radius, defined as

rb(z) =
[∫ ∞

0

(∫ ∞

−∞
I (z,r,η)dη

)
2πr3dr

]1/2

×
[∫ ∞

0

(∫ ∞

−∞
I (z,r,η)dη

)
2πr dr

]−1/2

, (3)

where r is the radial coordinate and the field intensity I (z,r,η)
is found by solving the 3D field evolution Eq. (2). In Fig. 2(a),
we compare the behavior of rb as a function of z calculated
using the full 3D spatiotemporal model of Eq. (2) (solid line)

FIG. 2. Nonlinear dynamics midinfrared pulses with λ0 =
3.9 μm, τ0 = 250 fs, W0 = 25 mJ, and d0 = 14 mm in air in (a)–(d)
(3 + 1)-D and (e)–(h) (1 + 1)-D simulations (a)–(f) with and (g) and
(h) without dispersion and absorption: (a) beam dynamics with the
beam radius rb calculated in the full model of beam dynamics (solid
line) and with self-focusing disabled (dashed line), (b) temporal
evolution of the field intensity integrated over the entire beam, (c)
and (d) temporal (c) and spectral (d) evolution of the field intensity
on the beam axis, and (e)–(h) temporal (e) and (g) and spectral (f) and
(h) evolution in 1D dynamics (e) and (f) with and (g) and (h) without
dispersion and absorption.

with the rb(z) dependence calculated with the self-action term
in the 3D GNSE disabled (dashed line). Comparison of these
rb(z) dependences gives a quantitative measure of diffraction
beam divergence suppression due to self-focusing. As can
be seen from Fig. 2(a), self-focusing prevents rapid beam
divergence, helping sustain high-field intensities, needed for
soliton dynamics, within much longer propagation paths.

A laser pulse with such input parameters becomes shorter
[Figs. 2(b) and 2(c)] as it propagates through atmospheric air
within the anomalous-GVD range, attaining a pulse width of
about 80 fs at zm ≈ 90 m [Fig. 2(c)]. Integration over the entire
beam at this point yields a pulse with a pulse width of τm ≈
105 fs [Fig. 2(b)]. To identify solitonic effects in this pulse
self-compression dynamics, in Figs. 2(c) and 2(d), we compare
simulations performed by solving the 3D GNSE [Eq. (2)] with
the solution of the one-dimensional (1D) GNSE [34] for a laser
pulse with the same input parameters [Figs. 2(e) and 2(f)].
The 1D GNSE model is instrumental here as it fully ignores
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diffraction and spatial self-action effects but can accurately
describe the 1D temporal soliton dynamics in the presence of
high-order dispersion, which tends to grow in its significance
near the CO2 absorption band edge [Fig. 1(b)].

The 3D dynamics of a freely propagating laser beam is
seen to closely follow the 1D evolution of a laser pulse, ex-
hibiting clear signatures of soliton self-compression [Figs. 2(c)
and 2(e)] as well as spectral broadening dominated by self-
phase modulation [(Figs. 2(d) and 2(f)]. Moreover, even a
quantitative comparison of 1D and 3D scenarios is meaningful
in this regime. Indeed, whereas in 3D dynamics, the minimum
on-axis pulse width τm ≈ 80 fs is achieved at zm ≈ 90 m
[Fig. 2(с)], the 1D GNSE dictates pulse compression to a
pulse width of about 60 fs within the same optimal pulse
compression length [Fig. 2(e)].

To demonstrate a high-efficiency soliton self-compression
in atmospheric air, we consider the 3D spatiotemporal evolu-
tion of laser pulses with the same values of λ0, τ0, and W0 as
specified above but with a much smaller beam diameter of d0 =
4.2 mm. Since the diffraction length ldf for such a beam diame-
ter is more than an order of magnitude shorter than ldf in Fig. 2,
while the input peak power is kept unchanged, self-focusing is
now too weak to suppress diffraction-induced beam divergence
within a noticeable propagation path [Fig. 3(a)]. In this regime,
temporal transformations of laser pulses are coupled to beam
dynamics, and any 1D model is no longer accurate.

However, the field intensity in such a smaller-d0 beam
within the initial section of its propagation path [1.4 TW/cm2

at z = 0 m in Fig. 3(a)] is much higher than the field intensity
in a laser beam shown in Fig. 2(a) (0.12 TW/cm2 at z = 0 m).
As a result, laser pulses in such a beam are compressed to much
shorter pulse widths, becoming as short as ≈40 fs at zm ≈ 42 m
on the beam axis [Fig. 3(d)]. The spectral broadening of such
pulses, dominated by self-phase modulation, tends to fill up the
entire atmospheric transmission window, giving rise to sharp
edges of output spectra at 2.75 and 4.2 μm and an extended
tail stretching beyond the long-wavelength edge of the CO2

absorption line [Figs. 3(b) and 3(c)].
To isolate the role of dispersion effects in the pulse-

compression scenario illustrated in Figs. 2(a)–2(f), 1D sim-
ulations without the dispersion and absorption terms in the
1D GNSE have been performed. In Figs. 2(e)–2(h), these
simulations are compared with simulations using the full
1D GNSE model with the dispersion and absorption terms
included. As can be seen from Figs. 2(e) and 2(g), the
difference in the temporal dynamics of laser pulses simulated
with and without dispersion is striking. When the dispersion
term is disabled, the pulse is seen to show no sign of
self-compression whatsoever [Fig. 2(g)]. On the other hand,
when anomalous dispersion of air is included in the model, the
laser pulse shortens to a pulse width of about 60 fs at z ≈ 90 m
as a part of solitonic pulse self-compression dynamics.

Unlike filamentation-assisted pulse compression where
efficient pulse shortening is often limited to a small area near
the beam axis soliton pulse compression considered in this
paper can be made remarkably uniform across the laser beam.
Indeed, whereas the minimum pulse width achieved at zm ≈
42 m on the beam axis is about 40 fs [Fig. 3(d)], integration
over the entire beam at this point yields only a slightly
longer pulse with a pulse width of τm ≈ 50 fs [Figs. 3(e)

FIG. 3. Soliton self-compression of midinfrared pulses with
λ0 = 3.9 μm, τ0 = 250 fs, W0 = 25 mJ, and d0 = 4.2 mm in air: (a)
beam dynamics, (b) spectral evolution, (c) the spectrum at the point of
maximum pulse compression z = 42 m with the absorption spectrum
of air shown by gray shading, (d) temporal evolution of the field
intensity on the beam axis, (e) temporal evolution of the field intensity
integrated over the entire beam, and (f) temporal envelope of the
midinfrared pulse on the beam axis (dashed line) and integrated
over the entire beam (solid line) at the point of maximum pulse
compression, z = 42 m versus the input pulse (dashed-dotted) line.

and 3(f)] and an energy of Wm ≈ 24.3 mJ, corresponding to
a compression ratio of τm/τ0 ≈ 5 with an energy throughput
as high as Wm/W0 ≈ 96.8%. Defining the peak power of the
compressed pulse as Pm = maxη

∫ ∞
0 I (r,η)2πr dr , we find

Pm ≈ 200 GW, which is twice as high as the peak power of
the input pulse.

V. CONCLUSION

To summarize, analysis of air refractivity with a model
that includes the entire manifold of infrared transitions in air
suggests the existence of a remarkably broad and continuous
anomalous-GVD region in the high-frequency wing of the
carbon dioxide rovibrational band from approximately 3.5 to
4.2 μm where atmospheric air is still highly transparent
and where high-peak-power sources of ultrashort midinfrared
pulses are available. Within this range, anomalous dispersion
acting jointly with optical nonlinearity of atmospheric air is
shown to give rise to a unique three-dimensional dynamics
with well-resolved soliton features in the time domain,
enabling a long-distance transmission of subterawatt ultrashort
midinfrared pulses and highly efficient whole-beam soliton
self-compression of such pulses in the time domain to few-
cycle pulse widths.
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A. Durécu, A. Couairon, and A. Mysyrowicz, Phys. Rev. Lett.
110, 115003 (2013).
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