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Fisher information of a squeezed-state interferometer with a finite photon-number resolution
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Squeezed-state interferometry plays an important role in quantum-enhanced optical phase estimation, as it
allows the estimation precision to be improved up to the Heisenberg limit by using ideal photon-number-resolving
detectors at the output ports. Here we show that for each individual N -photon component of the phase-matched
coherent ⊗ squeezed vacuum input state, the classical Fisher information always saturates the quantum Fisher
information. Moreover, the total Fisher information is the sum of the contributions from each individual N -photon
component, where the largest N is limited by the finite number resolution of available photon counters. Based
on this observation, we provide an approximate analytical formula that quantifies the amount of lost information
due to the finite photon number resolution; e.g., given the mean photon number n̄ in the input state, over 96% of
the Heisenberg limit can be achieved with the number resolution larger than 5n̄.
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I. INTRODUCTION

Quantum-enhanced optical phase estimation through a
Mach-Zehnder interferometer (MZI) is important for multiple
areas of scientific research [1–7], such as imaging, sensing,
and high-precision gravitational waves detection. The MZI-
based optical phase estimation consists of three steps [see,
e.g., Fig. 1(a)]. First, a two-mode input state of the light
is prepared. Second, the light passes successively through a
beam splitter, the unknown relative phase shift ϕ between
the two arms of the MZI, and another beam splitter, and it
evolves to the output state. Third, the output state is measured
for many times, and the outcomes x = {x1,x2, . . . ,xv} are
processed to construct an unbiased estimator ϕ̂(x) to the
unknown parameter ϕ [8,9]. The estimation precision is
quantified by the standard deviation �ϕ ≡

√
〈(ϕ̂(x) − ϕ)2〉.

By using optimal data-processing techniques to extract all the
information contained in the data, the estimation precision
from v � 1 repeated measurements is given by the Cramér-
Rao lower bound [8,9]: �ϕCRB ≡ 1/

√
vF (ϕ), where F (ϕ) is

the classical Fisher information (CFI) for the measurement
scheme used. Given the input state, maximizing F (ϕ) over
all possible measurement schemes gives the quantum Fisher
information (QFI) FQ and hence the quantum Cramér-Rao
bound �ϕQCRB ≡ 1/

√
vFQ [10–14], which sets an ultimate

precision for estimating the unknown phase shift ϕ. Usually
the precision �ϕQCRB improves with increasing number of
photons n̄ contained in the input state. Using a coherent-state
of light as the input, the achievable phase sensitivity per
measurement is limited by the classical (or shot noise) limit
δϕ ≡ √

v�ϕ ∼ 1/
√

n̄, as the QFI FQ ∼ O(n̄).
To improve the precision beyond the classical limit

(∼1/
√

n̄), it is necessary to employ quantum resources, such
as entanglement and squeezing in the input state [1–7]. In this
context, the squeezed states of light play an important role and
have been widely studied in the past few decades ever since
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the pioneer work of Caves [1], who showed that by feeding a
coherent state |α〉 into one port of the MZI and a squeezed
vacuum |ξ 〉 into the other port, the unknown phase shift
can be estimated with a precision beyond the classical limit.
Pezzé and Smerzi [15] further suggested that the previously
used phase estimator based on the averaged relative photon
number is not optimal. When the injected fields are phase
matched, i.e., the phases of two light fields θa and θb obeying
cos(θb − 2θa) = +1, the QFI can reach the Heisenberg scaling
∼O(n̄2) for a given mean photon number n̄ = |α|2 + sinh2 |ξ |.
More importantly, this QFI can be saturated by the CFI for
ideal photon counting measurements. Consequently, by using
the optimal data-processing technique (such as the maximum-
likelihood estimation or Bayesian estimation) to process these
measurement outcomes, the phase estimation precision can
attain the Heisenberg limit δϕCRB = δϕQCRB ∼ 1/n̄. Recently,
Lang and Caves [16] proved that given the total average photon
number n̄ of the input state, if a coherent light is fed into
one input port of the MZI, then the squeezed vacuum is the
optimal state to inject into the second input port. Liu et al.
[17] have analyzed the phase-matching condition (PMC) that
maximizes the QFI in the squeezed-state interferometer, where
a superposition of an even or odd number of photons is injected
from one port of the interferometer and any input state from
another.

An important requirement of these theoretical works
[15,16] is to take into account all the photon-counting events,
which in turn requires photon-number-resolving detectors with
perfect number resolution [18]. However, on the experimental
side, the best detector to date can resolve the number of
photons only up to four [19,20]. This makes it unclear whether
or not the Heisenberg limit of the estimation precision can
still be achieved by using realistic photon detectors with an
upper threshold on the number resolution. To bridge this
gap between the theory and experiments, it is of interest to
investigate the experimentally achievable estimation precision
when the total number of photons being detected is limited, i.e.,
N = N1 + N2 � Nres, where Nres/2 determines the number
resolution by a single photon-counting detector. Since the
existence of an upper threshold Nres essentially amounts
to discarding the information contained in photon-counting
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FIG. 1. (a) Photon-counting measurement at output ports of the MZI fed with a coherent state |α〉 and a squeezed vacuum |ξ〉, and
the N -photon state |ψBS

N 〉, postselected by the number of photons being detected N = N1 + N2 = 2J . (b) For a given J = N/2 = 10, the
probability distribution pμ = |〈J,μ|ψBS

N 〉|2 against μ = (N1 − N2)/2 ∈ [−J, + J ] and x = |α|2/ tanh |ξ |. At a certain value of the ratio x
(opt)
N

(blue line), the distribution shows two symmetric peaks at μ = ±J , indicating the appearance of a path-entangled NOON state. (c) The fidelity
between the N -photon state and an ideal NOON state and (d) the QFI of the N -photon state, with their values calculated at x = x

(opt)
N (blue

solid line) and x
(FI)
N (red line with crosses); see text. The inset in (c) indicates x

(FI)
N � x

(opt)
N � N/2.

events with the number of photons larger than Nres, it is
therefore important to investigate the distribution of the QFI
and CFI in the N -photon components of the coherent ⊗
squeezed vacuum input state and calculate how much the QFI
is kept with a finite number resolution.

In addition, studying the distribution of the QFI and CFI
in the N -photon components also helps to understand the
phase estimation precision in recent postselection experiments.
When the MZI is fed by the coherent ⊗ squeezed vacuum, the
state after the first beam splitter of the MZI contains a small
fraction of the path-entangled NOON state [21,22], which is a
well-known N -photon nonclassical state that allows the phase
estimation precision to achieve the Heisenberg limit [23–29].
In the limit |α|2,|ξ | 
 1, Afek et al. [22] have demonstrated
N -fold oscillations of the coincidence rates for N up to
5, manifesting the appearance of N -photon NOON states.
However, the generation probability of a N -photon NOON
state decreases dramatically with increasing N , e.g., the five-
photon count rate ∼3 per 100 s [22]. Therefore, it is desirable
to study the overall estimation precision when such small
generation probabilities are included, since there are general
conclusions that the generated state under postselection cannot
improve the precision for estimating a single parameter when
the total number of input photons are included (see, e.g.,
Refs. [30–32]).

In this paper, we investigate the distribution of the QFI and
CFI in the different N -photon components of the coherent
⊗ squeezed vacuum input state and provide the achievable
estimation precision by using imperfect photon counters with

an upper threshold Nres for the photon number resolution.
Under the PMC cos(θb − 2θa) = +1, we show that the
CFI always saturates the QFI for each individualN -photon
component. Consequently, when the detectable number of
photons is upper bounded by Nres, the phase estimation
precision δϕCRB is always equal to δϕQCRB and both of them
are determined by the sum of the CFI or equivalently the QFI
for each N -photon component with N up to Nres. For the
commonly used optimal input state with |α|2 � sinh2 |ξ | �
n̄/2 [15–17], photon-counting measurement with ideal photon
detectors (Nres → ∞) gives the CFI or the QFI F

(id)
Q,opt ∼ n̄2,

leading to the Heisenberg limit of the estimation precision
[15–17]. For finite photon number resolution, we provide an
approximate analytical expression that quantifies the amount
of lost information, which predicts that over 96% of the ideal
QFI can be achieved as long as Nres � 5n̄. Compared with
the ideal case (i.e., |α|2 � sinh2 |ξ |), we find that the optimal
input state contains more coherent light photons than that of
the squeezed light.

II. FINITE N-PHOTON STATE UNDER POSTSELECTION

As illustrated schematically by Fig. 1(a), a postselection
scheme for creating path-entangled NOON states has been
proposed by injecting a coherent state of light and a squeezed
vacuum into a Mach-Zehnder interferometer [21,22]. This
scheme has been demonstrated by Afek et al. [22] in the
limit |α|2,|ξ | 
 1. However, the generated N -photon state
in postselection cannot improve the precision for estimating
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an unknown phase shift, since the CFI is weighted by
the generation probability [30]. It is therefore important to
investigate whether or not a sum of each N -component for N

up to a finite number can beat the shot-noise scaling ∼O(n̄). To
answer this question, in this section we first derive explicit form
of the N -photon state generated by postselection. Next, we
calculate the (quantum) Fisher information for the N -photon
state, which determines the ultimate precision on the phase
estimation.

A. The fidelity of the N-photon state and the NOON state

Without any loss and additional reference beams, the input
state can be expressed as a superposition of N -photon states
[14], i.e., |α〉a ⊗ |ξ 〉b = ∑

N

√
GN |ψN 〉, where GN denotes

the generation probability of a finite N -photon state, and N =
N1 + N2 is the number of photons postselected by the photon-
counting events {N1,N2}. In Fock basis, the N -photon state is
given by

|ψN 〉 = 1√
GN

[N/2]∑
k=0

cN−2k(θa)s2k(θb)|N − 2k,2k〉a,b, (1)

where |m,n〉a,b ≡ |m〉a ⊗ |n〉b, and the sum over k is up to
[N/2] = (N − 1)/2 (for odd N ), or N/2 (for even N ), because
of an even number of photons that injected from the port
b. Note that the probability amplitudes of the coherent state
and the squeezed vacuum cm(θa) = 〈m|α〉 and sn(θb) = 〈n|ξ 〉
depend explicitly on the phases of two input light fields θa and
θb (see Appendix A). Furthermore, the generation probability
GN is also the normalization factor and is given by

GN =
[N/2]∑
k=0

|cN−2ks2k|2 = e−|α|2

cosh |ξ |
(

tanh |ξ |
2

)N

RN (x), (2)

where we have introduced a ratio x ≡ |α|2/ tanh |ξ | and a
polynomial

RN (x) =
[N/2]∑
k=0

(2k)!

(N − 2k)!(k!)2
(2x)N−2k, (3)

which obeys RN (0) = N !/[(N/2)!]2 for even N , and RN (0) =
0 for odd N , similar to the Hermite polynomials at x = 0. In
the limit |α|2,|ξ | 
 1, the ratio can be approximated as x ∼
|α|2/|ξ |, and its square is indeed the two-photon probability of
the coherent state divided by that of the squeezed vacuum [22].

The explicit form of the N -photon state crucially depends
on the relative phase difference between the squeezing
parameter ξ and the coherent-state amplitude α. Following
Refs. [15,17], we consider the PMC, i.e., cos(θb − 2θa) =
+1, for which Eq. (1) can be reexpressed as |ψN 〉 =
exp(iNθa)|ψ̃N 〉, where |ψ̃N 〉 denotes the N -photon states with
real amplitudes (for details, see Appendix A). After the first
beam splitter, the N -photon state becomes

∣∣ψBS
N

〉 = e−iπJx/2|ψN 〉 =
+J∑

μ=−J

〈
J,μ

∣∣ψBS
N

〉|J,μ〉, (4)

where, for brevity, we have introduced the eigenstates
of Jz, i.e., |J,μ〉 ≡ |J + μ,J − μ〉a,b, with J = N/2 and

μ ∈ [−J, + J ]. Under the PMC, the probability amplitudes
of |ψBS

N 〉 can be written as〈
J,μ

∣∣ψBS
N

〉 = eiNθa eiπ(μ−J )/2√pμ, (5)

which depends solely on the phase of the coherent-state light
θa and the probability distribution (see Appendix A)

pμ ≡ ∣∣〈J,μ
∣∣ψBS

N

〉∣∣2

= 1

RN (x)

[
[N/2]∑
k=0

dJ
μ,J−2k

(
π

2

) √
(2k)!

k!
√

(N − 2k)!
(2x)N/2−k

]2

,

(6)

where dJ
μ,v(ϕ) are the elements of Wigner’s d-matrix [33,34].

It is interesting to note that for a given N , the probability distri-
bution depends only on the introduced ratio x = |α|2/ tanh |ξ |,
hereinafter denoted by pμ = pμ(x).

Figure 1(b) shows the probability distribution as a function
of μ for a large enough N . At x = 0, i.e., a pure squeezed
vacuum being injected, the probability distribution is almost a
Gaussian, due to pμ(0) = [dJ

μ,−J (π/2)]2 ∝ exp(−μ2/J ). As
x increases, the N -photon state always shows a symmetric
probability distribution (i.e., p−μ = p+μ). One can see this di-
rectly from Eq. (6), where dJ

−μ,v(ϕ) = (−1)J−vdJ
+μ,v(π − ϕ);

see, e.g., Refs. [33,34]. Physically, the symmetric probability
distribution arises from the fact that the N -photon state |ψN 〉
contains only an even number of photons in mode b, i.e.,
〈ψN |Jy |ψN 〉 = Im〈ψN |a†b|ψN 〉 = 0, which in turn leads to

〈ψN |Jy |ψN 〉 = 〈
ψBS

N

∣∣Jz

∣∣ψBS
N

〉 =
∑
μ�0

(p+μ − p−μ)μ = 0

(7)

and hence p−μ = p+μ. This symmetry enables us to write an
explicit expression of the N -photon state,∣∣ψBS

N

〉 = eiNθa

∑
μ�0

ei π
2 (μ−J )

√
2pμ(x)

×
( |J,μ〉 + e−iπμ|J,−μ〉√

2

)
, (8)

which is indeed a superposition of the path-entangled states
∼(|J,μ〉 + e−iπμ|J,−μ〉), where the relative phase e−iπμ

comes from Eq. (5). For a certain value of x, the prob-
ability distribution pμ(x) reaches its maximum at μ =
±J = ±N/2, indicating |ψBS

N 〉 → |ψNOON〉 = (|J, + J 〉 +
e−iπJ |J,−J 〉)/√2, with the fidelity given by

FNOON ≡ ∣∣〈ψNOON

∣∣ψBS
N

〉∣∣2 = 2pJ (x). (9)

Clearly, the fidelity depends on the ratio x and the number of
photons being detected N (=2J ). For a given N , maximizing
the fidelity with respect to x, one can obtain the optimal value
of the ratio, denoted hereinafter as x

(opt)
N . For small N , it has

been obtained x
(opt)
N = 1 (for N = 2, 3),

√
3 (N = 4), and

2.016 (N = 5); see Ref. [22]. When N � 1, the optimal value
of x is about N/2, for which FNOON → √

8/9 � 0.943 (see
Ref. [21] and Table I). In Fig. 1(c) we show the optimal value
of the fidelity FNOON(x(opt)

N ) as a function of N (the blue solid
line), which coincides with Ref. [22]. From Eqs. (4) and (9),
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TABLE I. For a given N , the fidelity FNOON and the QFI FQ,N depend solely on the ratio x ≡ |α|2/ tanh |ξ | and reach a maximum
at x

(opt)
N and x

(FI)
N , respectively. For N = 2, 3, FNOON = FQ,N/N 2 = 1 at x

(opt)
N = x

(FI)
N = 1; while for N = 4, FNOON = FQ,N/N 2 = 0.933 at

x
(opt)
N = x

(FI)
N = √

3.

N 5 6 7 8 9 10 100

x
(opt)
N , x

(FI)
N 2.016, 1.962 2.544, 2.488 2.961, 2.856 3.444, 3.323 3.908, 3.752 4.390, 4.213 49.405, 49.103

FNOON, FQ,N/N 2 0.941, 0.945 0.924, 0.933 0.924, 0.938 0.920, 0.939 0.920, 0.943 0.920, 0.946 0.941, 0.995

one can also see that before the first beam splitter, |ψN 〉 itself at
x = x

(opt)
N approaches the NOON state exp(iπJx/2)|ψNOON〉,

which shows the polarization along ±Jy .

B. The Fisher information of the postselected N-photon state

We now investigate the CFI of the N -photon state in the
photon-counting measurements and show that it always equals
to the QFI under the PMC. To this end, we first calculate
the QFI of the phase-encoded state exp(−iϕJy)|ψN 〉, where
the unitary operator represents sequent actions of the first
beam splitter, the phase-shift accumulation in the path, and the
second 50:50 beam splitter at the output ports, as illustrated in
Fig. 1(a). Due to 〈ψN |Jy |ψN 〉 = 0, it is easy to obtain the QFI
[10–14]:

FQ,N = 4〈ψN |J 2
y |ψN 〉 = 4

〈
ψBS

N

∣∣J 2
z

∣∣ψBS
N

〉 = 4
+J∑

μ=−J

μ2pμ,

(10)

where |ψBS
N 〉 denotes the N -photon state after the first beam

splitter and its probability distribution pμ(x) has been given
by Eq. (6). Similar to the fidelity, one can see that the QFI
depends on the ratio x and the number of photons N . For the
cases N = 2, 3, and 4, both of them reach maximum at x

(opt)
N

because of the relation

FQ,N = N2FNOON(x) + 2(N − 2)2pJ−1(x) + · · · , (11)

where p0(x), p1/2(x), and p1(x) are vanishing at x = x
(opt)
N .

When N � 5, however, {p|μ|(x)} with |μ| < J provide
nonvanishing contributions to the QFI. Numerically, we find
that FQ,N reaches its maximum at x

(FI)
N , which is slightly

smaller than x
(opt)
N (see Table I). In Fig. 1(d) we plot the

maximum of the QFI as a function of N and find FQ,N �
0.933N2.

Next, we consider the photon-counting measurements over
the phase-encoded state exp(−iϕJy)|ψN 〉 and calculate the
CFI. Again, we consider the PMC and rewrite the N -photon
state as |ψN 〉 = exp(iNθa)|ψ̃N 〉, where |ψ̃N 〉 is given by
Eq. (1) with θa = θb = 0. Note that the probability amplitudes
of |ψ̃N 〉 and hence that of exp(−iϕJy)|ψ̃N 〉 are real, which
result in the conditional probabilities (see Appendix A):

PN (μ|ϕ) = |〈J,μ|e−iϕJy |ψN 〉|2 = [〈J,μ|e−iϕJy |ψ̃N 〉]2,

(12)

where μ = (N1 − N2)/2 ∈ [−J, + J ] and J = (N1 +
N2)/2 = N/2. Obviously, for a given N , there are N + 1
outcomes with their probabilities satisfying the normalization
condition

∑
μ PN (μ|ϕ) = 〈ψN |ψN 〉 = 1. Due to the real

probability amplitudes, 〈J,μ| exp(−iϕJy)|ψ̃N 〉 ∈ R, we
further obtain

∂PN (μ|ϕ)

∂ϕ
= 2

√
PN (μ|ϕ)〈J,μ|(−iJy) exp(−iϕJy)|ψ̃N 〉 ∈ R,

indicating that 〈J,μ|Jy exp(−iϕJy)|ψ̃N 〉 is purely imaginary
for each μ. This is the key point to obtain the CFI:

FN (ϕ) =
+J∑

μ=−J

[∂PN (μ|ϕ)/∂ϕ]2

PN (μ|ϕ)

= −4
+J∑

μ=−J

[〈J,μ|Jye
−iϕJy |ψ̃N 〉]2

= 4〈ψ̃N |J 2
y |ψ̃N 〉 = FQ,N, (13)

where FQ,N is the QFI of the phase-encoded state
exp(−iϕJy)|ψN 〉 under the PMC, given by Eq. (10).

As one of main results of this work, Eq. (13) indicates
that as the “input” state, |ψN 〉 at x = x

(FI)
N could provide a

global phase estimation at the Heisenberg scaling [35], as
FN (ϕ) = FQ,N � 0.933N2. However, this scaling is defined
with respect to the number of photons being detected N .
Furthermore, |ψN 〉 is postselected by the N -photon detection
events with the generation probability GN , which is usually
very small as N � 1 [see Fig. 2(a)]. Indeed, purely with
the N -photon detection events (i.e., totally N + 1 outcomes
with a definite N ), one cannot improve the accuracy for
estimating an unknown phase shift, since the CFI is weighted
by the generation probability [30], i.e., GNFN (ϕ). For the
input |α〉a ⊗ |ξ 〉b with a given mean photon number n̄ =
|α|2 + sinh2 |ξ |, one can see that the weighted CFI for different
values of N can reach only the classical limit ∼O(n̄), as
depicted by Fig. 2(c), where we considered the special case
α,ξ ∈ R, for which the PMC is naturally fulfilled and therefore
FN (ϕ) = FQ,N .

III. THE TOTAL FISHER INFORMATION

In order to improve the estimation precision, all the
detection evens {N1,N2} have to be taken into account in
the photon-counting measurements, which gives ideal result
of the CFI [10–14]:

F (id)(ϕ) =
∞∑

2J=0

+J∑
μ=−J

[∂P (J,μ|ϕ)/∂ϕ]2

P (J,μ|ϕ)
=

∞∑
N=0

GNFN (ϕ),

(14)
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FIG. 2. (a) The generation probability GN , (b) the QFI of each N -photon state FQ,N , (c) the weighted QFI GNFQ,N , and (d) the total QFI
FQ(Nres,n̄,α2), for n̄ = 5 fixed and Nres = 3n̄ (solid circles), 5n̄ (squares), 10n̄ (open circles), and ∞ (red solid lines). The last case is given by
Eq. (16), which predicts α2

opt � n̄/2 and F
(id)
Q,opt � n̄(n̄ + 3/2). For each a given n̄ ∈ [1,10], using the same values of Nres and maximizing the

total QFI with respect to α2 to obtain (e) α2
opt/n̄, and (f) the associated QFI FQ,opt. In (c) the peak height of the weighted QFI is about n̄/2. The

vertical lines in (d) are the optimal value of α2 for different values of Nres. The dashed line in (f) is the classical limit FQ = n̄.

where we have reexpressed the input state as |ψin〉 =∑
N

√
GN |ψN 〉, so we have

P (J,μ|ϕ) ≡ |〈J,μ|e−iϕJy |ψin〉|2 = GNPN (μ|ϕ),

and PN (μ|ϕ) ≡ |〈J,μ| exp(−iϕJy)|ψN 〉|2, given by Eq. (12).
Note that the total CFI is indeed a sum of each N -component
contribution FN (ϕ) weighted by GN . With only the N -photon
detection events, the Fisher information is simply given by
GNFN (ϕ), as mentioned above.

Similar to Eq. (10), we further calculate the total QFI
of the output state exp(−iϕJy)|ψin〉, which is independent
from any specific measurement scheme and is given by FQ =
4(〈J 2

y 〉in − 〈Jy〉2
in) [10–14]. For the input state |α〉a ⊗ |ξ 〉b, we

obtain 〈Jy〉in = 0 and hence the ideal result of the QFI

F
(id)
Q = 4

∞∑
N=0

GN 〈ψN |J 2
y |ψN 〉 =

∞∑
N=0

GNFQ,N, (15)

where FQ,N is the QFI of the N -photon component. Under
the PMC, we have show that for each N component FN (ϕ) =
FQ,N , which naturally results in a global phase estimation
F (id)(ϕ) = F

(id)
Q [35]. According to Refs. [15–17], one can

obtain an explicit form of the QFI by directly calculating
4〈J 2

y 〉in (see also Appendix B):

F (id)(ϕ) = F
(id)
Q = |α|2e2|ξ | + sinh2 |ξ |. (16)

Given a constraint on the mean photon number n̄, the
maximum of the QFI was found to achieve the Heisenberg
scaling F

(id)
Q,opt � n̄(n̄ + 3/2) ∼ O(n̄2) [16], provided |α|2 �

sinh2 |ξ | � n̄/2 � 1 [15]; see also the red solid lines in
Figs. 2(d)–2(f). However, such a scaling is possible only with
exactly perfect photon-number-resolving detectors [18], which
enable us to record an infinite number of the photon-counting
events; see also Eq. (14).

Usually a single number-resolving detector can register
only the number of photons up to four [19,20]. It is therefore
important to investigate the CFI of each N component for N up
to a finite number of photons being resolvable Nres. For brevity,
we consider the input fields with the real amplitudes and large
enough mean photon number (i.e., n̄ = α2 + sinh2 ξ > 1).
Since the PMC is naturally fulfilled, the CFI is still a sum
of each N component with the weight GN and equals the QFI:

FQ = 4
Nres∑
N=0

GN 〈ψN |J 2
y |ψN 〉 =

Nres∑
N=0

GNFQ,N

=
Nres∑
N=0

[N/2]∑
k=0

[
N + 4k(N − 2k)+ 4kα2

tanh ξ

]
[cN−2k(0)s2k(0)]2,

(17)

where |ψN 〉 is the N -photon state and GN = GN (α2,ξ )
denotes its generation probability, given by Eqs. (1) and (2).
Obviously the QFI considered here depends on three variables
{Nres,α

2,ξ}, or equivalently, {Nres,α
2,n̄} for a given n̄. When

Nres → ∞, the ideal result of the QFI is recovered (see
Appendix B).

The Heisenberg scaling of the QFI can be maintained
for large enough Nres, provided that all the nonvanishing
{GNFQ,N } are included. To obtain the minimum value of
Nres, we show GN , FQ,N , and GNFQ,N against N and α2

under a constraint on n̄. From Fig. 2(b), one can see that FQ,N

increases quadratically with N . This is because the QFI reaches
its maximum FQ,N ∼ O(N2) when α2/ tanh ξ = x

(FI)
N (see

Table I), which corresponds to α2/n̄ → 1, i.e., the classical
light being dominant for a given n̄ = α2 + sinh2 ξ . On the
other hand, the generation probability shows a little complex
behavior on N ; see Fig. 2(a). At α2 = 0, GN is nonvanishing
at even number of N and decreases monotonically with the
increase of N . When α2 � 1 (i.e., G1 � G0 ), it reaches a
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maximum at a certain value of N and then decreases. Similar
to GN , the weighted QFI GNFQ,N reaches a maximum at
N ∼ n̄ and then decreases with the increase of N . As depicted
in Fig. 2(c), one can also see that the values of GNFQ,N tend
to vanishing as N � 5n̄, implying Nres ∼ 5n̄.

To confirm the above result, we maximize Eq. (17) with
respect to α2 for given n̄ and Nres. Figure 2(d) shows FQ as a
function of α2 for a fixed n̄ = 5, where Nres = 3n̄ (the solid
circles), 5n̄ (the squares), and 10n̄ (the open circles). When
Nres = ∞ (the red solid line), the ideal result of the QFI is
recovered and is given by Eq. (16), which reaches the Heisen-
berg scaling α2

opt � n̄/2 [15–17]. One can see that the QFI
with Nres = 10n̄ almost follows the ideal result. In Figs. 2(e)
and 2(f), we show optimal value of the ratio α2/n̄ and the
associated QFI FQ,opt = FQ(Nres,n̄,α2

opt) for each given value
of n̄ ∈ [1,10], where we take the number resolution Nres as the
same as Fig. 2(d). From Fig. 2(e), one can see that when Nres >

n̄, the optimal input state contains more coherent light photons
than that of the squeezed vacuum. The Heisenberg scaling of
the QFI is attainable with Nres � 5n̄, as depicted by Fig. 2(f).

Figure 3 shows FQ/F
(id)
Q,opt as a function of Nres/n̄ for the

increase of n̄ from 2 to 20. For each given n̄, we first maximize
the ideal QFI with respect to α2 to obtain α2

opt and F
(id)
Q,opt, as

depicted by the red lines of Figs. 2(d)–2(f), and then calculate
the QFI of Eq. (17) using the same input state. Our numerical
results show that FQ/F

(id)
Q,opt increases with Nres and approaches

1 as Nres � n̄.
To quantify how much phase information is kept by a finite

cutoff Nres, we try to find an analytical result of FQ/F
(id)
Q,opt in

the limit n̄ → ∞. To this end, we first separate the QFI into two
terms FQ = F

(id)
Q − F

(lost)
Q , where F

(lost)
Q = ∑∞

N=Nres
GNFQ,N

denotes the QFI being lost. This expression is the same to
Eq. (17), except the sum over N ∈ (Nres,∞). Next, we note
that the photon number distribution of the coherent state is
much narrow than that of the squeezed vacuum, which enables
us to obtain an approximate result of F

(lost)
Q (see Appendix B).

Furthermore, the ideal result of the QFI can reach its maximum

FIG. 3. Numerical results of FQ/F
(id)
Q,opt as a function of Nres/n̄

for given values of n̄, using the optimal condition that maximizes
Eq. (16). The solid line is given by our asymptotic result [Eq. (18)],
and the dashed line is a fitting result for the case n̄ = 20. Both of
them indicate that 96% of the ideal QFI can be obtained as long as
x = Nres/n̄ � 5 (the vertical dashed lines).

at the optimal condition α2 = sinh2 ξ = n̄/2 � 1 [15–17].
Using the same input, we obtain

FQ

F
(id)
Q,opt

≈ 1 − lim
n̄→∞

F
(lost)
Q (x,n̄)

n̄(n̄ + 3/2)

≈ erf(
√

x − 1/2) − 2e−x+1/2

√
π

√
x − 1/2, (18)

where x ≡ Nres/n̄ and erf(· · · ) denotes the error function. Our
analytical result shows a good agreement with the numerical
results; see the solid lines in Fig. 3. When Nres � 5n̄, it predicts
that over 96% of the ideal QFI can be kept, while for Nres <

n̄/2, most of the phase information is lost.
Finally, it should be mentioned that coherent-state interfer-

ometry has been demonstrated using two visible light photon
counters with Nres = 8 [19]. This number resolution is large
enough to realize the global phase estimation for the coherent-
state input n̄ � 1. Based upon a Bayesian protocol [19], the
achievable phase sensitivity was found almost saturating a
quantum Cramér-Rao bound over a wide phase interval, in
agreement with the theoretical prediction F (ϕ) = FQ = n̄. To
realize higher-precision optical metrology, it requires a bright
nonclassical light source with larger mean photon number [15],
low photon loss [14,36–38], and low noise [39–50], as well
as the photon counters with high detection efficiency [51] and
large enough number resolution.

IV. CONCLUSION

In summary, we have investigated optical phase estimation
with coherent ⊗ squeezed vacuum light by using imperfect
photon counters with an upper threshold Nres for the photon
number resolution. We show that both the CFI and the QFI
are the sum of the contributions from individual N -photon
components, and the CFI always saturates the QFI for each
individual N -photon component. For ideal photon-counting
detectors with Nres → ∞, the CFI or the QFI attains its
maximum F

(id)
Q,opt ∼ n̄2 when |α|2 � sinh2 |ξ |, leading to the

Heisenberg limit of the estimation precision. For the detectors
with large enough number resolution Nres > n̄, we find that
the optimal input state contains more coherent light photons
than that of the squeezed vacuum. We present an analytical
result that quantifies the amount of lost information and show
that over 96% of an ideal QFI can be attained as long as
Nres � 5n̄, while for Nres < n̄/2, most of the phase information
is lost. Our results highlight the important influence of the
finite number resolution of photon-counting detectors for
optical phase estimation. It is also interesting to explore the
performance of other continuous-variable input states, e.g.,
a product of two squeezed vacuum |ξ 〉 ⊗ | − ξ 〉 [52], when
realistic photon counters are used.
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APPENDIX A: THE N-PHOTON STATE UNDER
THE PHASE-MATCHING CONDITION

Formally, a single-mode squeezed vacuum of light is
defined by |ξ 〉 = S(ξ )|0〉, with the squeeze operator [53–55]:

S(ξ ) = exp

[
1

2
(ξ ∗b2 − ξb†2)

]

= exp

(
−eiθb

tanh |ξ |
2

b†2

)(
1

cosh |ξ |
)b†b+ 1

2

× exp

(
e−iθb

tanh |ξ |
2

b2

)
, (A1)

where ξ = |ξ | exp(iθb) denotes the complex amplitude of the
squeezed vacuum. In the Fock basis, using b|0〉 = 0, the
squeezed vacuum can be expressed as

|ξ 〉 = 1√
cosh |ξ | exp

(
−eiθb

tanh |ξ |
2

b†2

)
|0〉 =

+∞∑
k=0

s2k|2k〉,

(A2)

where s2k ≡ 〈2k|ξ 〉 denote the probability amplitudes of the
squeezed vacuum, given by

s2k(θb) =
√

(2k)!

k!
√

cosh |ξ |
(

−eiθb
tanh |ξ |

2

)k

,

(A3)

or sk(θb) = Hk(0)√
k! cosh |ξ |

(
eiθb

tanh |ξ |
2

)k/2

,

with the Hermite polynomials H2n(0) = (−1)n(2n)!/n! and
H2n+1(0) = 0.

Note that one can obtain an explicit form of the squeezed
vacuum using the disentangling formula [53–55], as done in
Eq. (A1), or, alternatively, directly solving the eigenvalue equa-
tion S(ξ )b|0〉 = S(ξ )bS†(ξ )|ξ 〉 = 0 [56]. The single-mode
squeezed vacuum contains only an even number of photons
and has been generated in experiments [57–63].

We now consider the interferometer fed with the squeezed
vacuum from one input port and a coherent-state light from an-
other port. The coherent state is given by |α〉 = ∑

n cn(θa)|n〉,
with the probability amplitudes

cn(θa) ≡ 〈n|α〉 = e−|α|2/2 |α|neinθa

√
n!

, (A4)

where α = |α| exp(iθa) denotes the complex amplitude of
the coherent light. In Eqs. (A3) and (A4), we have written
explicitly the phase dependence of the probability amplitudes,
purely for later use.

Under the phase-matching condition (PMC): cos(θb −
2θa) = +1, we now calculate the probability amplitudes of
the N -photon states |ψN 〉 as

cN−2k(θa)s2k(θb)√
GN

= (−1)k
eiNθa eik(θb−2θa )

√
RN (x)

√
(2k)!

k!
√

(N − 2k)!
(2x)(N−2k)/2

PMC−→ (−1)k
eiNθa

√
RN (x)

√
(2k)!

k!
√

(N − 2k)!
(2x)(N−2k)/2

≡ eiNθa
cN−2k(0)s2k(0)√

GN

, (A5)

where we have used an explicit form of GN , given by Eq. (2),
and the condition exp[ik(θb − 2θa)] = +1 for integers k. Note
that Eq. (1) can be rewritten as |ψN 〉 = exp(iNθa)|ψ̃N 〉, where
|ψ̃N 〉 denotes the N -photon states with real amplitudes (i.e.,
θa = θb = 0).

Finally, we consider a unitary operation exp(−iϕJη) on the
N -photon states |ψN 〉, with Jη = Jx cos η + Jy sin η, to obtain
Eqs. (5) and (6). Under the PMC, we obtain

e−iϕJη |ψN 〉 = eiNθa e−iϕJη |ψ̃N 〉 = eiNθa e−iηJze−iϕJx eiηJz |ψ̃N 〉

= eiNθa

√
GN

e−iηJze−iϕJx

×
[N/2]∑
k=0

eiη(J−2k)cN−2k(0)s2k(0)|J,J − 2k〉,

(A6)

where, in the second step, we have used the relation
exp(−iηJz)f (Jx) exp(iηJz) = f (Jη), and Eq. (1) with θa =
θb = 0 for |ψ̃N 〉, which is expressed in terms of the states
|J,J − 2k〉 = |N − 2k〉a ⊗ |2k〉b. In the eigenbasis of Jz, we
obtain the probability amplitudes

〈J,μ|e−iϕJη |ψN 〉 = eiNθa

√
GN

e−iημ

[N/2]∑
k=0

eiη(J−2k)cN−2k(0)s2k(0)

×〈J,μ|e−iϕJx |J,J − 2k〉

= eiNθa

√
RN (x)

ei( π
2 −η)(μ−J )

[N/2]∑
k=0

e−i2kη

×
√

(2k)!

k!
√

(N − 2k)!
(2x)N/2−kdJ

μ,J−2k(ϕ),

(A7)

where, in the last step, we have introduced Wigner’s d-matrix
dJ

μ,v(ϕ). Obviously, for the special case η = 0 and ϕ = π/2,
we obtain the N -photon state after the first 50:50 beam split-
ter exp(−iπJx/2)|ψN 〉 and its probability distributions; see
Eqs. (5) and (6). For η = π/2 and arbitrary ϕ, we can obtain the
output state exp(−iϕJy)|ψN 〉 and its probabilities PN (μ|ϕ).

APPENDIX B: ANALYTICAL RESULTS
OF THE QUANTUM FISHER INFORMATION

In a lossless and noiseless interferometer, the QFI of a pure
phase-encoded state |ψout〉 = exp(−iϕG)|ψin〉 is simply given
by FQ = 4(〈G2〉in − 〈G〉2

in) [10–14], where G is a Hermitian
operator. For the squeezed-state interferometer, as illustrated
in Fig. 1(a), the input state is the product of a coherent
state and a squeezed vacuum, i.e., |ψin〉 = |α〉a ⊗ |ξ 〉b, and
the phase shifter is given by G = Jx , or Jy , where, for
brevity, we have introduced the angular-momentum operators
J+ = (J−)† = a†b and Jz = (a†a − b†b)/2, with the bosonic
operators of two light fields a and b.
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According to Ref. [15], the QFI of the output state
exp(−iϕJy)|ψin〉 is optimal when the two injected light
fields are phase matched, i.e., the PMC cos(θb − 2θa) = +1.
Recently Liu et al. [17] have derived a more general form of
the PMC for the interferometer UMZI(ϕ) = exp(−iϕJy), where
a superposition of even or odd number of photons is injected
from one port and an arbitrary state from another port.

To show it clearly, we focus on the PMC cos(θb − 2θa) =
+1 and calculate the QFI of exp(−iϕJy)|ψin〉,

F
(id)
Q = 4

〈
J 2

y

〉
in

= 〈(a†a + b†b + 2a†ab†b) − (a†2b2 + H.c.)〉in, (B1)

where H.c. denotes the Hermitian conjugate. There are two
contributions to the QFI. First, it is easy to obtain

〈(a†a + b†b + 2a†ab†b)〉in = n̄a + n̄b + 2n̄an̄b, (B2)

with n̄a = |α|2 and n̄b = sinh2 |ξ | being the mean photon
number of light fields from two input ports. Second, using the
relation S†(ξ )bS(ξ ) = b cosh |ξ | − b†eiθb sinh |ξ |, we obtain

〈a†2b2〉in = α∗2〈ξ |b2|ξ 〉 = −n̄a

√
n̄b(1 + n̄b)ei(θb−2θa ). (B3)

Therefore, the ideal result of the QFI is given by

F
(id)
Q = n̄a[1 + 2n̄b + 2

√
n̄b(1 + n̄b) cos (θb − 2θa)] + n̄b � n̄a[1 + 2n̄b + 2

√
n̄b(1 + n̄b)] + n̄b, (B4)

where the equality holds when the PMC is fulfilled: cos(θb − 2θa) = +1. Similarly, one can note that the PMC cos(θb − 2θa) = −1
is a good choice for the output state exp(−iϕJx)|α〉a ⊗ |ξ 〉b, e.g., the phases of the two light fields (θa,θb) = (0,π ) [21] and (π/2,0)
[22]. Furthermore, one can simplify the ideal result of the QFI as Eq. (16), using the relation 1 + 2n̄b + 2

√
n̄b(1 + n̄b) = e2|ξ |.

With a finite number resolution Nres, we have shown that the CFI and the QFI are the same and given by Eqs. (17), which can
be rewritten as

FQ =
Nres∑

Na=0

Nres−Na∑
Nb=0

[
Na +

(
1 + 2Na + 2α2

tanh ξ

)
Nb

][
cNa

(0)sNb
(0)

]2

≈ n̄a

Nres−n̄a∑
Nb=0

[
sNb

(0)
]2 +

(
1 + 2n̄a + 2n̄a

tanh ξ

) Nres−n̄a∑
Nb=0

Nb

[
sNb

(0)
]2

, (B5)

where, for brevity, we consider the two light fields with real amplitudes, i.e., θb = θa = 0, and the probability amplitudes cn(0)
and sk(0) are given by Eqs. (A3) and (A4). In the above result, we made an approximation

Nres∑
Na=0

Nres−Na∑
Nb=0

f (Na)g(Nb)
[
cNa

(0)sNb
(0)

]2 ≈
∞∑

Na=0

f (Na)
[
cNa

(0)
]2

Nres−n̄a∑
Nb=0

g(Nb)
[
sNb

(0)
]2

, (B6)

where n̄a = |α|2 and the sum over the mode b is still kept, since the photon number distribution of the squeezed vacuum is
usually wider than that of the coherent state (even for n̄b < n̄a) [56,61]. For a finite n̄a and Nres → ∞, it is easy to obtain the
ideal result of the QFI as

FQ ≈ n̄a +
(

1 + 2n̄a + 2n̄a

tanh ξ

)
n̄b = F

(id)
Q , (B7)

where tanh ξ = √
n̄b/(n̄b + 1) and F

(id)
Q is given by Eq. (B4).

Finally, we consider a finite number resolution with large enough Nres (>n̄a), and derive analytical result of the QFI. To this
end, we first rewrite Eq. (B5) as FQ = F

(id)
Q − F

(lost)
Q , where F

(lost)
Q quantifies the lost phase information caused by the finite

number resolution, given by

F
(lost)
Q = 4

∞∑
N=Nres

GN 〈ψN |J 2
y |ψN 〉 ≈ n̄a

∞∑
k=Nres−n̄a

[sk(0)]2 +
(

1 + 2n̄a + 2n̄a

tanh ξ

) ∞∑
k=Nres−n̄a

k[sk(0)]2

≈
(

2n̄a + 2n̄a

tanh ξ

) ∫ ∞

Nres−n̄a

kdk
(tanh ξ )k√
2πk cosh ξ

, (B8)

where, in the last step, we keep only the terms ∼O(n̄2). In addition, we replace the sum over k by an integral and use Stirling’s
formula k! ≈ √

2kπ (k/e)k . When Nres � n̄a , it is easy to find F
(lost)
Q ≈ F

(id)
Q and hence the achievable QFI FQ ∼ O(n̄0) or O(n̄1),

corresponding to an almost complete loss of the phase information or the ultimate estimation precision in the classical limit. To
enlarge the QFI, we take Nres > n̄a and obtain

F
(lost)
Q ≈ 2n̄an̄b

B3/2
(1 + e

− B
2n̄b )

[
erfc

(√
Nres − n̄a

2n̄b

B

)
+ 2√

π
e
− Nres−n̄a

2n̄b
B

√
Nres − n̄a

2n̄b

B

]
, (B9)
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where n̄b = sinh2 ξ , B(n̄b) = n̄b log[(1 + n̄b)/n̄b], and erfc(x) = 1 − erf(x) denotes the complementary error function. Our
analytical result coincides with the numerical results in Figs. 2(d)–2(f). In the limit n̄a = n̄b = n̄/2 → ∞, we obtain B(n̄b) → 1
and hence

F
(lost)
Q ≈ n̄2

[
erfc(

√
x − 1/2) + 2e−(x−1/2)

√
π

√
(x − 1/2)

]
, (B10)

where x ≡ Nres/n̄ > 1/2. This result gives Eq. (18).
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