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Correlation of light polarization in uncorrelated disordered magnetic media
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Light scattering in a magnetic medium with uncorrelated inclusions is theoretically studied in the approximation
of the ladder diagram. Correlation between polarizations of electromagnetic waves that are produced by an
infinitely distant dipole source is considered. Here a white-noise disorder model with Gaussian distribution is
taken into account. In such a medium the magneto-optical interaction leads to correlation between perpendicular
light polarizations. A spatial field correlation matrix with nonzero nondiagonal elements is obtained in the first
order on gyration.
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I. INTRODUCTION

Recently there has been increased research interest in the
polarization effects of light in scattering disordered media
[1–3]. Light scattering was considered both in theory [4–7]
and in experiment [8,9]. This is mainly because of possibility
for light localization [10]. So far only weak localization has
been observed [11,12] probably due to the vector nature of
light [13].

At the same time medium magnetization provides addi-
tional peculiarities in the scattering properties. For example,
there is a photonic Hall effect in magnetic media [14].
Magnetic field could lead to light localization in a cold-atom
gas [15]. There are multiple papers that study influence of
magnetization on coherent backscattering. It was demonstrated
that coherent backscattering decreases with magnetization
increase due to the Faraday effect [16]. The albedo problem is
considered in the case of strong [17] and small [18] magneto-
optical effects in comparison with disorder fluctuations.

One of the most popular systems under investigation is
represented by magnetic metal-dielectric nanostructures [19].
Such material leads to Faraday effect enhancement due to the
scattering [20–22]. Media with natural optical activity as well
as magneto-optical media were studied in Ref. [23].

The classical model of light scattering ignores phase and
polarization correlation on distances longer than the mean
free path. The elastic scattering in macroscopic samples is
considered as diffusion. But in many cases the interference
between scattered light cannot be omitted. This fact highlights
the need for a well-described theoretical approach.

The key quantity for theoretical description of light propa-
gation is a spatial field correlation matrix [24]. It is connected
with observable quantities [25]. The correlation matrix can be
used to determine Stokes parameters [26,27] and the speckle
pattern [3].

A theoretical description of Faraday rotation in scattering
media was demonstrated in Ref. [1]. In the present paper we are
going beyond this model. We propose a theoretical description
for light scattering in infinite disordered magnetic media
without absorption accurate to the ladder diagram [28]. We
do not consider subleading correction of maximally crossed
diagrams which is important for the backscattering.

Results are demonstrated up to the linear approximation
on gyration. In an uncorrelated nonmagnetic disordered
medium only parallel field correlation components exist. In
the magnetic medium the correlation matrix acquires nonzero
nondiagonal elements. In other words the magneto-optical
interaction leads to correlation of perpendicularly polarized
components of scattered light at two different points. The
nondiagonal part of the field correlation matrix is antisym-
metric. Strict consideration of the magneto-optical effect in
scattering medium was demonstrated up to first order on
gyration.

The paper is organized as follows. In Sec. II we introduce
the theoretical model of light propagation in a disordered
magnetic medium. We briefly present the way of obtaining
the electric-field correlation matrix. Results obtained by this
approach for different medium magnetization directions are
shown in Sec. III. Section IV is devoted to the discussion and
conclusion.

II. THEORETICAL MODEL

A. Electric field in a disordered magnetic medium

Electric field Ei in a bulk medium, characterized by εli(r),
is described by the Helmholtz equation(

∂l∂i − ∂k∂kδli − εlik
2
0

)
Ei = iμ0ωjl, (1)

where ∂k ≡ ∂/∂rk, δli is the Kronecker symbol, k0 = ω/c

is the light wave vector in vacuum, ω is the wave fre-
quency, c is the speed of light, jl is the electric current.
Summation by repeated symbols is assumed here and else-
where further. In the simplest case of a nonmagnetic and
homogeneous medium the dielectric tensor is a diagonal
matrix. In the magnetic medium the dielectric tensor takes the
form

εli = ε0
l δli − ielikgk, (2)

where ε0
l is the diagonal part of the dielectric tensor, elik is

the Levi-Civita tensor, gk is the gyration proportional related
to the medium magnetization. Henceforth for simplicity, we
assume that ε0

l = 1. This case could be simply generalized by
rescaling the relative dielectric tensor.
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The Helmhotz equation (1) can be solved by the Green-
function method. The Green function is the solution of Eq. (1)
with δ function in the right side:

(
∂l∂i − ∂k∂kδli − εlik

2
0

)
Gij (r,r′) = δlj δ(r − r′). (3)

In that way the electric field for an arbitrary source can be
expressed by

Ei(r) = iμ0ω

∫
Gil(r,r′)jl(r′)dr′. (4)

The retarded Green function for the magnetic medium in
the reciprocal space k is given by

GR
il (k) =

∑
α=±1

P α
il (k̂)GR,α(k),

P α
il (k̂) = 1

2
(δil − k̂i k̂l − iαeilj k̂j ),

GR,α(k) = [
(1 − αk̂ · g)k2

0 − k2 + i0+]−1
, (5)

where k̂ ≡ k/k is unit vector along the wave vector
k,GR(k) = ∫

GR(r)e−ikrdr is the retarded Green function in
the reciprocal space, α is connected to right (α = +1) and
left (α = −1) circular polarizations of scattered light. Such
a structure of the Green function with projectors P1(−1) on
the right (left) circular polarization is caused by the magneto-
optical interaction. The sign before 0+ in the denominator of
GR,α(k) is selected to obtain only outgoing waves.

Let us consider a magnetic medium with disorder. The
disorder is given by a small fluctuation δε(r) of the dielectric
tensor, i.e., we add a diagonal term to εli in (2). The disorder
model is a white noise:

〈δε(r)〉 = 0, 〈δε(r)δε(r′)〉 = 6π

lk4
0

δ(r − r′), (6)

where 〈. . .〉 means averaging by the Gaussian disorder distri-
bution and l is elastic mean free path of the medium.

In Eq. (5) the approximate retarded Green function is
shown. Indeed, the accurate retarted Green function contains
a longitudinal part which is connected to the nontransversality
[29]. In Ref. [30] it was demonstrated that in a nonmagnetic
medium with optically anisotropic inclusions the longitudinal
part of the electric field is proportional to the O[δε(r)]. In
our case if light propagates along the gyration vector (g ‖ k)
then its longitudinal electric-field component is absent [31].
However if light propagates perpendicular to the gyration
vector (g ⊥ k) then the longitudinal component gives only
O(g2) terms in the Green function.

Consideration of multiple scattered events on sparse inclu-
sions in the Bourret approximation [32] (i.e., in the first order
on ζ = 1/k0l) results in substitution of 0+ by k0/l in the Green
function [17,18,23]:

GR,α(k) = [
(1 − αk̂ · g)k2

0 − k2 + ik0/l
]−1

. (7)

B. Field correlation matrix

The field correlation matrix Wkl(r,r′) is defined by

Wkl(r,r′) = 〈Ek(r)E∗
l (r′)〉. (8)

FIG. 1. Observation scheme of light fields correlation in infinite
medium with disordered inclusions. The light source at point r0 is at
a distance R from the detectors middle point. The detectors at points
r and r′ are separated by a distance X. Hereinafter X ‖ z.

It can be described by the Bethe-Salpeter equation which in
the ladder approximation [2] reads

〈Ek(r)E∗
l (r′)〉 = 〈Ek(r)〉〈E∗

l (r′)〉

+ k4
0

∫
〈Gkm(r,r1)〉〈G∗

ln(r′,r′
1)〉

× 〈δε(r1)δε(r′
1)〉〈Em(r1)E∗

n(r′
1)〉dr1dr′

1.

(9)

We assume that the light source is a point dipole with a
dipole moment p = 1/μ0ω

2 located at r0:

jl(r,r0) = −iωplδ(r − r0). (10)

Equation (9) can be solved in reciprocal space by the Fourier
transform on variables X = r − r′ and R = (r + r′)/2 − r0
with dual variables in the reciprocal space, correspondingly, q
and K (see Fig. 1).

The first step is to solve the Bethe-Salpeter equation with
X = 0:

Dijkl(K) = Sijkl(K) + 6π

l
Sijmn(K)Dmnkl(K), (11)

where

Sijkl(K) =
∫

〈Gik(q + K/2)〉〈G∗
j l(q − K/2)〉 dq

(2π )3
,

Dijkl(K) =
∫

〈Gik(q + K/2)G∗
j l(q − K/2)〉 dq

(2π )3
. (12)

We can find Dijkl by obtaining eigenvalues and eigenvectors
Sijkl :

6π

l
Sijkl(K) =

9∑
p=1

λp|p〉ij 〈p|kl

⇒ Dijkl(K) =
9∑

p=1

l

6π

λp

1 − λp

|p〉ij 〈p|kl . (13)

023819-2



CORRELATION OF LIGHT POLARIZATION IN . . . PHYSICAL REVIEW A 95, 023819 (2017)

The next step is to solve Eq. (9) for X 
= 0:

Qijkl(q,K) = F
αβ

ijkl(q̂,K)

×〈Gα(q + K/2)G∗β(q − K/2)〉,
F

αβ

ijkl(q̂,K) = P α
ik(q̂)P ∗β

jl (q̂)

+ 6π

l
P α

im(q̂)P ∗β

jn (q̂)Dmnkl(K), (14)

where q̂ ≡ q/q is the unit vector along wave vector q.
Without loss of generality, we suppose that the source is

a point dipole oriented along the z axis. In such a way the
correlation matrix in reciprocal space is

Wij (q,K) = Qij33(q,K). (15)

Finally we have to find the inverse Fourier transform of (15).
The Fourier transform of Wij (q,K) made only on X,Wij (R,q),
is a local density matrix of the radiation with wave vector q
[17]. Thereby we introduce the quantity Iij (R,q̂) by integration
Wij (R,q) on the absolute value of q:

Iij (R,q̂) = 2
∫

q2Wij (R,qq̂)dq. (16)

It is proportional to the light intensity [33].

C. Solving Bethe-Salpeter equation

First, we have to compute the S tensor from Eq. (11).
With the aim to compute a result in the analytic form we
have to choose certain limited orders in small parameters
of our problem. We can compute the S tensor at least in
orders O[(Kl)2] and O(g2) but getting eigenvectors is a rather
difficult computational task. This can be done in the degenerate
perturbation theory.

The main contribution in the small parameter Kl is (1/Kl)2.
It rises only from one eigenvalue of the S tensor: λ = 1 −
(Kl)2/3. This eigenvalue has only a second-order gyration cor-
rection. We neglect such a term assuming that g2 � (Kl)2. But
S-tensor eigenvectors have first order in gyration corrections.
For their accounting we assume that (Kl)2 � g. Thus we have
the following relations of small parameters of our problem:
g2 � (Kl)2 � g � ζ � 1.

A detailed computation of Sijkl with O((1/Kl)2) terms
but without gyration can be found in Vynck et al. [2]. To
obtain S with nonzero gyration we compute the integral on
module q by residue theorem. After that we can expand
S because g � ζ and take angular integral. To compute
eigenvectors for the first order of gyration we use the
degenerate perturbation theory. Since S with gyration is a
nonsymmetric matrix right and left eigenvectors must be
distinguished. We use only eigenvectors which correspond
to the unit eigenvalue and coincide. For arbitrary gyration
orientation

|1〉ij = 〈1|ij =
√

3

3
δij +

√
3

6
eijkgk. (17)

After computation D from (13) we can obtain Q. We
are interested in the 1/(Kl)2 term which is located only in
D. Consequently, we can neglect the first term of F and K

dependence of the Green function.

From D we can find W (15):

Wij (K,q) = 1

(Kl)2

√
3|1〉mnP

α
im(q̂)P ∗β

jn (q̂)

×〈Gα(q)〉〈G∗β(q)〉. (18)

Summation by repeated symbols is assumed here. In nondiag-
onal elements there are two distinct contributions of the orders
O(g/ζ ) and O(g). We neglect the g-order term due to the
relation ζ � 1. Inverse Fourier transform of the K-dependent
part of the correlation matrix is proportional to 1/R. Fourier
transform from the q space to X space leads to (20)–(22).

III. RESULTS

Further we will consider the following approximation:

g2 � (Kl)2 � g � ζ � 1. (19)

It corresponds to the situation when the light source is located
far from the detectors R  l, elastic scattering plays the
main role and the magnetooptical effect can be considered
as a small correction. The linear on gyration contribution
comes from eigenvectors of S. As was discovered earlier [23]
the eigenvalues contain only O(g2) terms. The eigenvectors’
computation is a rather complicated task. Only recently
eigenvectors without gyration were found up to O[(Kl)2] [2].
For the analytic analysis of the linear on gyration contribution
we take into account only the largest Kl terms that are
O[1/(Kl)2].

Let us assume that observation points are along the
z axis: X ‖ z. We consider two magnetization direc-
tions: g‖ (g ‖ z) and g⊥ (g ‖ y). The normalized quantity
W̃(X) = W(R,X)/W (R), where W (R) = Tr[W(R,X)|X=0] =
k0ζ

8π2R
, does not depend on the distance from the light

source.

FIG. 2. Dependence of the diagonal normalized field correlation
matrix components on the distance between the detectors. X is
oriented along the z axis. Wij shows the correlation between Ei

and Ej components on the detectors. We assume that the mean free
path l = 20λ. The distance between the detectors is normalized on
wavelength.
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FIG. 3. Dependence of the nondiagonal normalized field corre-
lation matrix components on the distance between detectors. X is
oriented along the z axis. Wij shows the correlation between Ei

and Ej components on the detectors. Dashed line corresponds to the
normalized nonzero element of the correlation matrix divided by 20g‖
when gyration is directed parallel to X. Dotted line corresponds to
the normalized nonzero element of the correlation matrix divided by
20g⊥ when gyration is directed perpendicular to X. We assume that
the mean free path l = 20λ. The distance between the detectors is
normalized on wavelength.

We obtain the same diagonal elements for both gyration
orientations:

W̃11(X) = W̃22(X)

= [(k0X)2 − 1] sin k0X + k0X cos k0X

2(k0X)3

− ζ
[(k0X)2 − 2](k0X sin k0X + cos k0X) + 2

4(k0X)3
,

W̃33(X) = sin k0X − k0X cos k0X

(k0X)3

+ ζ
[(k0X)2 − 2] cos k0X − 2k0X sin k0X + 2

2(k0X)3
.

(20)

These diagonal elements have no magneto-optical contribution
and coincide with the result with zero gyration [2] (see Fig. 2).
However, there are nonzero nondiagonal elements proportional
to g/ζ (Fig. 3). For g‖ they are

W̃12(X) = −W̃21(X)

= g‖
ζ

[(k0X)2 − 2] sin k0X + 2k0X cos k0X

4(k0X)3
, (21)

while for g⊥,

W̃13(X) = −W̃31(X)

= g⊥
ζ

(k0X cos k0X − sin k0X)

4(k0X)3
. (22)

If g ‖ X only two nondiagonal components W̃12 = −W̃21

are nonzero. However, for g ⊥ X only W̃13 = −W̃31 are
nonzero and decay faster.

IV. DISCUSSION AND CONCLUSION

To conclude, we have theoretically investigated light scat-
tering in a magnetic medium with uncorrelated inclusions. The
spatial field correlation matrix with ladder approximation is
used for the light propagation description, so only two-particle
interactions are considered. The approximation of the distant
light source, when the distance from the source R is much
larger than the elastic-scattering mean free path, is taken into
account up to the order O[1/(Kl)2]. The magneto-optical
interaction is described by terms linear in gyration. The
distance between the detectors X is assumed much smaller
than the distance to the source.

Here we studied the correlation matrix dependency on
direction and amplitude of the sample magnetization. Explicit
calculations of the eigenvalues and eigenvectors were per-
formed in degenerate perturbation theory as it was previously
suggested for nonmagnetic medium in Ref. [2]. The first-order
magneto-optical effect correction was found. Nonzero values
of the nondiagonal field-correlation matrix components are
found. Such components are responsible for correlation of
the perpendicular polarizations of the scattered light between
different points. Influence of the magnetization direction on
correlation of light polarization is demonstrated.

This work extends the understanding of light behavior in
magnetic scattering medium. The correlation between perpen-
dicular polarizations of light opens the possibility to develop
time-reversal–noninvariant systems based on magneto-optical
effects enhanced by scattering [20–22]. A rigorous theory
of light scattering in the presence of a magnetic field may
lead to better understanding of ferrofluid magneto-optics
[34]. Moreover, it might be interesting for the study of light
scattering in magnetoplasmonic structures [35–37].

Further investigation in this area may go in different
directions. First of all, this theory can be applied to various
forms of scattering media: scatterers with anisotropic dielectric
tensor or inhomogeneous gyration. Second, instead of an
infinite medium it is possible to consider half-space or slab
geometries. Additional development allows us to obtain better
theoretical model up to orders of O[(Kl)2] and O(g2). Also
it is possible to extend theory to account for backscattered
light which requires consideration of maximally crossed
diagrams.
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