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The Casimir force between two hyperbolic metamaterials (HMMs) constructed by alternative metal-dielectric
layers is investigated. Due to the existence of the hyperbolic dispersion, the electromagnetic response of HMMs
becomes extremely dramatic, which is embodied by the nearly total reflection in such frequency region. As a
result, the Casimir force between HMMs is much greater than that between ordinary dielectrics. In addition, it is
shown that the Casimir force is proportional to the bandwidth of this hyperbolic dispersion, which is dependent on
the filling factor as well as the characteristic frequencies of ingredient materials. Therefore, the relations between
the force and these parameters are discussed. We show that the Casimir force can be controlled by tuning the
bandwidth possessing hyperbolic dispersion of the structures. This work provides promising applications of
HMMs on microelectromechanical systems and nanoelectromechanical systems.
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I. INTRODUCTION

The Casimir effect, which exists between neutral bodies,
is a macroscopic quantum effect that results from the change
of the electromagnetic vacuum zero-point energy due to the
existence of the boundaries. In 1948, Casimir [1] theoretically
predicted the attractive interaction between two parallel,
neutral perfectly conducting plates in vacuum. In 1956,
Lifshitz [2] generalized Casimir’s theory to consider the force
between a pair of semi-infinite dielectric slabs containing
dispersion and absorption in finite temperature. With the ad-
vances in microelectromechanical and nanoelectromechanical
systems (MEMS and NEMS), progress has been made in
the theoretical understanding and experimental measurements
of the Casimir effect among various materials with different
geometries [3–8]. As the attractive force could lead to the
irreversible adhesion of the neighboring elements, the switch
of the Casimir force from attractive to repulsive has attracted
extensive attention [9–11] and was found to be related to
the symmetry of electric and magnetic properties of two
plates [9]. Therefore, how to control the Casimir effect by
special materials with controllable electromagnetic properties
becomes a hot point [12,13]. For instance, the Casimir effect
between two metamaterials [14–16], saturated ferrite materials
[17], or composite materials [18–22] has been discussed. In
addition, graphene [23] and the quantum state of matter named
topological insulator [24–26] have also been used to control
the Casimir effect.

Recently, a new kind of man-made metamaterial named
hyperbolic metamaterials (HMMs) has attracted a great deal of
attention [27]. Such artificial medium is extremely anisotropic
and one of the diagonal elements of its effective permittivity
tensor is negative in a broad frequency region [28], which
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leads to the hyperbolic isofrequency contour. Therefore people
name this class of artificial media as hyperbolic metamaterials
(HMMs). Furthermore, we use the hyperbolic dispersion
region to indicate a frequency region possessing hyperbolic
isofrequency contour of HMMs. Due to the hyperbolic
dispersion, HMMs provide novel electromagnetic modes with
high wave vectors [29]. Its promising applications have
been reported, including negative refraction [30], efficient
single-photon sources [31–33], heat transport [34,35], and
subdiffraction imaging [36,37]. Generally, HMMs across the
optical spectrum have been realized by alternative metal-
dielectric layered structures [30,32,36] or metallic nanowire
arrays embedded in a dielectric host [38,39]. Here we focus
on the HMMs made of layered metal-dielectric structures since
such kind of HMMs is easy to be fabricated in experiment and
can be theoretically described by the effective medium theory.

Actually, HMMs are also a special kind of composite
medium. In previous works, the Casimir effect between
composite materials made of a homogeneous matrix with
spherical or elliptical metallic particles is presented [19–22].
In these works the composite materials are treated as isotropic
materials by different effective medium approximations.
The choice of effective medium approximation depends
on the filling factor and the particles’ shape [40], and in
turn determinates the feature of the Casimir force involved
[20]. As HMMs are anisotropic composite materials made
of alternatively metal and dielectric layers, they cannot be
treated as an isotropic effective medium and can be only
correctly described by the anisotropic Maxwell Garnett
mixing formula [40], which is quite different from previous
works [19–22]. Therefore, the influence of the anisotropic as
well as the hyperbolic dispersion of HMMs on the Casimir
force is interesting and is the topic of this paper.

The paper is arranged as follows: In Sec. II, we introduce
the model and theoretical framework including the Casimir
force between two slabs and the characters of HMMs. In
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FIG. 1. Scheme of the system considered.

Sec. III, we perform the calculation of the Casimir force
between two HMMs. To highlight the advantage of HMMs
compared with the normal dielectric slab, the influence of
the adjustable parameters of HMMs on the Casimir force
are analyzed in detail. These parameters include the filling
factor and characteristic frequencies of ingredient materials,
i.e., dielectric and metal. In Sec. IV, we draw the conclusion.

II. MODEL AND THEORETICAL FRAMEWORK

The scheme of the system considered here is depicted in
Fig. 1. Two parallel HMM slabs, i.e., A and B, are separated
by a distance a in free space. The x-y plane is set to be parallel
to the surfaces of the slabs, while the z axis is perpendicular to
the surfaces and is the out-of-plane optical axis of the uniaxial
anisotropic HMM slabs.

A. Casimir force between parallel slabs

Based on the Maxwell electromagnetic stress tensor method
with the macroscopic field operators, the Casimir force at zero
temperature can be expressed as

FC = − h̄

π
Re

∫ ∞

0
dω

∫∫
d2k

(2π )2

√
ω2

c2
− k2

×
∑

p=TE,TM

rA
p (ω,k)rB

p (ω,k)e2ia
√

ω2/c2−k2

1 − rA
p (ω,k)rB

p (ω,k)e2ia
√

ω2/c2−k2
, (1)

where the integral is carried out over all electromagnetic modes
marked by frequency ω and the component of wave vector
parallel to surface k. rA(B)

p is the reflection coefficient of the
slab A (B) for the p polarized wave. Here we stress that Eq. (1)
is only suitable for cases in which two polarizations (TE and
TM) are principal and do not get mixed at any incident angle.
The reflection on isotropic media or uniaxial (out-of-plane)
planar media without an off-diagonal index tensor meets
such requirement. Otherwise the reflection coefficients will
be replaced by reflection matrices [14]. In order to avoid all
the singularities, it is convenient to convert the integral of the
positive real ω to that of the positive imaginary frequency ξ ,
i.e., ω = iξ , and then the Casimir force can be written as

FC = h̄

2π2

∫ ∞
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×
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. (2)

For numerical calculation, the variables ξ and k can be
transformed into polar coordinates x and φ through ξ/c ≡
x
2a

cos φ and k ≡ x
2a

sin φ; finally we find

FC = F0
15

2π4

∫ ∞

0
x3dx

∫ π/2

0
sinφdφ

×
∑

p=TE,TM

rA
p (x,φ)rB

p (x,φ)e−x

1 − rA
p (x,φ)rB

p (x,φ)e−x
, (3)

where F0 = h̄cπ2/240a4 is the well-known formula for the
Casimir force between two perfectly conducting plates with
separation a.

B. Effective medium theory for hyperbolic metamaterials
(HMMs)

As the calculation of the Casimir force is very sensitive to
the choice of effective medium model [20], we first introduce
the micostructure of the HMMs and present the corrective
effective medium theory suitable for it. As mentioned before,
here we focus on the multilayer structure with alternating metal
and dielectric layers, whose permittivities are given by εm and
εd, respectively. Obviously, such structure is an anisotropic
composite and must be described by the anisotropic Maxwell
Garnett mixing formula [40]. To satisfy the homogeneity
required by the effective medium theory, the thicknesses of
the layers must be much smaller than the operating wavelength
and the plasma wavelength; i.e., dd,dm � min{λ0, λp}. Then
the effective permittivity tensor of the whole structure is given
as [40]

↔
ε =

⎛
⎝εxx 0 0

0 εyy 0
0 0 εzz

⎞
⎠, (4)

with

εxx = εyy = f εm + (1 − f )εd, (5)

εzz =
(

f

εm
+ 1 − f

εd

)−1

, (6)

where f is the filling factor of the metal in the unit cell, and is
defined by

f = dm/(dm + dd). (7)

The z axis is chosen as the optical axis of the material. Due
to these special effective permittivity tensors, the isofrequency
dispersion relations display a unique feature when εxxεzz < 0,
which is much different from the normal anisotropic metal or
dielectric.

Since εxx = εyy , we only discuss the case of wave vectors
being in the x-z plane. The dispersion relations can be achieved
as [41]

k2
x + k2

z = ω2

c2
εyy, (8)

for TE polarization, and

k2
x

εzz

+ k2
z

εxx

= ω2

c2
, (9)

023814-2



CASIMIR FORCE BETWEEN HYPERBOLIC METAMATERIALS PHYSICAL REVIEW A 95, 023814 (2017)

zk zk

xkxk

xx zz xx zz

FIG. 2. Schematic illustration of the isofrequency contour in the
wave-vector space of the HMMs for TM polarization with (a) type I:
εxx > 0, εzz < 0 and (b) type II: εxx < 0, εzz > 0.

for TM polarization. Equation (8) describes a circle of kx and
kz with radius ω

√
εyy/c when εyy > 0; this is the ordinary

dispersion relation for dielectric. However, Eq. (9) describes
an ellipse of kx and kz when both εxx and εzz are positive, but
a hyperboloid of kx and kz when εxxεzz < 0. There are two
kinds of hyperbolic contours for εxxεzz < 0. The first refers
to εxx > 0 and εzz < 0; the hyperbolic contour is shown in
Fig. 2(a), which is defined as type I HMM. The second refers
to εxx < 0 and εzz > 0; the corresponding hyperbolic contour
is shown in Fig. 2(b), which is defined as type II HMM. That
is the reason why the uniaxially anisotropic materials with
εxxεzz < 0 were named as hyperbolic metamaterials (HMMs).

According to Eq. (3), the reflection coefficients are key
quantities to approach the Casimir force. Therefore we
consider the reflective behavior of semi-infinite HMMs at first.
The reflection coefficients incident from vacuum into HMMs
can be derived and expressed as

rTE = ki
z − kTE

z

ki
z + kTE

z
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√
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√
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√
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√
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, (10)
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√
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. (11)

The first lines of Eqs. (10) and (11) are written at the real
frequency. Here ki

z is the z component of the wave vector
in vacuum and satisfies the relation (ki

z)
2 = K2 − k2, where

K = ω/c. kTE
z and kTM

z are the z components of the wave
vector in HMMs for TE and TM polarization, respectively.

They are defined by Eqs. (8) and (9) as (kTE
z )2 = K2εyy − k2

and (kTM
z )2/εxx = K2 − k2/εzz. The second lines in Eqs. (10)

and (11) have been obtained by converting the real frequency
to the imaginary frequency, and we change the variables to
polar coordinates in the third lines. It should be noticed that
εxx plays a critical role in both TE and TM polarized reflection,
but εzz only contributes to TM polarized reflection.

III. CASIMIR FORCE BETWEEN HYPERBOLIC
METAMATERIALS

In this section, we begin to discuss the Casimir force
between two HMMs. As the effective permittivity tensor of
HMMs is determined by its ingredient metal and dielectric,
we give the permittivity of metal and that of dielectric through
the Drude model and Lorentz model, respectively, which are

εm = 1 − ω2
p,m

ω2 + iγmω
, (12)

εd = 1 − ω2
p,d

ω2 − ω2
e,d + iγdω

, (13)

where the ωp,m (ωp,d) and γm (γd) are the plasma frequency
and damping coefficient of metal (dielectric), respectively. ωe,d

is the resonance frequency of the dielectric. Insert Eqs. (12)
and (13) into Eqs. (10) and (11), and finally into Eq. (3),
and the Casimir force can be evaluated. All frequencies are
scaled with the reference frequency ω0 and the separation a

is measured in unit λ0 = 2πc/ω0. If not stated otherwise, the
characteristic frequencies of ingredient materials are chosen
as follows: ωp,m = ω0, γm = 0.006ω0, ωp,d = 0.1ω0, ωe,d =
0.25ω0, and γd = 0.01ω0.

A. Relationship with filling factor

In Fig. 3, the relative Casimir force Fr = FC/F0 between
two identical HMMs for different filling factors f is numer-
ically calculated. Because the two HMMs are identical and
possess same electric and magnetic properties, the Casimir
force between them are only attractive, i.e., Fr > 0. The filling
factor can change the effective permittivity tensor, i.e., in
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FIG. 3. The relative Casimir force between two identical HMMs
for different filling factors as a function of separation. The inset shows
the relative Casimir force for the case f = 0; i.e., the two media A
and B are dielectrics.
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Eqs. (5) and (6), and further affect the reflective coefficient
and even the force. For example, in the case of f = 0,
it refers to the Casimir force between two dielectrics with
Eq. (13), and the relative force nearly disappears shown in
the red solid curve in Fig. 3. When f increases, the relative
force is enhanced monotonously for arbitrary separations. The
common characters, shown in the curves of f = 0.05, 0.2,
0.5, and 1, are that (i) for minor separation, i.e., a < 0.1 λ0,
FC � F0 so the relative force Fr is small and insensitive to
filling factors; (ii) for moderate separation, i.e., λ0 < a <

100λ0, relative force is sensitive to filling factors; (iii) further,
in case of large separation a > 100λ0, relative force trends
to 1 no matter the filling factor, which means FC ≈ F0 → 0.
It should be noticed that the relative force Fr is the ratio of
force FC to the force between two perfectly conducting plates
F0 at the same separation. The increasing of relative force Fr

with separation does not mean the increasing of force FC with
separation. The force FC indeed decreases with separation in
general. The case of f = 1 refers to the relative force between
two metals with Eq. (12). The metal here is different from
the perfectly conducting plate because a perfectly conducting
plate is without dispersion and absorption [2].

The unique phenomenon observed here is that, comparing
with the pure dielectrics, HMMs combined of metal and
dielectric can dramatically strengthen the attractive Casimir
force even if the filling factor of the metallic component is just
0.05, shown in the blue dashed curve in Fig. 3.

To extract the contribution of hyperbolic dispersion on the
enhancement of the Casimir force, we present the real parts of
the permittivity tensor εxx(ω) and εzz(ω) as a function of real
frequency ω with two filling factors f = 0.05 and f = 0.5 in
Fig. 4. As a comparison, we plot the corresponding reflectivity
as function of imaginary frequency ξ and wave vector k in
Fig. 5.

According to the definition of hyperbolic dispersion, it
is clear that the mainly hyperbolic dispersion exists within
the frequency band of ω < 0.2ω0 for the case of f = 0.05,
shown in Fig. 4(a). Correspondingly high reflectivity happens
within the same frequency region spanning over all wave
vectors k for the TM polarization, shown in Fig. 5(b). For
the TE polarization, high reflectivity happens within the same
frequency region but for the wave vector k < 0.2k0. When the
filling factor increases to f = 0.5, similar behavior happens
but the mainly hyperbolic dispersion region extends to ω < ω0.
Therefore we can conclude that the hyperbolic dispersion leads
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FIG. 4. The real parts of εxx(ω) and εzz(ω) as a function of ω with
the filling factor (a) f = 0.05, (b) f = 0.5. Shadow areas indicate
hyperbolic dispersion regions.
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FIG. 5. (a) rTE and (b) rTM as functions of ξ and k with f = 0.05.
(c) rTE and (d) rTM as functions of ξ and k with f = 0.5. Curves
2a

√
ξ 2/c2 + k2 = 1 for a = 100λ0,λ0, and 0.1λ0 are also plotted.

to high reflection in the imaginary frequency space. It is the
unique feature of HMMs on the Casimir force.

From Eq. (2), the contribution of the electromagnetic model
is embodied by the reflective coefficients. Besides, the term
exp(−2a

√
ξ 2/c2 + k2) in Eq. (2) acts as a truncated function;

thus the electromagnetic modes inside the integral area Sint,
which is surrounded by the curve

√
ξ 2/c2 + k2 = 1/2a, are

the main contributive modes to the Casimir force at separation
a. We define the high reflective ratio N as N = Shigh ref/Sint,
where Shigh ref is the frequency-wave-vector region possessing
high reflectivity (|rTE/TM|2 > 0.9) inside the integral area Sint.
For perfectly conducting plates we know |rTE/TM|2 = 1 and
from Eq. (3) we can easily get Fr = 1. Therefore N can
reflect the amplitude of the force. We choose three separations
(a = 100λ0, λ0, and 0.1λ0), and plot the boundary of Sint,
i.e., 2a

√
ξ 2/c2 + k2 = 1 in Fig. 5. When a = 100λ0, Sint

surrounded by a solid curve is small, while Shigh ref is almost
equal to Sint in all panels of Fig. 5; i.e., N ≈ 1. As a result,
the relative Casimir force moves to 1 clearly when a > 100λ0.
Similarly, when a = 0.1λ0, Sint expands to dotted curves, and
Nf =0.5 > Nf =0.05; consequently the relative Casimir forces
also satisfy Fr,f =0.5 > Fr,f =0.05. If we further decrease the
separation, Sint can be expanded further, but the ratio N should
be smaller and trend to 0. Therefore, Fr would disappear when
a � 0.1 λ0, as shown in Fig. 3. The force behavior shown in
Fig. 3 can be easily understood according to the above analysis.

It should be noticed that the enhancement of the Casimir
force on HMMs is the direct result of hyperbolic dispersion, not
the ingredient metal. In the Appendix we calculate the relative
Casimir force between two identical composite materials made
of metallic particles dispersed in a dielectric matrix, whose
components are also modeled by Eqs. (12) and (13). These
complex media are described by the isotropic Maxwell Garnett
mixing formula and treated as an isotropic medium. It shows
that with the filling factor f = 0.05, the calculated Casimir
force on these composite media is far weaker than that of
Fig. 3. Therefore hyperbolic dispersion is essential to this huge
enhancement of the Casimir force when fill factor f is small.
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FIG. 6. (a) Optical phase diagram for the metal-dielectric multi-
layer system. (b) The relative Casimir force between two HMMs as
a function of a and f . Parameters are the same as in Fig. 3.

In Fig. 6(a), we plot the optical phase diagram as a function
of filling factor f . The regions of type I and type II HMMs
are shown by the blue and magenta regions, respectively.
Type II HMMs nearly occupy the lower frequency region of
ω < 0.3ω0. It is clear that the hyperbolic dispersion region
increases monotonously with filling factor f when f < 0.5.
Figure 6(b) shows the relative Casimir force as a function of
f and separation a. It is easy to see that, by tuning the filling
factor, the relative attractive force between two HMMs can be
adjusted variably between the cases of metal or dielectric. Two
dashed contour curves in Fig. 6(b) show the combination of
f and a to get constant relative Casimir forces Fr = 0.25 and
Fr = 0.75. For a certain value of the relative Casimir force, the
thicker the metal, the less separation required. This means we
can tune the attractive Casimir force by HMMs. When f > 0.5
in Fig. 6(a), though the proportion of hyperbolic dispersion
region (in blue and magenta) is decreasing with f , the relative
Casimir force is still increasing with f in Fig. 6(b). That is
because the proportion of effective metal is also increasing, and
the hyperbolic dispersion region combined with the effective
metal region still increases and leads to a stronger Casimir
force. For application, we can choose a suitable combination
of f and a to get the Casimir force we want.

B. Relationship with characteristic frequencies

In the above section, we demonstrate that the relative
Casimir force is related to the hyperbolic dispersion of
HMMs because hyperbolic dispersion leads to high reflectivity
similar to metal. Therefore the frequency band possessing
hyperbolic dispersion determines the property of the Casimir
force. Actually the frequency region possessing hyperbolic
dispersion is not only determined by the filling factor but
also by the character frequencies of its ingredient metal and
dielectric.

These character frequencies are defined in Eqs. (12) and
(13). We focus on the region of type II hyperbolic dispersion
which is defined by Fig. 4, and calculate the bandwidth 	ωHMM

possessing such hyperbolic dispersion as a function of various
character frequencies in Fig. 7 under the constant f = 0.05. It
indicates that the band becomes wider with increasing ωp,m or
ωp,d when ωp,d or ωp,m is small, shown in Fig. 7(a). Figure 7(b)
shows that the band becomes wider with increasing ωp,m and is
not sensitive to ωe,d. The band becomes wider with increasing
ωp,d especially when ωe,d is around ω0, as shown in Fig. 7(c).

FIG. 7. The bandwidth 	ωHMM of type II hyperbolic dispersion
as a function of the combination of two characteristic frequencies with
filling factor f = 0.05. (a) ωp,m and ωp,d,ωe,d = ω0, γm = 0.006ω0,
and γd = 0.01ω0; (b) ωp,m and ωe,d,ωp,d = 0.1ω0,γm = 0.006ω0, and
γd = 0.01 ω0; (c) ωp,d and ωe,d,ωp,m = ω0,γm = 0.006 ω0, and γd =
0.01 ω0; (d) γm and γd, ωp,m = ω0, ωp,d = 0.1 ω0, and ωe,d = 0.25 ω0.

Figure 7(d) shows that the stronger γm and γd result in the
narrower width of the hyperbolic dispersion region.

We then study the relationship between the Casimir force
and characteristic frequencies ωp,m or ωp,d following the
fact that increasing ωp,m or ωp,d can expand the hyperbolic
dispersion region. The dependence of the relative Casimir
force on plasma frequency ωp,m and separation a is illustrated
in Fig. 8(a), which shows that Fr monotonically increases
with plasma frequencies for arbitrary a. It is obvious that εxx

has been enhanced as plasma frequency ωp,m increases for
lower imaginary frequencies; meanwhile εzz is about 1, as
shown in Figs. 8(b) and 8(c). This means that increasing ωp,m

leads to higher reflection in the lower imaginary frequency
region. Therefore the Casimir force becomes stronger. Besides,
as mentioned before, for large separation the Casimir force
mainly comes from the contribution of lower frequencies. As a
result, to achieve a certain value of relative force, the separation
will become shorter with the increasing of plasma frequency
ωp,m, which can be seen at the dashed contours in Fig. 8(a).
It should be noticed that the bandwidth of the hyperbolic
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FIG. 9. (a) Contour plot of Fr as a function of a and ωp,d with:
ωp,m = ωe,d = ω0, γm = 0.006 ω0, and γd = 0.01 ω0. (b) εxx and (c)
εzz as a function of ξ for different ωp,d.

dispersion increases with ωp,m, so expanding the hyperbolic
dispersion bandwidth has the effect of strengthening the
Casimir force.

Figure 9(a) illustrates the dependence of the force on ωp,d

and separation a. The behavior of the Casimir force fits the
prediction in the above paragraph, i.e., the separation for a
certain relative force becomes shorter with increasing ωp,d,
shown by the 0.25 and 0.75 dashed contours in Fig. 9(a).
It should be noticed that the 0.75 dashed contour looks
almost like a vertical straight line. The reason is that for
the corresponding separation a ≈ 20λ0, only the frequency
region ξ < 0.05ω0 contributes to the Casimir force [11,20–
22]. However, within such region, shown in Figs. 9(b) and
9(c), εxx is not sensitive to ωp,d and εzz is tiny compared to εxx ,
so the Casimir force is also insensitive to ωp,d when a ≈ 20λ0.
Actually the slope of this line is still negative, which means
the separation for Fr = 0.75 decreases slowly with increasing
ωp,d.

IV. CONCLUSION

We have studied the Casimir effect between two HMMs
which are made of alternative metal-dielectric layered struc-
tures. Based on the effective medium theory these structures
could be treated as an anisotropic bulk media, and the effective
permittivity tensors are extremely anisotropic and satisfy the
relation εxxεzz < 0 in some frequency regions named the
hyperbolic dispersion regions. As the force relates directly
to the reflection coefficients of HMMs in mathematics, the
reflection coefficients within hyperbolic dispersion regions are
analyzed in detail. We demonstrate that the enhanced relative
Casimir force is related to the hyperbolic dispersion because
it leads to the high reflectivity similar to perfect conducting
plates. Furthermore, the bandwidth of hyperbolic dispersion
is dependent on the filling factor as well as the characteristic
frequencies of ingredient materials. Therefore, the relations
between the force and these parameters are discussed. We
confirm that the magnitude of the force relates directly to the
bandwidth of the hyperbolic dispersion. As the result, it is
feasible to control the Casimir force by tuning the hyperbolic
dispersion frequency region. This work could be helpful for
HMMs to be used in microelectromechanical systems and
nanoelectromechanical systems in the future.

ACKNOWLEDGMENTS

This work was partly supported by the National Natural
Science Foundation of China (Grants No. 11274242, No.
11474221, No. 11574229, and No. 11504272), the Joint Fund
of the National Natural Science Foundation of China (Grant
No. U1330203), the 973 program (Grant No. 2013CB632701),
Shanghai Science and Technology Committee (Grant No.
15XD1503700), and the Shanghai Education Commission
Foundation the National Key Basic Research Special Foun-
dation (Grant No. 2016YFA0302800).

APPENDIX: RELATIVE CASIMIR FORCE BETWEEN
TWO IDENTICAL COMPLEX MEDIA DESCRIBED BY THE

ISOTROPIC MAXWELL GARNETT MIXING FORMULA

Is hyperbolic dispersion essential to the huge enhancement
of the Casimir force observed here?

To prove the essence of the hyperbolic dispersion, we
choose an even simpler effective medium theory named
“isotropic Maxwell Garnett mixing formula” to make a
comparison. It is a simple but immensely successful theory
which can describe the complex media as an isotropic medium.
The isotropic Maxwell Garnett (IMG) mixing formula gives
the isotropic effect permittivity εMG of the complex medium
as [40]

εMG − εd

εMG + 2εd
= f

εm − εd

εm + 2εd
. (A1)

Here εd is the permittivity of the host dielectric while εm

is the permittivity of the inclusion metal. The filling factor of
the metal f should be much smaller than that of dielectric
1–f; then Eq. (A1) is applicable. Therefore, we describe our
complex media by Eq. (A1) when f is small. In this situation,
the relative Casimir forces are shown in Fig. 10 for different f .

Obviously the huge enhancement of the relative Casimir
force disappears. Specifically, the relative forces in Fig. 3
are much stronger than those in Fig. 10, especially when
the separation is large. Though in the case of f = 0.5 the
relative force in Fig. 10 is enhanced, Eq. (A1) is inapplicable
because the filling factors of two components are comparable.
The Bruggeman theory is suitable for this situation and in
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0.10
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0.20

F r

a/λ0

f =0.05
f =0.2
f =0.5

IMG Mixing Formula

FIG. 10. The relative Casimir force between two identical com-
plex media described by Eq. (A1) for different filling factors as a
function of separation.
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Ref. [20] the authors discussed the influence of different
effective medium theories, including the Maxwell Garnett and
the Bruggeman theories, on the Casimir force. The main con-
clusion is that the choice of effective medium approximation
is critical in making precise comparisons between theory and
experiment. Actually, Eq. (A1) is suitable for the complex
medium which is spatially uniform and isotropic on average.

For a layered structure, it is obviously anisotropic and must be
described by the anisotropic Maxwell Garnett mixing formula,
Eqs. (5) and (6). Consequencely, the hyperbolic dispersion
is present and the results show the relative Casimir force
is extremely enhanced. Therefore, the hyperbolic dispersion
is essential to the huge enhancement of the Casimir force
observed here.
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