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Control of adiabatic light transfer in coupled waveguides with longitudinally varying detuning
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We study adiabatic light transfer in systems of two coupled waveguides with spatially varying detuning of
the propagation constants, providing an analogy to the quantum phenomena of rapid adiabatic passage (RAP)
and two-state stimulated Raman adiabatic passage (two-state STIRAP). Experimental demonstration using a
photoinduction technique confirms the robust and broadband character of the structures that act as broadband
directional couplers and broadband beam splitters, respectively.
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I. INTRODUCTION

The formal analogy between some quantum systems and
classical photonic systems has motivated intensive research
in recent years, both from a fundamental and an application-
oriented point of view [1,2]. In this context much attention
was given to the coupling and passage of light between
waveguides, which behave similarly to the population transfer
in quantum systems driven by an appropriate external field.
Several studies in waveguides were inspired by the stimulated
Raman adiabatic passage process (STIRAP) [3–5], which
represents a very effective and robust way to coherently
control the population of quantum states by means of a proper
adiabatic temporal evolution of the coupling Hamiltonian. In
this way the system population can be effectively driven from
an initial state to a final target state. The first proposals [6,7]
and the first experimental demonstration [8] of a STIRAP-like
process in waveguides have stimulated several studies on
adiabatic light passage in waveguides by slight modifications
of this concept. These include theoretical and experimental
studies related to the fractional STIRAP process [9], multistate
STIRAP [10–12], beam splitting [9,13–16], adiabatic mode
conversion [11,17], the role of nonlinear effects [18], or
the use of such waveguide structures for photonic quantum
gate operations [16]. Generally these approaches profit from
the high robustness of the adiabatic process, leading for
instance to a broadband behavior of the light spatial adiabatic
passage process. However, since the necessary adiabatic
condition is better fulfilled at longer wavelengths than at
shorter wavelengths [12], the use of such systems for spectral
low-pass or high-pass filtering has also been proposed [19,20].

Previous studies principally rely on an adiabatic spatial
evolution of the coupling constant C between neighboring
waveguides. As follows from the coupled-mode theory [21],
the latter is mainly connected to the distance between the
evanescently coupled waveguides. Its counterpart in atomic
physics is a temporal evolving Rabi frequency, ��, coupling
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the quantum states. In the case of atomic physics the atom-laser
detuning �ω provides a useful and versatile parameter for the
adiabatic control of the system evolution. This detuning is
given by a temporal dependent mismatch of the frequency
of the driving field from the transition frequency. The cor-
responding parameter in waveguides is represented by the
spatial evolution of a detuning �β of the propagation constants
in the individual waveguides. Therefore, it is expected that
also for waveguides the detuning parameter shall increase
the possibilities for controlling the adiabatic evolution of the
propagating light fields. Even though the interest of using
tapered waveguides was recognized early for the optimization
of various components [22–24], little attention was given to
the combination with a spatially evolving coupling coefficient.

In the present work we address this issue in relation to
the existing quantum phenomena. We consider two coupled
waveguides with spatially varying coupling coefficients and
we study theoretically and experimentally the effect of the
detuning �β(z) (associated with a longitudinal variation of the
index contrast) on the adiabatic light transfer between them.
We choose two concrete examples. The first mimics the rapid
adiabatic passage (RAP) process [4] in quantum physics for
which the detuning crosses zero while the coupling pulse is
applied, which leads to a robust and rapid way to adiabatically
invert a two-state system. Such a population transfer by adi-
abatic passage via a level crossing was initially implemented
in nuclear magnetic resonance [25]. Laser-driven adiabatic
passage in atoms and molecules was proposed by Treacy [26]
and demonstrated first in the infrared by Stark-shifting the
transition frequency [27] or by sweeping the laser frequency
through resonance [28]. In the 80s, adiabatic passage was
observed also in the near-infrared [29] and with visible
light [30]. Further details can be found in Refs. [4,31,32].
The second example mimics the so-called two-state STIRAP
process [33,34], which leads finally to an equal coherent
superposition of the two states. The two-state STIRAP process
was experimentally demonstrated by Yamazaki et al. [35]
with a trapped 40Ca+ ion. In the case of waveguides the
RAP process implements an achromatic directional coupler,
while the two-state STIRAP process implements a broadband
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one-to-two beam splitter. The experiments are performed with
the help of reconfigurable photoinduced waveguides recorded
through the photorefractive effect using the lateral illumination
technique [12,36,37]. Two probing wavelengths more than
200 nm apart are used. Section II gives a general framework
for the studies, Sec. III addresses the case of the RAP-like
process, and Sec. IV treats the case of two-state STIRAP. The
experimental results are in good agreement with the theoretical
expectations and confirm the crucial role of the waveguide
detuning.

II. GENERAL FRAMEWORK

We consider two neighboring waveguides with different
longitudinal propagation constants β1(z) and β2(z) for their
fundamental mode. In paraxial approximation, the propagation
of a monochromatic light wave in such a structure can be
analyzed in the framework of the coupled-mode theory [21],
which treats the problem in a discrete way by involving the
evanescent coupling between the waveguides. The correspond-
ing evolution of the waves’ amplitudes can then be described
by two coupled differential equations, which, similarly as in
Refs. [6,37,38], read as follows in the present case:

i
d

dz

[
a1(z)
a2(z)

]
=

[−�β(z)/2 C(z)
C(z) �β(z)/2

][
a1(z)
a2(z)

]
. (1)

Here the components of A(z) = [a1(z),a2(z)]T are, besides
for an unimportant phase, proportional to the amplitudes of
the fundamental modes in the two waveguides. We call H(z)
the coupling matrix in the above equation, which takes the
role of the Hamiltonian and describes the interaction between
the waveguide modes. It depends on the detuning parameter
�β(z) = β2(z) − β1(z) as well as on the space-dependent
coupling constant C(z) between the two waveguides. Note that
the latter corresponds to the geometrical average of the values
for the coupling from waveguide 1 to 2 and from waveguide 2
to 1 [37], C(z) = √

C12(z)C21(z), which can be different due
to the local asymmetry. Note also that the driving quantity for
C(z) is the lateral distance d(z) between the waveguides. Even
though an exact analytic expression cannot be given in our
case, C(z) decreases nearly exponentially with d(z).

By substituting the space coordinate z for the time co-
ordinate t in the Schrödinger-type equation (1), the two-
waveguide system is fully equivalent to a coupled quantum
two-level system, the population amplitude dynamics of which
is described by the same equation within the rotating wave
approximation [4,39]. The role of the coupling constant C(z)
is then taken by the Rabi frequency �(t) and the waveguide
detuning �β(z) is equivalent to the atom-laser detuning �ω(t).

Equation (1) is expressed in the natural basis formed by
the modes of the two waveguides, called the diabatic basis.
However, we can rewrite it in another basis, called the adiabatic
basis, where the basis vectors are the local (instantaneous)
eigenvectors of the space-varying Hamiltonian. This leads to

i
d

dz

[
b1(z)
b2(z)

]
=

[ −ε(z) −i dθ/dz

i dθ/dz ε(z)

][
b1(z)
b2(z)

]
, (2)

where the quantities ε and θ are given by

ε(z) = [C2(z) + (�β/2)2]1/2 (3)

and

θ (z) = 1
2 arctan[2C(z)/�β(z)]. (4)

The vector B(z) = [b1(z),b2(z)]T contains the modes’ ampli-
tudes in the adiabatic basis. The amplitudes in the adiabatic
and diabatic basis are connected by a space-dependent rotation
operator such that A(z) = R(θ (z))B(z), with

R(θ (z)) =
[

cos θ (z) sin θ (z)
− sin θ (z) cos θ (z)

]
. (5)

For an adiabatic evolution, the amplitudes C(z) and �β(z)
should vary slowly so that θ (z) evolves smoothly in order to
ensure that the adiabatic state vector B(z) remains fixed in the
adiabatic basis. To do so, the following condition should be
fulfilled [4]:

1

2

∣∣∣∣∂C

∂z
�β − C

∂�β

∂z

∣∣∣∣ �
[
C2 +

(
�β

2

)2
]3/2

. (6)

When the adiabatic condition holds, the state vector B(z)
remains fixed in the space-varying basis formed by the
adiabatic states. In particular, if the state vector B(z) coincides
with a single adiabatic state at some distance z, then it will
remain in that adiabatic state as long as the evolution is
adiabatic; the state vector B(z) will adiabatically follow this
state.

The two eingenstates (the adiabatic states) of the rotation
matrix (5) are

B−(z) = A1 cos θ (z) − A2 sin θ (z), (7a)

B+(z) = A1 sin θ (z) + A2 cos θ (z), (7b)

where A1 and A2 are the two diabatic states of the system. In
general, the state vector B(z) is aligned with an initial state at
the beginning of the propagation and aligned with a specified
target state at the end of the propagation. Under appropriate
conditions, this alignment can be provided by a single adiabatic
state or by a superposition of the adiabatic states. In the first
situation, this state is called an adiabatic transfer state.

In the next sections we apply and verify the above general
behavior to the specific cases of the RAP-like and two-state
STIRAP-like light transfer. The waveguide structures being
studied are shown schematically in Fig. 1. They are composed
of two planar waveguides where the light is confined only in
the plane of the drawing. One of the waveguides is straight
(WG1) while the other is weakly curved (WG2), so that the
distance separating them and the coupling constant C evolves
with z. The propagation constant β1 of WG1 changes with z,
which is achieved in our case by means of a variation of its
refractive index contrast. The propagation constant β2 is left
constant.

III. RAP-LIKE LIGHT TRANSFER

The waveguide structure used to simulate the RAP process
is shown schematically in Fig. 1(a). The corresponding
evolution of the parameters C(z) and �β(z) are shown in
Fig. 1(b). These parameters mimic the experimental situation
discussed below. For the RAP process to occur, it is essential
that the detuning should cross zero during the evolution, which

023811-2



CONTROL OF ADIABATIC LIGHT TRANSFER IN . . . PHYSICAL REVIEW A 95, 023811 (2017)

(d)

Input

z

(c)

A
m

pl
itu

de
 (

m
m

-1
)

0 5 10 15 20
0.0

0.4

0.8

1.2
Δβ(z)

C(z)

Propagation distance (mm)

WG 1

WG 2

(b)

A
m

pl
itu

de
 (

m
m

-1
)

Propagation distance (mm)
0 5 10 15 20

–0.6

–0.3

0.0

0.3

0.6

C(z)

Δβ(z)

Input

WG 2

WG 1

(a)

z

FIG. 1. (a) Schematics of the waveguide structure providing an
optical analogy to the RAP process and (b) corresponding longi-
tudinal evolution of the coupling constant C(z) and of the detuning
�β(z). (c) Schematics of the waveguide structure providing an optical
analogy to the two-state STIRAP process and (d) corresponding
evolution of C(z) and �β(z) (case A). Note that in panels (a) and
(c) the longitudinal and transverse dimensions are not in scale.

is the case for the function �β(z) in Fig. 1(b), which follows
a tanh function with its zero corresponding to the maximum
of C(z) (nearest distance between the waveguides). At early
and late distances the magnitude |�β(z)| is much larger than
C(z), while the contrary is true near the zero-crossing point.
Since the mixing angle θ (z) depends strongly on the ratio
C/�β [see Eq. (4)], θ (z) will evolve during the propagation.
Initially (z = 0), this ratio tends to 0 and 2θ is nearly equal
to π , so that θ ≈ π/2. With increasing z, C(z) and �β(z)
increase [�β(z) approaches zero from the negative side],
which leads to a decrease of θ (z). At half distance, �β(z)
vanishes and C(z) reaches its maximum, so that 2θ = π/2 and
θ = π/4. In the following �β(z) continues to increase and
becomes again much larger than C(z), which is decreasing,
so that θ tends to zero at large distances. Consequently,
starting initially from state A1 (all light in WG1), the system
follows adiabatically the adiabatic state B+(z) of Eq. (7b) and
eventually ends up in state A2 (all light in WG2). This implies
that a complete light transfer should take place. This adiabatic
process is intrinsically robust and is expected to take place over
a wide range of the design parameters and of the propagating
wavelengths for a given design, which means that the behavior
should be highly achromatic.

We have verified the above expectations by using photoin-
duced dynamic waveguides recorded by a properly structured
lateral control illumination on a SrxBa1−xNb2O6 (SBN) crystal
with x = 0.61. A highly simplified conceptual scheme of this
method is shown in Fig. 2. Essentially, the combination of
a local illumination by the control beam and of the electric
field applied to the photorefractive SBN crystal leads to a
local modification of the refractive index landscape of the
crystals. This modification is such that maxima of the refractive
index are found at the positions of maximum illumination,
leading therefore to a guiding waveguide structure. Variations
of the index contrast (and of the propagation constant) can be

FIG. 2. Schematics of the technique to create the reconfigurable
waveguide structures. A control beam at the wavelength λ = 532 nm
carries the structure of the waveguides. The latter is shaped by a
spatial light modulator (SLM) and imaged to the surface of the SBN
crystal, to which an electric field is applied along its polar axis. The
probe beam (alternatively at λ = 633 nm or λ = 850 nm) propagates
through the resulting waveguide structures to test their functionalities.

achieved by varying locally the intensity (gray level) of the
control light being directed from the spatial light modulator
(SLM) to the crystal. Since the recording and erasure of
the structures takes only a few tens of seconds in SBN, the
technique provides the advantage of being able to produce
reconfigurable structures in a unique crystal. Moreover, the
dynamics of the waveguide recording process can be exploited
to characterize the index contrast interferometrically. Since
the technique was used earlier [12,36,40], we refer to the
corresponding works for additional details. Note that, even
though for the sake of simplicity we use here waveguides
confined in one transverse dimension, the confinement in both
transverse directions can be achieved too [36].

The design of the waveguide configuration used to demon-
strate the RAP-like effect is such that both C(z) and �β(z) have
a smooth evolution to satisfy at best the adiabaticity criterion
within the limits permitted by the physics of our experimental
approach. The nominal z dependencies corresponding to
Fig. 1(b) are C(z) = Cmax exp{−[(z − z0)/σ0]2} and �β(z) =
�βmax tanh[2π (z − z0)/L], where Cmax is the maximum of the
coupling constant reached at half the propagation distance z0 =
11.5 mm, σ0 = 5 mm is the 1/e half-width of the Gaussian
coupling-constant pulse, �βmax is the maximum of detuning,
and L = 23 mm is the full propagation distance in the crystal.
The parameters Cmax and �βmax depend not only on the design
of the waveguide but also on the probe wavelength. Their
values were estimated by carrying out preliminary experiments
in nonmodulated waveguides. While the observation of the
coupling of waves in parallel waveguides leads to an estimation
of the coupling constant, the estimation of �β requires one
to perform interferometric measurement during the formation
process of the waveguides. For our experimental conditions
we estimate the parameters within a precision of roughly 15%,
Cmax = 0.35 ± 0.05 mm−1 and �βmax = 0.52 ± 0.08 mm−1

for the probe wavelength of 633 nm, as well as Cmax =
0.49 ± 0.07 mm−1 and �βmax = 0.32 ± 0.05 mm−1 for the
probing at 850 nm. With the above parameters the expected
evolution of the light intensity in the two-waveguide structure
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FIG. 3. Theoretical expectation and experimental verification of
the RAP-like light transfer for the parameter given in the text. (a)
Numerically calculated spatial evolution of the intensity in WG1
(blue dashed curve) and WG2 (solid red curve) for λ = 633 nm. (b)
Same for λ = 850 nm. (c) Measured intensity output distribution with
WG1 but in the absence of WG2 (reference, blue dashed line) and
with the presence of both waveguides (solid red line). (d) Same for
λ = 850 nm and the same structure.

of Fig. 1(a) and 1(b) can be obtained from Eq. (1) and is
shown in Figs. 3(a) and 3(b), for the wavelengths 633 and 850
nm, respectively. In both cases at the output of the structure
one expects essentially a switch from WG1 to WG2. The
corresponding experimental results are shown in Figs. 3(c)
and 3(d), which depict the intensity profile at the output of the
crystal. The dashed blue lines give the output of the reference
waveguide, that is WG1 in the absence of WG2, while the
solid red lines give the output when the RAP-like structure
including the WG2 is produced. The experimental profiles
show some slight asymmetry and irregularities associated
mainly with experimental effects such as possible crystal
imperfections and partial backscattering of the recording light
discussed in Ref. [41]. Nevertheless it can be recognized that
for the RAP-like structure most of the light output essentially
switches to WG2 for both wavelengths. This corresponds to
the expectations and confirms the robustness of the approach.

It is worth verifying that the detuning is essential for
the above RAP-like light transfer to occur. Figure 4 shows
the expected and measured behavior for the same kind of
two-waveguide structure leading to the results in Fig. 3, but
in the absence of detuning [�β(z) = 0]. As seen in Fig. 4
in this case the RAP process does not take place and the
results are not robust. An essentially complete return of the
light to the straight waveguide is expected for λ = 633 nm,
while a strong transfer to the curved waveguide is expected
for λ = 850 nm [see Figs. 4(a) and 4(b)]. This is confirmed by
the experimental results of Figs. 4(c) and 4(d), respectively.
Therefore, such a structure essentially leads to a damped
Rabi-like oscillation between the two waveguides, with very
different output distributions for the two probing wavelengths.

Even though the experiments on the RAP-like light transfer
of Fig. 3 give satisfactory results, the corresponding experi-
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FIG. 4. Counterexample to the RAP process in absence of the
detuning [�β(z) = 0]. (a) Expected evolution of the intensity in WG1
(blue dashed curve) and WG2 (solid red curve) according to Eq. (1)
for λ = 633 nm. (b) Same for λ = 850 nm. (c) Measured intensity
output distribution with WG1 but in the absence of WG2 (reference,
blue dashed line) and with the presence of both waveguides (solid red
line). (d) Same for λ = 850 nm and the same structure.

mental parameters are still at the edge of the zone for which
the adiabatic condition is fulfilled at best in the (Cmax,�βmax)
space. In order to illustrate this, we study the robustness
with respect to these two parameters by plotting the expected
intensity transferred to WG2 as a function of Cmax and �βmax.
Figure 5(a) gives a contour plot of the theoretically expected
transferred intensity as a function of these two parameters.
Clearly the experimental parameters (blue circle for 633 nm
and green square for 850 nm) are at the border of the red
region of maximum adiabaticity. The counterexample in the
absence of detuning corresponds to points on the abscissa of
the diagram of Fig. 5(a). It is also worth noting that upon
an increase of the wavelength, one gets a higher coupling
constant but a lower detuning. This means that the increase of
wavelength corresponds to moving transversally with respect
to the direction leading to a maximum fulfillment of the
adiabatic condition. The decrease in the detuning is due on
one hand to the proportionality of β on 1/λ and, on the other
hand, to a slight decrease of the electro-optic response and of
the index contrast in the SBN material for longer wavelengths.

IV. TWO-STATE STIRAP-LIKE BEAM SPLITTING

The concept of two-state STIRAP [33] relies on a
mathematical analogy between the equations governing the
population dynamics of a two-level system with a temporally
varying detuned coupling field and a resonantly coupled
chainwise-linked three-level system leading to the standard
STIRAP process. As discussed above, the two-level system is
described by a time-dependent Schrödinger equation of two
complex variables. The latter can be recast as three coupled
equations of three real variables [39,42] in the form of the
optical Bloch equation. This, on its turn, can be brought in
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FIG. 5. (a) Landscape of the expected output intensity of WG2
for the RAP process as calculated using coupled-mode theory under
variation of the parameters Cmax and �βmax. The red area corresponds
to the region where the adiabatic condition is fulfilled the best and
the light transfer is complete. The blue circle and the green square
correspond to the experimental conditions of Fig. 3 for probing at
633 and 850 nm, respectively. (b) Corresponding landscape for the
two-state STIRAP process (case A) showing the relative intensity
transferred from WG1 to WG2. The green area gives the region
where the adiabatic condition is best fulfilled and the waveguide
structure gives essentially a 50:50 beam splitter. The blue circle and
the green square correspond to the experimental conditions of Fig. 7
for probing at 633 and 850 nm, respectively.

a form equivalent to the Schrödinger equation applying to
the standard STIRAP process in a three-level system. In this
way, knowledge about the STIRAP process can be directly
inherited for the chirped two-state excitation [5,33]. Ultimately
the detuning of the two-level excitation can be identified
with the Stokes pulse of a three-level STIRAP system (the
Rabi-frequency pulse that couples the target state and the
intermediate state), while the Rabi frequency of the two-level
system is identified with the corresponding pump pulse of
STIRAP, which couples the initial and the intermediate state.

For the analogy between the two-state STIRAP process
and the coupling within a pair of detuned waveguides we can
consider two distinct cases. The first one, case A, is the one
where the waveguide detuning �β(z) is spatially preceding
the coupling constant pulse C(z). This case is equivalent to a
counterintuitive sequence in the standard three-state STIRAP
process [3,5]. It corresponds to the situation shown in Figs. 1(c)
and Fig. 1(d). The second case, case B, has the coupling
preceding the detuning and would correspond to an intuitive
order of the pulses for an atomic three-level system.

We start by discussing case A with the help of the general
relationships given in Sec. II. Initially only �β(z) is present
[see Fig. 1(d)] and its amplitude increases continuously, while
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FIG. 6. Theoretical expectations for a two-state STIRAP-like
waveguide structure modeled for propagation of light at the 633-nm
wavelength. Panels (a), (c), and (e) correspond to case A, and panels
(b), (d), and (f) correspond to case B. Panels (a) and (b) show the
evolution of the mixing angle θ (z) with the propagation distance
z. Panels (c) and (d) show the intensity evolution in WG1 (dashed
blue line) and WG2 (solid red line) obtained from coupled-mode
theory. Panels (e) and (f) show the corresponding evolution of the light
distribution obtained with the alternative beam propagation method.
For both cases the system leads to an equal splitting of the input
intensity among the two waveguides.

C(z) is negligibly small. Therefore the ratio �β(z)/C(z)→ +
∞ and the mixing angle θ (z) in (4) is initially equal to zero,
as shown in Fig. 6(a). With (7a) this implies that state B−
is initially aligned with A1. Subsequently, �β(z) increases
towards its maximum value, as long as C(z) is still small, and
B− deviated only a little from state A1. When �β(z) is behind
its maximum and C(z) reaches comparable values, the angle
θ rises and the adiabatic transfer state B− is no longer aligned
with A1 but becomes a superposition of A1 and A2. At the
final stage, �β(L) tends to zero and �β(L)/C(L)→ 0, so
that θ (L) tends to π/4. Consequently, the system shall tend to
B−(L) = (A1 − A2)/

√
2, which leads to an equal intensity of

the light in the two waveguides, as shown in Fig. 6(c).
Case B corresponds to the situation where the light is

injected in WG1 from the right side of the structure in Fig. 1(c).
In this case, the ratio �β(z)/C(z) goes from 0 to +∞, and θ (z)
[see Fig. 6(b)] goes from π/4 to 0. Importantly, in this situation
the initial state A1 (injection in WG1) does not correspond to
one of the adiabatic states B− or B+, but to a superposition B∗
of them given by

B∗(z) = 1√
2

[B−(z) + B+(z)]. (8)

Therefore, unlike for case A where only one adiabatic
state is involved, here the system is expected to remain in
the superposition state B∗ as long as the system evolves
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FIG. 7. Experimental output intensity distribution for the case
of two-state STIRAP as probed for cases A and B at two different
wavelengths. Panels (a) and (b) show probing at λ = 633 nm. Panels
(c) and (d) show probing at λ = 850 nm. Panels (a) and (c) correspond
to case A, while panels (b) and (d) correspond to case B (see text).

adiabatically. Since at the end of the structure θ (L) = 0, the
system shall converge towards B∗(L) = (A1 + A2)/

√
2, which

is again an equal intensity distribution of the light in the two
waveguides, as shown in Fig. 6(d). However, unlike for case A,
the evolution towards this 50:50 splitting presents here some
transient oscillations.

The curves shown in Figs. 6(a)–6(d) are modeled accord-
ing to the parameters used for the experiments given be-
low and the following functions, �β(z) = �βmax exp{−[(z −
z1)/σ0]2} and C(z) = Cmax exp{−[(z − z2)/σ0]2}, where z1 =
9 mm and z2 = 13.8 mm for case A, and z1 = 13.8 mm and
z2 = 9 mm for case B. A common 1/e2 half-width of σ0 = 5
mm is used. The values of �βmax and Cmax are those for
the wavelength of 633 nm, which are shown as a blue point
on the landscape applying to the two-state STIRAP case in
Fig. 5(b). These are �βmax = 1.2 ± 0.18 mm−1 and Cmax =
0.35 ± 0.05 mm−1. The corresponding values for the same
structure but for the wavelength of 850 nm [green square in
Fig. 5(b)] are �βmax = 0.73 ± 0.11 mm−1 and Cmax = 0.52 ±
0.08 mm−1, where the errors correspond to the experimental
conditions. Figure 6 also contains numerical calculations of
the beam propagation in waveguide structures corresponding
to case A and case B using the beam propagation method
(BPM) [43,44]. This second method has been widely used to
design optical waveguides and predict the light evolution in
such structures. The design structure only takes as an input
the form and the index profile of the waveguides and does
not assume anything with respect to coupled-wave theory. As
can be seen in Figs. 6(e) and 6(f), the BPM calculations also
correctly predict the smooth evolution for case A, and the

initial oscillations for case B, in agreement with the curves in
Figs. 6(c) and 6(d) obtained from coupled-wave theory.

Therefore, the theory predicts that at the output of the
waveguide structures that mimic two-state STIRAP one should
obtain a similar splitting irrespective of case A or case B, and
irrespective of the wavelength [see Fig. 5(b)], provided that
the system fulfills sufficiently well the adiabatic condition.
Figure 7 gives the experimental output distributions for prop-
agation in photoinduced waveguide structures corresponding
to cases A and B at the probe wavelengths of 633 and 850 nm.
It is seen that the beam splitting is satisfactorily obtained for
both cases at both wavelengths, thus confirming the robustness
of the process. In the absence of detuning the behavior would
be expected to be highly dependent on wavelength, similar to
the case of Fig. 4 for RAP. Therefore, the observed broadband
behavior is a direct consequence of the waveguide detuning,
which permits one to place the experiments outside the region
near the abscissa in Fig. 5(b), for which Rabi-like oscillations
strongly dependent on wavelength would be expected.

V. CONCLUSION

We have discussed the role of waveguide detuning for the
adiabatic light transfer among a pair of coupled waveguides
in analogy with adiabatic quantum population dynamics
processes. By the examples of the rapid adiabatic pas-
sage and the two-state STIRAP processes the theoretical
expectations have been successfully verified experimentally
using photoinduced reconfigurable waveguides recorded in a
photorefractive crystal. The corresponding structures act as
broadband directional couplers and broadband beam splitters,
respectively. The robustness and achromaticity brought about
by the adiabatic evolution mediated by the detuning and
the coupling strength have been confirmed. Generally, the
combination of the effects of longitudinally varying coupling
and longitudinally varying detuning permits one to access a
much wider range of possibilities for the adiabatic evolution
of the light fields as compared to systems where only the
coupling constant is modulated. As proposed recently for the
case of three-waveguide couplers [38], this kind of concept
can be extended to a larger number of waveguides, leading
potentially to several new rich functionalities. The adiabatic
approaches discussed here can be advantageously applied also
to the case of nonclassical propagating light such as that
obtained from single photon sources. Also, by imposing an
appropriate modulation of the mode propagation velocities,
instead of standard dielectric waveguides also other types
of guiding structures (e.g., photonic crystals or plasmonic
waveguides) can be used in principle.
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