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We calculate the Casimir–Polder frequency shift and decay rate for an atom in front of a nonreciprocal medium
by using macroscopic quantum electrodynamics. The results are a generalization of the respective quantities
for matter with broken time-reversal symmetry which does not fulfill the Lorentz reciprocity principle. As
examples, we contrast the decay rates, the resonant and nonresonant frequency shifts of a perfectly conducting
(reciprocal) mirror with those of a perfectly reflecting nonreciprocal mirror. We find different power laws for the
distance dependence of all quantities in the retarded and nonretarded limits. As an example of a more realistic
nonreciprocal medium, we investigate a topological insulator subject to a time-symmetry-breaking perturbation.
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I. INTRODUCTION

The Casimir–Polder force [1], like the van der Waals
and the Casimir forces [2], is a dispersion force [3,4]. This
weak electromagnetic force was studied by using a variety
of different methods. The lifetime and the frequency shift of
an atom in its ground state or excited state near a flat surface,
which causes the Casimir–Polder force, are analyzed by using a
quantum-mechanical linear-response formalism in Refs. [5,6].
This is exemplified for a perfect conductor and a metal plate.

The Casimir–Polder force can also be viewed as result
of noise currents composed of noise polarization and noise
magnetization in matter, which act as a source for a quantized
electromagnetic field. These fields can be expanded in terms of
the classical electromagnetic Green’s tensor for the Helmholtz
equation [7–12]. By computing the interaction of an atom
with this field one can compute the effect of material bodies
on the internal properties of the atom. The Casimir–Polder
force is a result of the level shift of the atom induced by this
field. In this theoretical framework, materials are described
macroscopically by electromagnetic physical quantities and
therefore this approach is known as macroscopic quantum
electrodynamics (QED) [3,4,13]. Casimir–Polder potentials
have been investigated for graphene [14], metamaterials
[15,16], and Rydberg atoms near metallic surfaces [17].

In bi-isotropic media electric and magnetic fields are
coupled to each other and the general expressions of the
constitutive relations read D = ε0ε � E + 1

c
ξ � H and B =

1
c
ζ � E + μ0μ � H (where � denotes a spatial convolution)

with the cross susceptibilities ξ and ζ. If a material shows
imaginary cross susceptibilities, the material is called chiral
[18,19]. The radiation of a dipole in proximity to a thin [20] and
a thick chiral layer [21] has already been studied. References
[22,23] study the interaction between a chiral molecule in
front of a chiral half space [23] and a chiral nanosphere [22].
The decay rate of spontaneous emission is computed in a
direct way by using the electric and magnetic dipole moments,
their induced counterparts, and the respective fields.

A bi-isotropic medium is called nonreciprocal if the mixing
parameters have a real-valued contribution, e.g., a topological
insulator which breaks time-reversal symmetry. In the theory
of macroscopic QED, Lorentz’s reciprocity principle stating

the reversibility of optical paths, i.e., the symmetry with
respect to an exchange of positions and orientations of
sources and fields, holds for reciprocal material (Lorentz
reciprocity being a particular case of the Onsager reciprocity
from statistical physics [24]). Thus these materials preserve
time-reversal symmetry. To study Casimir–Polder potentials
for nonreciprocal media, which violate Lorentz’s reciprocity
relation [25], the theory of macroscopic QED was generalized
to include these cross susceptibilities [26]. In this paper, we
investigate the Casimir–Polder frequency shift and decay rate
for a nonreciprocal medium.

Topological insulators [27–29] are time-symmetric ma-
terials which are characterized by an insulating bulk and
protected conducting surface states and have been observed
in three-dimensional (3D) materials which exhibit sufficiently
strong spin-orbit coupling to induce band inversion [30]. These
materials can be used to realize axion media. To do this
one needs to introduce a time-reversal-symmetry-breaking
perturbation to the surface, either via ferromagnetic dopants
[31,32] or an external static magnetic field [33]. Such a
perturbation opens a gap on the surface, converting the surface
conductor into a full insulator and leads to a nontrivial
electromagnetic response—in particular the electric and the
magnetic fields E and B are able to mix [31].

This magneto-electric effect can be described by adding an
axion Lagrangian density term Laxion = α/(4π2)θ (r,ω)E · B
to the usual electromagnetic Lagrangian density [34]. Here,
α is the fine-structure constant and θ (r,ω) is the space- and
time-dependent axion coupling. The axion coupling θ vanishes
in a trivial insulator but takes odd integer values of π in
a time-reversal-symmetry-broken topological insulator, with
the value and sign of the integer related to the strength
and direction of the time-symmetry-breaking perturbation.
Physically, this describes a quantum Hall effect on the surface
of the topological insulator [31]. The lowest Hall plateau
leads to an axion coupling of ±π . Changing the size of the
perturbation will not change the axion coupling until the next
Hall plateau is reached, whereupon the axion coupling will
increase to ±3π . Further changes to the perturbation would
result in even higher axion couplings as the relevant Hall
plateaus are reached. It has been previously shown that the
mixing of the electric and magnetic fields by the axion coupling
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has a significant effect on the Casimir force [35] and, as we
will show in Sec. IV, it also modifies the Casimir–Polder shift.

Optical properties, e.g., reflective and transmissive proper-
ties, Fresnel formulas, Brewster angle, and the Goos–Hänchen
effect of these materials have been studied theoretically in
Refs. [36,37]. Reference [38] derives electric fields and dipole
moments for stratified isorefractive Tellegen media (purely-
real-valued coupling parameter between electric and magnetic
field) with the Green’s tensor method. One consequence
of isorefractive media is the parallelism of the incident
and transmitted beam. As for layered topological insulators
with a time-reversal-symmetry-breaking perturbation, poten-
tial applications are broad; for example, a waveguide that
induces polarization rotations due to the magneto-electric
effect and mixes the electric and magnetic induction fields
at the material’s surface [39].

In our context, Casimir repulsion is of specific interest, e.g.,
the Casimir repulsion for magnetodielectric metamaterials
predicted in Refs. [40–42]. Specifically, repulsive dispersion
forces for a setup containing topological insulators are dis-
cussed in Ref. [35], such as Casimir forces between three-
dimensional topological insulators. Based on this approach, it
is shown in Ref. [43] that there is a critical band gap where
the Casimir force switches from attractive to repulsive. The
influence of unusual material properties, such as those of the
topological insulator, on dispersion forces is emphasized in
the recent review [44]. The Casimir–Polder interaction be-
tween an atom and a graphene surface with an applied magnetic
field is studied in Ref. [45]. The authors observe plateau-like
discontinuities of the Casimir–Polder interaction energy for
specific values of the magnetic field and at low temperatures.
This effect is traced back to the quantum Hall effect and is
thus closely connected to our approach. We are going to apply
the extended theory of macroscopic QED for nonreciprocal
media to calculate frequency shifts and atomic decay rates of
an atom in front of a topological insulator by directly using
the electromagnetic properties derived in Ref. [46].

This paper on the Casimir–Polder shift and decay rate in the
presence of nonreciprocal media is organized as follows: The
time-dependent electric field is calculated in the framework
of macroscopic QED for nonreciprocal media in Sec. II.
This result is reached alternatively by a direct quantization
of the noise current or by expressing noise polarization and
magnetization through electromagnetic response functions
and is needed for studying the internal atomic dynamics.
This is described in Sec. III where the modified equations
for the frequency shift and decay rate for nonreciprocal
media are presented. In Sec. IV, the results are applied to
a perfectly reflecting nonreciprocal mirror and a topological
insulator described by an axion coupling. In this context, we
distinguish between a pure nonreciprocal topological insulator
and material properties similar to Bi2Se3. Finally, we discuss
the possibility of switching between an attractive and a
repulsive force.

II. THE TIME-DEPENDENT ELECTRIC FIELD

A nonreciprocal medium violates time-reversal symmetry
and, hence, the Lorentz reciprocity principle for the Green’s

tensor [25] does not hold

GT(r′,r,ω) �= G(r,r′,ω). (1)

This necessitates new definitions for the real and imaginary
parts of the Green’s tensor G

R[G(r,r′)] = 1

2
[G(r,r′) + G∗T(r′,r)], (2)

I[G
(
r,r′)] = 1

2i
[G(r,r′) − G∗T(r′,r)]. (3)

Thus the violation of Lorentz’s principle calls for a modi-
fied mathematical description of macroscopic quantum elec-
trodynamics (QED) for nonreciprocal media. Whereas the
framework of macroscopic QED is described in Refs. [3,13],
the modified approach for nonreciprocal media is outlined in
Ref. [26]. The internal dynamics of an atom with reciprocal
media is discussed in Refs. [4,8].

The general expression for the electric field reads

Ê(r) =
∫ ∞

0
dω[Ê(r,ω) + Ê†(r,ω)], (4)

with frequency components in Fourier space

Ê(r,ω) = iμ0ω[G � ĵN](r,ω)

= iμ0ω

∫
d3r ′G(r,r′,ω) · ĵN(r′,ω), (5)

where � denotes a spatial convolution. The noise current
density ĵN is governed by the quantum fluctuations occurring
in the medium and its average vanishes 〈ĵN〉 = 0. ĵN can either
be quantized directly, as is outlined in Sec. II A, or it can be
represented by noise polarization P̂N and magnetization M̂N

and the respective electric and magnetic fields are quantized
separately yielding creation and annihilation operators for each
field. We dedicate Sec. II B to the second method using electric
and magnetic response functions.

To obtain an expression for the time-dependent electric field
(4), we have to find a solution for the time-dependent creation
and annihilation operators first. This procedure is carried out
both for a noise-current-based schema and a polarization-
magnetization-founded method. The Hamiltonian Ĥ for the
atom-field system is composed of the atomic part ĤA, the field
part ĤF, and a contribution for the atom-field interaction ĤAF:
Ĥ = ĤA + ĤF + ĤAF. The atomic part ĤA,

ĤA =
∑

n

EnÂnn, (6)

incorporates the eigenenergy En for each atomic energy level
and the atomic flip operator Âmn = |m〉〈n|. Resembling a
harmonic oscillator, ĤF comprises the integral over all the
frequency-dependent number operators of the field-medium
system and can be cast in the two aforementioned ways; cf.
Secs. II A and II B. The interaction Hamiltonian ĤAF, which
couples the atomic dipole to the electromagnetic field, reads

ĤAF = −d̂ · Ê(rA) = −
∑
m,n

Âmndmn · Ê(rA) (7)

and contains the electric-dipole operator d̂ = ∑
m,n dmnÂmn.

rA is the position of the atom. Since ĤA commutes with the
field operators, only the commutation relations for the field
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Hamiltonian ĤF and the interaction Hamiltonian ĤAF have to
be studied to find the expression for the electric field (4). The
field operators’ equations of motion will be solved in the two
different ways and inserted into Eq. (5), thus giving a final
expression for the electric field in the presence of an atom.

A. Electric field in noise-current-based schema

In this first approach, the noise current is quantized directly
by expressions for the field operators. Ohm’s Law in frequency
space,

ĵin(r,ω) = [Q � Ê](r,ω) + ĵN(r,ω), (8)

describes the effect of the electric field Ê(r,ω) on a linearly
responding medium where Q is the conductivity matrix.
Hence, the Helmholtz equation reads[−→∇ × −→∇ × −ω2

c2

]
G(r,r′,ω) − iμ0ω[Q � G](r,r′ω)

= δ(r − r′). (9)

This equation is formally solved by the Green’s tensor G with
G → 0 for |r − r′| → ∞.

We quantize the noise-current density ĵN in Eq. (5) directly
by writing it in terms of creation and annihilation operators f̂†

and f̂

ĵN(r,ω) =
√

h̄ω

π
[R � f̂](r,ω), (10)

where R is related to the real part of the conductivity tensor Q

[R � R∗T](r,r′,ω) = R[Q(r,r′,ω)]. (11)

The Heisenberg equation of motion for the annihilation
operator f̂

˙̂f(r,ω) = 1

ih̄
[f̂(r,ω),Ĥ ], (12)

upon using the field Hamiltonian ĤF,

ĤF =
∫

d3r

∫ ∞

0
dωh̄ωf̂†(r,ω) · f̂(r,ω), (13)

and the interaction Hamiltonian ĤAF (7) by using Eq. (5),

ĤAF = −
∑
m,n

∫ ∞

0
dωiμ0ω

√
h̄ω

π
Âmndmn

×{[G � R � f̂](rA,ω) − [G∗
� R∗ � f̂†](rA,ω)}, (14)

gives the solution of the annihilation operator f̂

f̂(r,ω,t) = e−iω(t−t0) f̂(r,ω) + μ0ω

h̄

√
h̄ω

π

∑
m,n

∫ t

t0

dt ′

× e−iω(t−t ′)[G � R]∗T(rA,r,ω) · dmnÂmn. (15)

Substituting the results into Eq. (10) and using Eq. (11) and
the expression

I[G(r,r′,ω)] = μ0ω[G � R[Q] � G∗T](r,r′,ω), (16)

leads to an expression for the electric field in nonreciprocal
media

Ê(r,ω,t) = e−iω(t−t0)Ê(r,ω) + i
μ0ω

2

π

∑
m,n

∫ t

t0

dt ′

× e−iω(t−t ′)I[G(r,rA,ω)] · dmnÂmn, (17)

which differs from the usual expression for reciprocal media
only by the definition of the imaginary part of the Green’s
tensor (3) [4].

B. Electric field in polarization-magnetization-based schema

The components of the electric field Ê(r,ω) can also be cal-
culated in terms of electric and magnetic response functions,
i.e., polarization and magnetization [26]. The constitutive
relations for the electric displacement field D̂ and the magnetic
induction field B̂ are given by [26]

D̂ = ε0ε � Ê + 1

c
ξ � Ĥ + P̂N + 1

c
ξ � M̂N, (18)

B̂ = 1

c
ζ � Ê + μ0μ � Ĥ + μ0μ � M̂N, (19)

where the tensor ε is the permittivity, μ is the permeability and
ξ and ζ represent the magneto-electric cross susceptibilities.
The noise polarization P̂N and noise magnetization M̂N form
the noise current ĵN

ĵN(r,ω) = −iωP̂N(r,ω) + −→∇ × M̂N(r,ω)

= (−iω,
−→∇ ×) ·

(
P̂N(r,ω)

M̂N(r,ω)

)
. (20)

The noise polarization and noise magnetization can be ex-
pressed in terms of the creation and annihilation operators for
the electric and the magnetic fields f̂e, f̂†e, f̂m, and f̂†m(

P̂N

M̂N

)
=

√
h̄

π
R �

(
f̂e

f̂m

)
. (21)

The Green’s tensor G from Eq. (5) solves the respective
Helmholtz equation

−μ0(−iω,
−→∇ ×) � M �

(
iω−→∇ ×

)
� G = δ, (22)

with the matrix

M =
(

ε0(ε − ξ � μ−1 � ζ) ξ�μ−1

Z0

μ−1�ζ
Z0

−μ−1

μ0

)
. (23)

The Helmholtz equation reduces to the standard form [3] if all
cross susceptibilities are set to 0. The tensor R is related to
the matrix M via

R � R∗T = I[M ]. (24)

The conductivity matrix Q can also be expressed in terms of
M

Q = 1

iω
(−iω,

−→∇ ×) �

[
M−

(
ε0 0
0 − 1

μ0

)]
�

(
iω

− × ←−∇
)

.

(25)
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Calculations of the equations of motion of the creation and
annihilation operators require the field Hamiltonian ĤF,

ĤF =
∑

λ=e,m

∫
d3r

∫ ∞

0
dωh̄ωf̂†λ(r,ω) · f̂λ(r,ω), (26)

and the interaction Hamiltonian ĤAF (7). Inserting Eqs. (4),
(5), (20), and (21) into Eq. (7) enables us to solve the linear
and inhomogeneous differential equation of the field operators(

f̂e(r,ω,t)
f̂m(r,ω,t)

)
= e−iω(t−t0)

(
f̂e(r,ω)
f̂m(r,ω)

)
+ μ0ω

h̄

√
h̄

π

∑
m,n

∫ t0

0
dt ′

× [G � (−iω,
−→∇ ×) � R]∗T(rA,r,ω)

× e−iω(t−t ′) · dmnÂmn, (27)

which can be inserted into Eqs. (21), (20), and (5) again. After
using Eqs. (25) and (16) again, the final expression for Ê(r,ω)
yields

Ê(r,ω,t) = e−iω(t−t0)Ê(r,ω) + i
μ0ω

2

π

∑
m,n

∫ t

t0

dt ′e−iω(t−t ′)

× I[G(r,rA,ω)] · dmnÂmn (28)

and agrees perfectly with the result from Sec. II A [Eq. (17)].

III. INTERNAL ATOMIC DYNAMICS: FREQUENCY
SHIFT AND DECAY RATE

The internal atomic dynamics can be described by the
Heisenberg equations of motion for the atomic flip operator

˙̂Amn = 1

ih̄
[Âmn,Ĥ ] = 1

ih̄
[Âmn,ĤA] + 1

ih̄
[Âmn,ĤAF], (29)

which includes only the atomic Hamiltonian ĤA and the
interaction Hamiltonian ĤAF because the field Hamiltonian ĤF

commutes with the atomic flip operator. This approach follows
the procedure for a reciprocal surface outlined in Ref. [4] and
is now extended to nonreciprocal media [26].

This leads to

˙̂Amn = iωmnÂmn + i

h̄

∑
k

∫ ∞

0
dω

× [(Âmkdnk − Âkndkm) · Ê(rA,ω)

+ Ê†(rA,ω) · (dnkÂmk − dkmÂkn)]. (30)

Âmn is dominated by oscillations with frequencies ω̃mn =
ωmn + δωmn, where ωmn is the atom’s eigenfrequency and
δωmn is the shift owing to interaction with nearby material
bodies (Casimir–Polder shift). The electric field is given in
Eqs. (17) or (28). The time integral in the electric field can be
formally evaluated in the Markov approximation where we ne-
glect the slow nonoscillatory dynamics of the atomic flip oper-
ator Âmn during the time interval t0 � t ′ � t and set Âmn(t ′) �
exp[iω̃mn(t ′ − t)]Âmn(t), where we have anticipated the re-
sult ω̃mn = −ω̃nm. In the long-time limit t → ∞ the time
integral reduces to Âmn(t)

∫ t

t0
dt ′ exp[−i(ω − ω̃nm)(t − t ′)] �

Âmn(t)[πδ(ω − ω̃nm) − iP/(ω − ω̃nm)], where P is the

Cauchy principle value and the limits of the frequency integral
will lead to the appearance of the Heaviside step-function 	.

By defining the coefficient

Cmn = μ0

h̄
	(ω̃nm)ω̃2

nmI[G(rA,rA,ω̃nm)] · dmn

− i
μ0

πh̄
P

∫ ∞

0
dω

1

ω − ω̃nm

ω2I[G(rA,rA,ω)] · dmn,

(31)

Eq. (30) can be cast into the form

˙̂Amn(t) = iωmnÂnm(t) + i

h̄

∑
k

∫ ∞

0
dω

× {e−iω(t−t0)[Âmk(t)dnk − Âkn(t)dkm] · Ê(rA,ω)

+ eiω(t−t0)Ê†(rA,ω) · [dnkÂmk(t) − dkmÂkn(t)]}
−

∑
k,l

[dnk · CklÂml(t) − dkm · CnlÂkl(t)]

+
∑
k,l

[dnk · C∗
mlÂlk(t) − dkm · C∗

klÂln(t)], (32)

where we have used the identity I[G∗(rA,rA,ω)] =
I[GT(rA,rA,ω)], which can be derived from Eq. (3).

Next, we take expectation values of Eq. (32) and assume
the electromagnetic field to be prepared in its ground state
at initial time t0 which implies Ê(r,ω)|{0}〉 = 0. Therefore,
the free terms of the electric field Ê(r,ω) and Ê†(r,ω) do not
contribute to the dynamics of the average value of the atomic
flip operator and are discarded.

Since we assume the atom to be free of quasidegenerate
transitions, the set of differential equations for the atomic flip
operator’s expectation value can be decoupled. Moreover, the
atom is unpolarized in each of its energy eigenstates, d̂nn =
0, which is guaranteed by atomic selection rules [4]. As a
result of these assumptions, the fast-oscillating off-diagonal
flip operators decouple from the nonoscillating diagonal ones
as well as from each other [4].

By making use of Eq. (3) we find that the two terms dnk ·
I[G(rA,rA,ω)] · dkn = I[dnk · G(rA,rA,ω) · dkn] and dkn ·
I[GT(rA,rA,ω)] · dnk = I[dnk · G(rA,rA,ω) · dkn] are equal
and real.

With the help of these relations we identify the decay rate


nk = 2μ0

h̄
ω̃2

nkI[dnk · G(rA,rA,ω̃nk) · dkn] (33)

and the frequency shift

δωnk = −μ0

πh̄
P

∫ ∞

0
dω

1

ω − ω̃nk

ω2

× I[dnk · G(1)(rA,rA,ω) · dkn]. (34)

Here, the Green’s tensor G has been split into a bulk part G(0)

and a scattering part G(1). The Lamb shift due to the free-
space Green’s tensor G(0) is already included in the transition
frequency ωmn, which refers solely to the atom and does not
take the material properties of surrounding matter into account.
The remaining frequency shift stems from the presence of
electromagnetic bodies around the atom.
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Finally, the expectation value for the atomic flip operator
for the nondiagonal terms yields

〈 ˙̂Amn(t)〉 = iωmn〈Âmn(t)〉 +
∑

k

(
−1

2

nk−iδωnk

)
〈Âmn(t)〉

+
∑

k

(
−1

2

mk + iδωmk

)
〈Âmn(t)〉. (35)

We define δωn = ∑
k δωnk and 
n = ∑

k<n 
nk—the 	

function in Eq. (31) determines the order of summation
indices—and the shifted transition frequency as

ω̃mn = ωmn + δωm − δωn, (36)

which verifies our previous assumption ω̃mn = −ω̃nm. Thus
Eq. (32) for the diagonal terms has the simple form

〈 ˙̂Ann(t)〉 = −
n〈Ânn(t)〉 +
∑
k>n


kn〈Âkk(t)〉. (37)

Since the shifted frequency ω̃nk appears in δωnk itself, the
frequency shift is given as a self-consistent result from the
implicit equation.

The frequency shift (34) can be simplified further by making
use of the definition of the imaginary part (3), the Schwarz
principle which is still valid for nonreciprocal media,

G∗(rA,rA,ω) = G(rA,rA,−ω∗), (38)

and a substitution ω → −ω in the second integral having its
origin in Eq. (3). The integral contours along the positive and
negative real axes have one pole each and are evaluated in
the complex plane. The path along the quarter circle does not
give a contribution because lim|ω|→0 G(1)(r,r′,ω)ω2/c2 = 0.
The part along the imaginary axis leads to the nonresonant
frequency shift

δωnres
nk = μ0

πh̄

∫ ∞

0
dξ

ξ 3

ξ 2 + ω̃2
nk

I[dnk · G(1)(rA,rA,iξ ) · dkn]

− μ0

πh̄

∫ ∞

0
dξ

ξ 2ω̃nk

ξ 2 + ω̃2
nk

× R[dnk · G(1)(rA,rA,iξ ) · dkn], (39)

with a Green’s function G with imaginary frequency ω →
iξ . This expression resembles the frequency shift of the
Casimir–Polder force for an atom in its ground state [3].
It comes from the exchange of virtual photons between the
atom and the material body. This entirely quantum-mechanical
interpretation can be extended for an atom in an arbitrary state.
The matrix-vector product of the Green’s tensor and the dipole
moments is real for a reciprocal medium and therefore only
the second contribution remains in this case.

The evaluation of the poles gives the resonant contribution
associated with real-photon emission and a real-frequency
expression ω̃nk

δωres
nk = −μ0

h̄
ω̃2

nkR[dnk · G(1)(rA,rA,ω̃nk) · dkn]. (40)

In case of the resonant frequency shift, the Green’s tensor G
in Eq. (40) contains discrete frequencies for the real atomic
transitions to a lower energy state, which can only occur for
excited atoms and is related to real exchange photons.

FIG. 1. Sketch of an atom in front of a medium with electric and
magnetic properties and an axion coupling. The direction of incoming
parallely polarized light ep and perpendicularly polarized light es are
shown.

The sum of the resonant and nonresonant frequency shifts
δωnk over all indices k can be identified with the total position-
dependent Casimir–Polder potential. Its derivative with respect
to position is the Casimir–Polder force between the atom and
the nonreciprocal medium, which is caused by the atom’s level-
shift due to the body’s presence.

IV. APPLICATIONS AND RESULTS

Having derived expressions for the atomic rate of spon-
taneous decay (33) and nonresonant and resonant frequency
shifts [Eqs. (39) and (40)], we contrast a perfectly reflecting
nonreciprocal mirror with a perfectly conducting mirror.
Afterward we compare this to a topological insulator from
Ref. [46]. Figure 1 shows a sketch of an atom in front of
a medium having electric, magnetic properties and an axion
coupling. The scattering part of the Green’s tensor G(1) of a
single planar surface has the form [46]

G(1)(r,r′,ω) = i

8π2

∫
d2k‖ 1

k⊥
∑
σ=s,p

∑
σ ′=s,p

rσ,σ ′

× eσ+eσ ′−eik‖(r−r′)eik⊥(z+z′), (41)

with the two unit vectors eσ+ and eσ ′− representing the
polarizations of incident (σ ′) and reflected waves (σ ). The
reflective coefficient rσ,σ ′ takes the mixing of the incoming and
outgoing polarizations σ ′ and σ into account. The indices p and
s refer to parallel or perpendicular polarization, respectively.
k‖ represents the parallel component of the wave vector, k⊥ is
its perpendicular component, and z is the vertical distance to
the surface.

According to Curie’s principle a system consisting of a
crystal and an external influence, each having a specific sym-
metry, only maintains the symmetries that are shared by both
the crystal and the external influence [47]. Hence our choice of
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dipole moments must be such that the atom is sensitive to the
violated time-reversal symmetry of a perfectly reflecting non-
reciprocal mirror. To study possible effects of nonreciprocity,
we assume circularly polarized dipole moments

d10 = d√
2

⎛
⎝1

i

0

⎞
⎠, d01 = d√

2

⎛
⎝ 1

−i

0

⎞
⎠, (42)

which are not invariant if the direction of time is reversed
t → −t .

A. Perfectly conducting mirror

Let us first investigate the atomic decay rate (33) and
the nonresonant and resonant frequency shift (39), (40) for
a perfectly conducting mirror. The energy shift of a hydrogen
atom between two conducting plates has been studied in
Refs. [48,49] and one can obtain the interaction between an
atom and a single plate if one plate is shifted to infinity.
Reference [50] shows the radiative decay rate of an atom in
front of a perfect mirror, where the dipole is either parallel or
perpendicular to the mirror. These approaches are based on
perturbation theory.

The reflective coefficients for a perfectly conducting mir-
ror are rp,p = 1, rs,s = −1, and rs,p = rp,s = 0. This set of
coefficients is obtained from the reflective coefficients for a
general material in the limit ε → ∞, which is explained in
greater detail in Sec. IV C. In this case the Green’s tensor (41)
contains only diagonal terms with G(1)

xx = G(1)
yy

G(1)
xx (r,r,ω) =

(
− 1

8πz
− i

c

16πωz2
+ c2

32πω2z3

)
e

2iωz
c .

(43)
The nondiagonal elements of the Green’s tensor vanish. The
atomic decay rate (33) for circularly polarized dipole moments
(42) hence reads



(1)
10 = μ0ω̃

2
10d

2

4πh̄

[
−1

z
sin

(
2ω̃10z

c

)
− c

2ω̃10z2
cos

(
2ω̃10z

c

)

+ c2

4ω̃2
10z

3
sin

(
2ω̃10z

c

)]
. (44)

Figure 2 shows the atomic decay rate (44) scaled by the free-
space decay rate



(0)
10 = μ0ω̃

3
10d

2

3πh̄c
. (45)

Moreover we study the asymptotic behavior of the
decay rate and distinguish between the retarded limit
(ω̃10z/c � 1) and the nonretarded limit (ω̃10z/c � 1). The
decay rate decays asymptotically in the retarded limit with
−[μ0ω̃

2
10d

2 sin(2ω̃10z/c)]/[4πh̄z].
At z = 0, in the nonretarded limit, the decay rate has a

value of −

(0)
10 (Fig. 2). The total decay rate 
10 of a dipole

parallel to a perfectly conducting mirror is a sum of the free-
space part 


(0)
10 and the body-induced part 


(1)
10 and is equal to


10 = 

(0)
10 + 


(1)
10 = 0 on the surface of the mirror at z = 0.

This can be explained by an image dipole with equal strength
and opposite direction induced by the original one so that the
two dipoles cancel, leading to vanishing radiative decay.

FIG. 2. Atomic decay rates 
(1) scaled by the free-space decay
rate 
(0) (45) for a circularly polarized two-level atomic dipole in
front of a perfectly conducting mirror (green line) and a perfectly
reflecting nonreciprocal mirror (blue line).

The frequency shift is composed of a resonant and a
nonresonant contribution

δω10 = δωres
10 + δωnres

10

= μ0ω̃
2
10d

2

8πh̄

[
1

z
cos

(
2ω̃10z

c

)
− c

2ω̃10z2
sin

(
2ω̃10z

c

)

− c2

4ω̃2
10z

3
cos

(
2ω̃10z

c

)]

+ μ0d
2

8π2h̄

∫ ∞

0
dξ

ω̃10ξ
2

ω̃2
10 + ξ 2

(
1

z
+ c

2ξz2
+ c2

4ξ 2z3

)
e− 2ξz

c ,

(46)

FIG. 3. Frequency shifts δω scaled by the free-space decay rate

(0) (45) for a circularly polarized two-level atomic dipole in front of
a perfectly reflecting nonreciprocal mirror and a perfectly conducting
mirror. The resonant frequency shift δωres of the perfectly conducting
mirror (green line) and the resonant frequency shift of the perfectly
reflecting nonreciprocal mirror (blue line) show oscillations. The
nonresonant frequency shift δωnres of the perfectly conducting mirror
(dashed green line) and the perfectly reflecting nonreciprocal mirror
(dashed blue line) decay monotonically with distance.
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FIG. 4. Double-logarithmic plot for the nonresonant frequency
shift δωnres of the perfectly conducting mirror (green line), its retarded
limit (green dashed line), and its nonretarded limit (green dotted line).
The perfectly reflecting nonreciprocal mirror (blue line), its retarded
limit (blue dashed line), and its nonretarded limit (blue dotted line)
are depicted in the same figure.

which are shown in Fig. 3. The retarded and nonretarded limits
of the nonresonant frequency shift (46) read

δωnres
10 =

⎧⎪⎪⎨
⎪⎪⎩

d2c

16π2ε0h̄ω̃10z4
,

ω̃10z

c
� 1

d2

64πε0h̄z3
,

ω̃10z

c
� 1,

(47)

and are depicted in a double-logarithmic plot in Fig. 4. The
asymptotic limits of the resonant frequency shift (46) read

δωres
10 =

⎧⎪⎪⎨
⎪⎪⎩

μ0ω̃
2
10d

2

8πh̄z
cos

(
2ω̃10z

c

)
,

ω̃10z

c
� 1

− d2

32πε0h̄z3
,

ω̃10z

c
� 1

(48)

and are shown in Fig. 3 as well.

B. Perfectly reflecting nonreciprocal mirror

The reflection coefficients for incoming perpendicular or
parallel polarization and outgoing perpendicular or parallel
polarization rs,s and rp,p are set equal to 0, whereas the
mixing terms rs,p and rp,s can be chosen to be either 1
or −1 thus generating a perfectly reflecting nonreciprocal
mirror. In this section, we restrict ourselves to the case
rs,p = rp,s = −1. These reflective coefficients are the specific
case of a perfect electromagnetic conductor (PEMC) with
parameter M = 1 [51–53], which is explained in Sec. IV C.
The Green’s tensor (41) is antisymmetric under these condi-
tions: G(1)T(r,r′,ω) = −G(1)(r′,r,ω). Thus the diagonal terms
of the Green’s tensor vanish and only the nondiagonal terms
remain. By interchanging the indices of the nondiagonal terms,
G(1)

xz (r,r′) = G(1)
zx (r,r′) and G(1)

yz (r,r′) = G(1)
zy (r,r′) keep their

signs, whereas G(1)
xy (r,r′) = −G(1)

yx (r,r′) shows a sign change.
This behavior is exactly opposite if the arguments of the
nondiagonal terms are interchanged. Therefore G(1)

xz and G(1)
yz

have to vanish by setting r = r′ and only G(1)
xy = −G(1)

yx has

finite values. The final result after integrating yields

G(1)
xy (r,r,ω) =

(
− 1

8πz
− i

c

16πωz2

)
e

2iωz
c . (49)

By using the circularly polarized dipole moments (42), we
obtain for the atomic decay rate



(1)
10 = μ0ω̃

2
10d

2

4πh̄

[
1

z
cos

(
2ω̃10z

c

)

− c

2ω̃10z2
sin

(
2ω̃10z

c

)]
, (50)

which is shown in Fig. 2. The decay rate of a per-
fectly reflecting nonreciprocal mirror is equal to zero for
small values of ω̃10z/c (nonretarded limit). The func-
tion decays asymptotically in the retarded limit with
[μ0ω̃

2
10d

2 cos(2ω̃10z/c)]/[4πh̄z].
The frequency shift is shown in Fig. 3 and consists of a

resonant and a nonresonant contribution

δω10 = δωres
10 + δωnres

10

= μ0ω̃
2
10d

2

8πh̄

[
1

z
sin

(
2ω̃10z

c

)
+ c

2ω̃10z2
cos

(
2ω̃10z

c

)]

+ μ0d
2

8π2h̄

∫ ∞

0
dξ

ξ 3

ξ 2 + ω̃2
10

(
1

z
+ c

2ξz2

)
e− 2ξz

c . (51)

In the retarded and nonretarded limits the nonresonant part has
the asymptotic behavior,

δωnres
10 =

⎧⎪⎪⎨
⎪⎪⎩

d2c2

16π2ε0h̄ω̃2
10z

5
,

ω̃10z

c
� 1

d2

16π2ε0h̄z3
,

ω̃10z

c
� 1,

(52)

which is shown in a double-logarithmic plot in Fig. 4. The
resonant part has the limits

δωres
10 =

⎧⎪⎪⎨
⎪⎪⎩

μ0ω̃
2
10d

2

8πh̄z
sin

(
2ω̃10z

c

)
,

ω̃10z

c
� 1

μ0ω̃10d
2c

16πh̄z2
,

ω̃10z

c
� 1.

(53)

By comparing both the decay rates and the resonant frequency
shifts in Figs. 2 and 3, a phase shift by π/2 between the
respective curves of the perfectly conducting mirror and the
perfectly reflecting nonreciprocal mirror is apparent, as can
also be read off from the first terms in Eqs. (44), (46), (50),
and (51). This is the additional phase shift implied by the
reflection of s- into p-polarized waves. The scaling behavior
of the decay rates and the resonant frequency shifts in the
retarded limit is the same. The decay of the resonant frequency
shift in the nonretarded limit is proportional to z−3 for the
perfectly conducting mirror and z−2 for the perfectly reflecting
nonreciprocal mirror. As for the nonresonant frequency shift
(46) and (51), the perfectly reflecting nonreciprocal mirror
decays with z−5 in contrast to z−4 for the perfectly conducting
mirror in the retarded limit. The scaling behavior in the
nonretarded limit is z−3 for both media.

The term z−1 of the total frequency shift, the sum of
the resonant and the nonresonant part, will dominate in the
retarded limit both for the perfectly conducting mirror and
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the perfectly reflecting nonreciprocal mirror. As for the total
frequency shift in the nonretarded limit, there is a dominant
z−3 scaling behavior for both ideal materials.

C. Topological insulator

Reference [46] studies the electromagnetic behavior of
a topological insulator. Permittivity, permeability, and the
magneto-electric cross susceptibilities for this material men-
tioned in Eq. (23) are assigned according to

ε − ξ � μ−1 � ζ → ε, ξ � μ−1 → α

π
θ (r,ω),

μ−1 � ζ → α

π
θ (r,ω), μ−1 → μ−1, (54)

so that Eq. (19) takes the form

D̂ = ε0εÊ + α

π

θ (r,ω)

μ0c
B̂ + P̂N, (55)

Ĥ = −α

π

θ (r,ω)

μ0c
Ê + 1

μ0μ
B̂ − M̂N. (56)

Reflective coefficients rσ,σ ′ mentioned in Eq. (41) for bi-
isotropic media are shown in Ref. [54] and are applied to
the specific case of a topological insulator with time-reversal-
breaking symmetry in Ref. [46] by making use of the relations
in Eq. (54)

rs,s = (μk⊥
1 − k⊥

2 )μ(εk⊥
1 + k⊥

2 ) − k⊥
1 k⊥

2 �2

(μk⊥
1 + k⊥

2 )μ(εk⊥
1 + k⊥

2 ) + k⊥
1 k⊥

2 �2
,

rp,s = 2k⊥
1 k⊥

2 μ�

(μk⊥
1 + k⊥

2 )μ(εk⊥
1 + k⊥

2 ) + k⊥
1 k⊥

2 �2
,

rp,p = (μk⊥
1 + k⊥

2 )μ(εk⊥
1 − k⊥

2 ) + k⊥
1 k⊥

2 �2(
μk⊥

1 + k⊥
2

)
μ

(
εk⊥

1 + k⊥
2

) + k⊥
1 k⊥

2 �2
,

rs,p = 2k⊥
1 k⊥

2 μ�(
μk⊥

1 + k⊥
2

)
μ(εk⊥

1 + k⊥
2 ) + k⊥

1 k⊥
2 �2

. (57)

In these equations, k⊥
1 and k⊥

2 refer to the perpendicular part
of the wave vector in medium 1 and 2 and � is given by

� = α
1

π
(θ2 − θ1), (58)

where α represents the fine-structure constant and θ1 and
θ2 are the axion coupling constants in the two media. The
first medium is assumed to be vacuum (μ1 = ε1 = 1,θ1 = 0)
and only the second medium has specific electromagnetic
properties μ, ε, and θ .

The reflective coefficients (57) reduce to the respective ones
for the perfectly conducting mirror in Sec. IV A by setting
the axion coupling to � = 0 and the other parameters to
μ1 = μ2 = 1 and ε1 = 1. In the limit ε2 → ∞, the reflective
coefficients for a perfect electrical conductor (rp,p = 1, rs,s =
−1, and rs,p = rp,s = 0) are obtained.

The reflective coefficients of the perfectly reflecting non-
reciprocal mirror from Sec. IV B can also be generated from
Eq. (57) with the help of Eq. (54). Medium 1 is treated as
vacuum and in medium 2 the cross susceptibilities ζ and ξ are
treated as scalars and are set equal to each other, ζ = ξ . The
boundary conditions for the perfect electromagnetic conductor

FIG. 5. Atomic decay rates 
(1) for a circularly polarized two-
level atomic dipole in front of a topological insulator with θ = π (45)
(green line) and θ = −π (blue line) and ε = μ = 1 scaled by the free-
space decay rate 
(0). The difference between the decay rate for Bi2Se3

with axion contribution (ε = 16, μ = 1) and the respective decay rate
without axion contribution is depicted for an axion coupling of θ = π

(green dotted line) and θ = −π (blue dotted line).

(PEMC) read [51–53]

n ·
[√

μ0

ε0
D̂ − MB̂

]
= 0,

n ×
[
MÊ +

√
μ0

ε0
Ĥ

]
= 0, (59)

where we have introduced the PEMC parameter M = ξ/μ and
n represents a unit vector perpendicular to the interface. These
conditions imply reflection coefficients

rs,s = 1 − M2

1 + M2
, rp,s = rs,p = −2M

1 + M2
, rp,p = M2 − 1

1 + M2
,

(60)

showing that the perfectly reflecting nonreciprocal mir-
ror (rs,s = rp,p = 0 and rs,p = rp,s = −1) is a PEMC with
parameter M = 1. The general PEMC reflection coefficients
are recovered from Eq. (57) with Eq. (54) in the limit ε,μ, ξ →
∞ while imposing the PEMC condition ξ 2 − εμ = 0.

In Ref. [55], the rate of spontaneous decay for an atom
close to a topological insulator with axion coupling is also
considered. In that work, a linear dipole transition is chosen
which is perpendicular or parallel to the surface. In this case,
the general expression for the decay rate, unlike Eq. (33), is
identical to that for reciprocal material without making use
of the definition of the imaginary part of the Green’s tensor
(3). As a result, the phenomenon is insensitive to the specific
time-reversal-symmetry-breaking properties of the topological
insulator, as explained above.

Due to the small value of the fine-structure constant α and
the small effect on the reflection coefficients (57), we first
study a purely axion medium by setting ε = 1 and μ = 1.
Figure 5 shows the atomic decay rate for θ = π and θ = −π .
Figure 6 depicts the respective resonant part of the frequency
shift. The results for the decay rate and the resonant frequency
shift resemble the respective curves of the perfectly reflecting
nonreciprocal mirror in Figs. 2 and 3, but are scaled by �/2.
This ratio can be easily read off in the retarded and nonretarded
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FIG. 6. Resonant frequency shift δωres for a circularly polarized
two-level atomic dipole in front of a topological insulator (45) with
θ = π (green line) and θ = −π (blue line) and ε = μ = 1 scaled by
the free-space decay rate 
(0). The difference between the resonant
frequency shift for Bi2Se3 with axion contribution (ε = 16, μ =
1) and the respective frequency shift without axion contribution is
depicted for an axion coupling of θ = π (green dotted line) and
θ = −π (blue dotted line).

limits. The reflective coefficients (57) in the retarded limit read

r ret
s,s = (1 − ε) − �2

(1 + n)2 + �2
,

r ret
p,s = −2�

(1 + n)2 + �2
,

r ret
p,p = −(1 − ε) + �2

(1 + n)2 + �2
= −r ret

s,s,

r ret
s,p = −2�

(1 + n)2 + �2
= r ret

p,s, (61)

with the refractive index n = √
ε. The decay rate and resonant

frequency shift with the purely axion contribution in the
retarded limit are given by



(1)ret
10 (ε = 1,θ = π ) = μ0ω̃

2
10d

2

4πh̄z
cos

(
2ω̃10z

c

)
�

2
,

δω
res,ret
10 (ε = 1,θ = π ) = μ0ω̃

2
10d

2

8πh̄z
sin

(
2ω̃10z

c

)
�

2
. (62)

The same procedure is carried out in the nonretarded limit and
the respective reflective coefficients (57) are

rnonret
s,s = −�2

2(ε + 1) + �2
,

rnonret
p,s = −2�

2(ε + 1) + �2
,

rnonret
p,p = 2(ε − 1) + �2

2(ε + 1) + �2
,

rnonret
s,p = −2�

2(ε + 1) + �2
= rnonret

p,s . (63)

The respective decay rate and resonant frequency shift for the
purely axion contribution in the nonretarded limit read



(1)nonret
10 (ε = 1,θ = π ) = −μ0ω̃10d

2c

8πh̄z2

�

2
,

δω
res,nonret
10 (ε = 1,θ = π ) = μ0ω̃10d

2c

16πh̄z2

�

2
. (64)

Next, we look at general material properties similar to Bi2Se3,
where we take ε = 16 and μ = 1 [46]. We compare the case
with axion coupling of θ = π and without axion coupling
θ = 0. Because of the small value of α, the reflective
coefficients rp,s and rs,p do not have a big impact on the
decay rate and the frequency shift. The decay rate and resonant
frequency shift in the retarded limit are calculated by inserting
the reflective coefficients (61) into Eqs. (33) and (40)



(1)ret
10 = μ0ω̃

2
10d

2

4πh̄

[
−1

z
sin

(
2ω̃10z

c

)
r ret

p,p

− 1

z
cos

(
2ω̃10z

c

)
r ret

s,p

]
,

δω
res,ret
10 = μ0ω̃

2
10d

2

8πh̄

[
1

z
cos

(
2ω̃10z

c

)
r ret

p,p

− 1

z
sin

(
2ω̃10z

c

)
r ret

s,p

]
. (65)

The difference in the decay rate and the resonant frequency
shift between the cases with and without axion coupling in the
retarded limit and for � � 1 yields

�

(1)ret
10 ≡ 


(1)ret
10 (θ = π ) − 


(1)ret
10 (θ = 0)

= μ0ω̃
2
10d

2

4πh̄z
cos

(
2ω̃10z

c

)
2�

(1 + n)2
,

�δω
res,ret
10 ≡ δω

res,ret
10 (θ = π ) − δω

res,ret
10 (θ = 0)

= μ0ω̃
2
10d

2

8πh̄z
sin

(
2ω̃10z

c

)
2�

(1 + n)2
. (66)

In the limit of � � 1, the scaling factor for Eq. (66) for ε = 16
with respect to the purely axion material in the retarded limit
(62) is 4/25.

The decay rate and resonant frequency shift in the nonre-
tarded limit are obtained by inserting Eq. (63) into Eqs. (33)
and (40)



(1)nonret
10 = μ0ω̃

2
10d

2

4πh̄

[
c

2ω̃10z2
rnonret

s,p + c2

4ω̃2
10z

3
rnonret

p,p

]
,

δω
res,nonret
10 = μ0ω̃

2
10d

2

8πh̄

[
− c

2ω̃10z2
rnonret

s,p − c2

4ω̃2
10z

3
rnonret

p,p

]
.

(67)

The differential effects of the axion coupling on the decay rate
and the resonant frequency shift for the nonretarded limit are
given by

�

(1)nonret
10 ≡ 


(1)nonret
10 (θ = π ) − 


(1)nonret
10 (θ = 0)

= −μ0ω̃10d
2c

8πh̄z2

�

ε + 1
,
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�δω
res,nonret
10 ≡ δω

res,nonret
10 (θ = π ) − δω

res,nonret
10 (θ = 0)

= μ0ω̃10d
2c

16πh̄z2

�

ε + 1
. (68)

The respective scaling factor of Eq. (68) with respect to
Eq. (64) in the nonretarded limit for ε = 16 is 2/17. The
difference in the atomic decay rate and the resonant frequency
shift between these two cases follows the same form of the
purely axion atomic decay rate and frequency shift and can
be compared with that. The scaling factors are gauged in the
retarded and nonretarded limit (cf. Figs. 5 and 6).

The nonresonant frequency shift (39) for the topological
insulator contains frequency-dependent permeability and per-
mittivity ε(iξ ) and μ(iξ ). Without knowing the exact behavior
of these quantities we can only approximate the nonresonant
frequency shift in the retarded and nonretarded limits. Since
the resonant frequency shift always dominates in the retarded
limit, we restrict ourselves to gauge the nonretarded limit. For
a purely nonreciprocal medium with ε = 1, we obtain

δω
nres,nonret
10 (ε = 1,θ = π ) = d2

16π2ε0h̄z3

�

2
. (69)

The result for a general medium reads

δω
nres,nonret
10 = μ0d

2

8π2h̄

∫ ∞

0
dξ

ξ 2

ξ 2 + ω̃2
10

e− 2ξz

c

×
{
−ξ

z
rnonret

s,p − c

2z2
rnonret

s,p + c2ω̃10

4ξ 2z3
rnonret

p,p

}
.

(70)

Because of the strong effect of ε compared with � the terms
with rnonret

p,p (63) do not have to be considered for the difference
between the topological insulator with and without axion
coupling. Only rnonret

s,p remains and is inserted into Eq. (39).
For ξ → ∞, ε(iξ ) → 1. After performing the ξ integral, we
obtain the final result for the difference of the nonresonant
frequency shift of the topological insulator in the nonretarded
limit,

�δω
nres,nonret
10 ≡ δω

nres,nonret
10 (θ = π ) − δω

nres,nonret
10 (θ = 0)

= d2

16π2ε0h̄z3

�

ε + 1
. (71)

The total frequency shift of the resonant and nonresonant parts
of the topological insulator scales with z−1 in the nonretarded
limit. An experimental distinction from another material is
difficult (cf. Sec. IV B).

In case of an extremely large axion coupling, the reflective
coefficients (57) reduce to the values rs,s = −1 and rp,p = 1.
Both the decay rates, the resonant frequency shift, and the
nonresonant frequency shift approximate the results of the
perfectly conducting mirror; cf. Figs. 2 and 3.

Note that for each of the interacting time-reversal-
symmetry-breaking subsystems, atom and medium, there
are two possible choices regarding their internal sense of
time. For the atom, they correspond to clockwise versus
counterclockwise circular dipole transitions and can be related
to one another via d → d∗. For the medium, the two possible
internal senses of time are related via � → −� or rs,p,

rp,s → −rs,p, − rp,s. We thus have four possible combinations
of t-odd atoms interacting with nonreciprocal media. The
other three possible combinations can be obtained from the
particular choice considered here by changing the internal
arrow of time in atom, medium or both, where each such
change reverses the signs of frequency shift and body-assisted
decay rate.

Due to the internal connection between the frequency shift
and the Casimir–Polder force, one can also switch from an
attractive to a repulsive force between atom and medium.

V. SUMMARY

We have applied macroscopic QED to derive expressions
for the Casimir–Polder frequency shift and spontaneous decay
rate for nonreciprocal media, which violate Lorentz’s reci-
procity principle and therefore break time-reversal symmetry.
Consequently, real and imaginary parts of the Green’s tensor
for nonreciprocal media have to be redefined by using the
adjoint tensor instead of the complex-conjugate one.

Based on the interaction Hamiltonian between the atom,
the field and the nonreciprocal medium, an expression for
the electric field has been obtained in two alternative ways.
First, noise currents can be quantized directly yielding one
set of field operators for the combined electric and magnetic
fields. According to the second approach the noise currents
can be divided into contributions for the polarization and the
magnetization giving rise to cross correlations between electric
and magnetic fields. The result for the electric field has enabled
us to study the internal atomic dynamics. By making use of
the redefined real and imaginary parts of a tensor, we obtain
general expressions for the atomic decay rate and the frequency
shift, which can be split into a resonant and a nonresonant
contribution, representing generalizations for nonreciprocal
media.

As an example, we have investigated the decay rate and
frequency shift for a two-level atom with circularly polarized
dipole moments in order to be able to detect the broken time-
reversal symmetry. First, a perfectly conducting mirror has
been compared with a perfectly reflecting nonreciprocal mirror
yielding different polynomial scaling behavior. Whereas the
nonresonant frequency shift of the perfectly conducting mirror
decays with z−4 in the retarded limit, it scales with z−5 in
case of the perfectly reflecting nonreciprocal mirror. In the
nonretarded limit both scale with z−3. As for the resonant
frequency shift, there is a z−1 behavior for both materials in
the retarded limit and in the nonretarded limit they differ again:
the perfectly conducting mirror scales with z−3, the perfectly
reflecting nonreciprocal mirror with z−2.

Second, we have investigated a time-reversal-symmetry-
broken topological insulator, whose electromagnetic proper-
ties are described by an axion coupling and whose reflective
coefficients depend on the wave vector. Due to the small impact
of the axion part, we have restricted ourselves to a medium of
pure axion behavior by setting ε = 1 and compared this to
the difference quantities between included axion coupling and
without axion coupling for a material similar to Bi2Se3. We
find a qualitatively similar behavior and determine scaling
factors between the two cases in the retarded and nonretarded
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limits. Finally, we can switch the sign of the decay rate
and the frequency shift of the topological insulator both by
reversing the direction of the oscillating dipole moments and
by changing the sign of the axion coupling. This opens the door
for switching between attractive and repulsive Casimir–Polder
forces.
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