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Orthogonality catastrophes in quantum electrodynamics
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The insertion of a small polarizable particle in an arbitrarily large optical cavity significantly alters the
quantum-mechanical state of the electromagnetic field in that the photon ground state of the empty cavity and
that of the cavity with the particle become mutually orthogonal and, thus, cannot be connected adiabatically in the
infinite limit. The photon problem can be mapped exactly onto that of a many-body system of fermions, which
is known to exhibit an orthogonality catastrophe when a finite-range local potential is introduced. We predict
that the motion of polarizable objects inside a cavity as well as their addition and removal from the cavity, will
generate a macroscopic, diverging number of low-energy photons. The significance of these results in regard to
the quantum measurement problem and the dynamical Casimir effect are also discussed.
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I. INTRODUCTION

Quantum systems with an infinite number of degrees of
freedom differ substantially from those with a finite number of
variables in that they can be described alternatively by mutually
orthogonal and, thus, inequivalent Hilbert spaces [1]. This
well-known feature of quantum field theory is exemplified by
the unitarily inequivalent representations resulting from the
application of Bogoliubov-type transformations, which are
central to many problems involving spontaneous symmetry
breaking and, in particular, to the Higgs and BCS mechanisms
for mass generation and superconductivity. Somehow less
known outside condensed matter theory is that a weak local
potential can have a similar effect on a many-body system, as
the overlap between the unperturbed and the ground state in
the presence of the potential can vanish in the thermodynamic
limit. This orthogonality catastrophe [2], broadly related to an
infrared divergence, has been extensively studied for fermions
(electrons) as it plays a crucial role in the understanding of the
x-ray edge singularity in metals [3,4] and the Kondo problem
[5]. Here we show that a closely related catastrophe can occur
for photons in a cavity. Our approach distinguishes itself
in many respects from the few, previously proposed boson
(phonon) models exhibiting infrared divergences [6–8], all of
which rely on chemical-bond displacements and depend quite
sensitively on their long-wavelength behavior to produce the
catastrophe.

II. CAVITY MODES AND FIELD QUANTIZATION

Consider an arbitrarily shaped cavity of volume V , partially
filled with inclusions, which occupy a small volume v � V

and are made of one or more substances, all assumed to be
isotropic, nonmagnetic, and lossless, so that the permeability
is μ = 1 everywhere, whereas the permittivity ε depends both
on frequency ω and position r and, for simplicity, is assumed to
be real. Classically, the energy associated with a single mode
of the cavity is [9]

〈Hω〉 = 1

16π

∫
V

{
d[ωε(r,ω)]

dω
E2

ω(r) + B2
ω(r)

}
d3r, (1)

where ω is the mode frequency, Eω and Bω are the electric
and magnetic fields, and 〈· · · 〉 denotes time average (we recall

that, for ε �= 1, these fields are the macroscopic quantities
which appear in Maxwell’s equations for continuous media,
and that one must consider an infinitesimally narrow range of
frequencies about ω to derive this expression [9]). The fields
are assumed to have a time dependence of the form exp(−iωt),
which is hereafter omitted. Let � and Aω be, respectively,
the scalar and vector potentials; Bω = ∇ × Aω. Choosing
the generalized Coulomb gauge where � = 0, we get Eω =
−iωc−1Aω so that ε(r,ω)ω2c−2Aω(r) − ∇ × [∇ × Aω(r)] =
0. After integration by parts, Eq. (1) becomes

〈Hω〉 = ω2

16πc2

∫
V

[
d(ωε)

dω
+ ε

]
A2

ω(r)d3r. (2)

The gauge is fixed by imposing the transversality condition
∇ · [ε(r)Aω] = 0.

The first step in the quantization of the theory is the search
for a classical Lagrangian that is consistent with both the
Hamiltonian, Eq. (1), and Maxwell’s equation for Aω [10–20],
a problem that is rather involved for a medium that is both
dispersive and inhomogeneous [13–20]. Instead of pursuing a
step-by-step path, we follow the heuristic, shortcut approach
described in [15] and write Aω(r) = CωQωgω(r) where

Cω =
√

8πc2

/ ∫
V

[
d(ωε)

dω
+ ε

]
gω · g∗

ωd3r. (3)

This gives 〈Hω〉 = ω2Q2
ω/2, which has the form of

the average energy of a harmonic oscillator whose coor-
dinate is Qω [15]. Using the rigorous result (valid for
the empty cavity as well as for homogeneous or inho-
mogeneous dielectric media) that the Lagrangian involving
fields reduces to that of a set of independent classical
oscillators [13–20], it follows that Qω and the canonical
oscillator coordinate must be one and the same. Consid-
ering all the modes, the classical Hamiltonian is therefore
H = ∑

s (P †
s Ps + ω2

s Q
†
sQs)/2, where s = 1, 2, . . . , ∞ is

the mode index (ω1 < ω2 < · · · ) and Ps is the momentum
conjugate to Qs . The modal solutions satisfy the orthogonal-
ity condition

∫
V

[ω2
s ε(r,ωs) − ω2

t ε(r,ωt )]gωs
(r) · g∗

ωt
(r)d3r =

0 (s �= p) [14,18] and can be normalized to give Cω ≡
2π1/2c for all eigenfrequencies (since v � V , the required
normalization condition is approximately

∫
V

gω · g∗
ωd3r = 1).
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Thus the classical field is

AQ(r,t) = 2π1/2c
∑

s

Qsgωs
(r)e−iωs . (4)

The analogous expression for the empty cavity is

AU (r,t) = 2π1/2c
∑

s

Usf�s
(r)e−i�s , (5)

where f�s
, Us , and �s denote, respectively, the vector field,

coordinate, and eigenfrequency of a particular mode, with∫
V

f�s
(r) · f∗

�p
(r)d3r = δsp. We recall that the set {f�} is

complete; that is, an arbitrary field inside the cavity can be
expressed as a sum over all the modes.

To quantize the model, we replace Qω and U� with the
corresponding quantum operators in the Schrödinger picture,
or with i

√
h̄/2ω(aω − a†

ω) and i
√

h̄/2�(a� − a
†
�), where

a†
ω (a†

�) and aω (a�) are the dressed (bare) photon creation and
annihilation operators. The associated canonically conjugated
operators are given by the well-known expressions −ih̄∂/∂Qω

and −ih̄∂/∂U�. Using (4) and (5), and assuming that the set
{gω} is also complete [20,21], we obtain the following, linear
relationships involving the two coordinate sets:

Us =
∑

p

DspQp, Qp =
∑

s

D−1
ps Us, (6)

where

Dsp =
∫

V

f∗
s (r) · gp(r)d3r. (7)

Note that, for dispersionless media,
∫
V

ε(r)gωs
(r) ·

g∗
ωp

(r)d3r = δsp [10] and, thus, D−1
ps = ∫

V
ε(r)fs(r) · g∗

p(r)d3r.
It is apparent that the completeness of the set {gω} is tantamount
to the existence of the inverse matrix |Dps |−1.

III. GROUND-STATE OVERLAP

We now have all the ingredients to calculate the overlap
between the two ground states: |0�〉 (empty cavity) and |0ω〉
(with inclusions). To that end, we use the familiar ground-state
wave function of a harmonic oscillator to calculate the partial
overlap,

S(N ) =
∫ +∞
−∞ e− 1

2

∑N
i=1(�iU

2
i +ωiQ

2
i )dQ1 · · · dQN{∫ +∞

−∞ e− ∑N
i=1 �iU

2
i dQ1 · · · dQN

}1/2{∫ +∞
−∞ e− ∑N

i=1 ωiQ
2
i dQ1 · · · dQN

}1/2 , (8)

defined as the overlap between states corresponding to the
first N cavity modes. Clearly, 〈0� | 0ω〉 = S(N → ∞). Intro-
ducing the symmetric matrix Csp = ∑

j=1,N �jDjsDjp, and
using the Jacobian (= detN |Dsp|) for the change of variables,
we finally obtain

S(N ) = 2(N+1)

(
N∏

i=1

�
1/4
i ω

1/4
i

)√
detN |Dsp|

detN |ωsδsp + Csp| , (9)

where detN |Dsp| comprises overlaps associated with the
first N modes, that is, s, p = 1, . . . , N in Eq. (7). Some
reflection shows that detN |Dsp| can be interpreted in terms
of the many-body overlap between two Slater determinants
representing the unperturbed and locally perturbed ground
states of a system of N free electrons, which is known to
be of order N−η (η > 0) in the thermodynamic limit [2].
Central to our contention that perturbations due to small
polarizable particles can lead to orthogonality catastrophes,
this mode-to-wave-function mapping of overlaps defines the
close relationship that exists between the electron and photon
problems, notwithstanding obvious differences in regard to
boundary conditions, the vector vs scalar and the bosonic vs
fermionic nature of the states [22].

IV. SPHERICAL CAVITY AND NUMERICAL RESULTS

In the following, we apply the general theory to a cavity
delimited by a perfectly conducting spherical shell of radius
R, which contains a concentric sphere of radius a � R, whose
permittivity is εS(ω). Solutions divide into transverse-electric

(TE) and transverse-magnetic (TM) modes and can be found
exactly [23]. In particular, glm = Xlm(θ,ϕ)gl(r) with Xlm =
−i(r × ∇)Ylm/

√
l(l + 1) for TE modes (Ylm are spherical

harmonics). Using the requirement that the electric field vanish
at r = R, and the continuity of the electric field and the
tangential component of the magnetic field at r = a, we obtain
the un-normalized TE solutions,

gl(r) =
{

jl(nSkr) r < a

jl(nSβ) jl (kr)yl (kR)−yl (kr)jl (kR)
jl (β)yl (kR)−yl (β)jl (kR) r � a

, (10)

and the equation giving the resonant wave vectors

jl(nSβ)

[nSβjl(nSβ)]′
= jl(β)yl(kR) − yl(β)jl(kR)

[βjl(β)]′yl(kR) − [βyl(β)]′jl(kR)
. (11)

Here, k = ω/c (c is the speed of light in vacuum), β = ka,
and nS = √

εS; jl (yl) is the spherical Bessel function of the
first (second) kind of order l. The corresponding expressions
for TM modes are easily derived [23]. For the empty cavity, the
un-normalized TE solutions are simply fl(r) = jl(qr), where
q = �/c, while jl(qR) = 0 gives the eigenfrequencies.

Because of the symmetry of the problem, the single-
function overlaps entering Dsp, Eq. (7), vanish unless the two
states share the same l and m. Hence Dsp divides into separate
blocks identified by specific values of these quantum numbers.
Within a block, overlaps can be straightforwardly obtained
using the asymptotic form of the spherical Bessel functions
fl ≈ sin(qr − lπ/2)/qr and gl(r) ≈ sin[k(r − R)]/kr , valid
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for qr 
 l. In particular, for odd values of l,

〈k|q〉 = 2k(cos qR − cos kR)

(k2 − q2)R
√(

1 − sin 2kR
2kR

)(
1 + sin 2qR

2qR

) . (12)

Central-cell corrections accounting for the differences
between the exact and the asymptotic form overlaps are not
important in the limit R → ∞. Finally, we recall that the
eigenvalues for the two problems are related through kt =
qt + δl/R, where δl(qt ) is the scattering phase shift, which can
be gained without difficulty from the Mie coefficients buried
in Eq. (10) [24].

The above discussion has not yet revealed the anticipated
orthogonality catastrophe, except for a brief comment on
the relationship between detN |Dsp| and overlaps of electron
Slater determinants. To do so, we examine the problem
of a sphere made of a metal that obeys Drude’s formula
εS(ω) = 1 − ω2

P/ω
2 = 1 − k2

P/k
2, where ωP (= ckP) is the

plasma frequency [25]. For simplicity, we consider from
now on only l = 1 TE states for which the resonant wave
vectors of the empty cavity obey tan(qR) = qR. The results
in Fig. 1 reveal the orthogonality catastrophe. The contour plot,
Fig. 1(a), shows calculated values of detN |Dsp| at kP = 5/a

as a function of N and R, while Fig. 1(b) both reproduces the
contour data and shows S2(N,R) along the line Na/R = 1.88
where the determinant is smallest for fixed N or R (data at a set
value of N/R ignores contributions from modes of frequency
� πcN/R). The calculations were performed using Eq. (12)
for the single-mode overlaps and the exact resonant wave
vectors of the empty cavity. The l = 1 phase shift, gained
from Eq. (10) and well-known expressions from scattering
theory [24], was used to obtain the corresponding wave vectors
for the cavity containing the Drude sphere; see below. The
linear fit to the determinant data in Fig. 1(b) translates into
detN |Dsp| ∝ N−0.39. S2 decreases with N with roughly the
same exponent.

The calculated l = 1 TE phase shift, δ1, is shown in Fig. 2.
The main peak occurs slightly above kP whereas the other
features are due to Fabry-Perot-like resonances at integer
multiples of π/a. We find that δ1 ∝ 1/k for k → ∞ [26]
while, as expected, δ1 ∝ k2 for k → 0. Note that a Drude metal
behaves as a perfect mirror for k < kP where the refractive
index is purely imaginary. The value of Na/R in Fig. 1(b)
corresponds to the wave vector k ≈ 1.18kP at which the phase
shift is a maximum. It should be noted that the peak height in
Fig. 2 increases with increasing kP and that it can attain values
larger than π .

The results of Fig. 1 as well as calculations for many
other values of the parameters indicate that the determinant
of |Dsp| controls the behavior of S at large N and that, at a
given value of Na/R, detN |Dsp| ∼ N−η (η > 0). Moreover,
the dependence of the exponent η on Na/R closely follows
that of the phase shift on the wave vector k = Nπ/R. Note,
in particular, the strong asymmetry with respect to the line
Na/R = 1.88 in Fig. 1(a), which faithfully reproduces the
asymmetry of the phase shift with respect to the peak at
k ≈ 1.18kP; see Fig. 2. Since δ1(k) �= 0, except at k = 0 and
k = ∞, this means that, other than for N ≡ constant and
R ≡ constant, the states become orthogonal in the infinite
limit for arbitrary values of Na/R.
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FIG. 1. Drude sphere of radius a inside a cavity of radius R. Data
for l = 1 TE modes at kPa = 5. (a) Contour plot of detN |Dsp| as a
function of R/a and the number of modes N . (b) N dependence
of detN |Dsp| and square of the partial ground-state overlap for
Na/R = 1.88.

V. DISCUSSION AND SUMMARY

The behavior of the electromagnetic field vis-à-vis the
insertion of a polarizable particle, especially the power-law
decrease of the overlap with N and the dependence of the
exponent on the phase shift at Na/R, strongly resembles
that of a system of electrons perturbed by a local potential
[2,4]. More precisely, the photon problem for the first N

modes of a cavity of radius R relates to that of a system
of N free electrons with Fermi wave vector kF = Nπ/R. This
mapping of overlaps, alluded to earlier, is a key result which
allows us to make predictions for the electromagnetic field
based on what is already known from electron studies. In
particular, the fact that the exponent η depends only on the
scattering phase shift strongly suggests that the catastrophe
is a general phenomenon, not limited to Drude-type spherical
inclusions. Also, since an exceedingly small phase shift leads
to orthogonality, the ground states with and without inclusions
cannot be adiabatically connected in the infinite limit because
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FIG. 2. Wave-vector dependence of the l = 1 phase shift for TE

modes, δ1 (units of π ) for a Drude sphere; kP = 5/a is the plasma
wave vector.

their overlap changes abruptly from one to zero, regardless
of how close the inclusion’s permittivity is to the vacuum’s
value. We further recall that the Fermi ground state of the
perturbed system is not only orthogonal to the unperturbed
ground state, but to all states containing a finite number of
electron-hole excitations [2]. Since the total energy change is
finite when a local potential is added, it follows that its insertion
must be accompanied by a divergence in the number of
excitations as their energy approaches zero. This is the infrared
divergence mentioned in the Introduction which, by analogy,
should reveal itself in the creation of a macroscopic number of
low-frequency photons when a polarizable particle is inserted
in or removed from a cavity. Another important aspect of
the catastrophe is that it also applies to the overlap between
states corresponding to different positions of the local potential
[27]. In photon terms, this means that the displacement of a
polarizable particle inside a large cavity must also result in

the creation of a diverging number of low-frequency photons.
This prediction, which bears on the dynamical Casimir effect,
that is, the generation of photons from vacuum due to
the motion of uncharged boundaries [28–30], can be tested
experimentally.

Finally, we comment briefly on the possible relevance
of these results to the quantum measurement problem. In
[31], we argue that there are only two types of measuring
devices involving (i) phase transformations (e.g., the bubble
chamber) or (ii) macroscopic transfers of charge (e.g., the
Geiger counter). It is apparent that, by locally changing the
permittivity or the boundary conditions on the electric field,
a single measurement with either class of devices perturbs
the electromagnetic modes (of the universe!) as much as the
insertion of a polarizable particle perturbs a cavity. Hence,
the effect of a measurement on the photon Hilbert space is
that of a transformation leading to a unitarily inequivalent
representation. One could then argue, as done in [31], that
coherent superpositions of the Schrödinger’s cat type cannot
be allowed, since they violate the uniqueness of the space on
which the Hamiltonian operates. Within this context, and given
that the infinite limit extends beyond the range of frequencies
where electrodynamics of continuous media applies, it would
be of interest to widen our studies to x-ray and gamma-ray
frequencies.

To summarize, we presented arguments and numerical
calculations uncovering catastrophic effects caused by the in-
sertion of a small polarizable object in a large electromagnetic
cavity, thereby revealing the existence of a mapping from the
photon problem to that of a many-body system of electrons
perturbed by a local potential. Using this relationship, we made
the prediction that the insertion, removal, or displacement of
a polarizable particle must be accompanied by the production
of photons with a diverging distribution at low frequencies.
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