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We show that the Josephson plasma frequency for a condensate in a double-well potential, whose dynamics
is described by the Gross-Pitaevskii (GP) equation, can be obtained with great precision by means of the usual
Bogoliubov approach, whereas the two-mode model—commonly constructed by means of a linear combination
of the low-lying states of the GP equation—generally provides accurate results only for weak interactions. A
proper two-mode model in terms of the Bogoliubov functions is also discussed, revealing that in general a
two-mode approach is formally justified only for not too large interactions, even in the limit of very small
amplitude oscillations. Here we consider specifically the case of a one-dimensional system, but the results are
expected to be valid in arbitrary dimensions.
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I. INTRODUCTION

The Josephson effect [1] is a clear manifestation of the
macroscopic quantum coherence existing between two weakly
coupled superfluids or superconductors. Since its discovery, it
has been investigated in a wide variety of physical systems
including superconductors [2], superfluid helium [3–6] and
more recently trapped cold atoms [7,8] and exciton-polaritons
in microcavities [9]. Besides offering a wealth of accessible
experimental parameters, such as interactions and particle
statistics, ultracold quantum gases can be easily manipulated
by means of magnetic and optical potentials. In such systems,
a single Josephson junction can be implemented starting from
an atomic Bose Einstein condensate (BEC) confined in a
double-well potential, as originally proposed in Ref. [10]. Over
the years, many authors have investigated this paradigmatic
model, addressing the nontrivial effect of interactions both
from the theoretical [11–23] and experimental side [7,8,24–
27], also extending its study to fermionic superfluid atomic
samples [28–31]. In addition, also the effects of thermally
induced phase fluctuations [32] and of dissipation have been
investigated [33].

Within the formalism of the Gross-Pitaevskii (GP) equation
for BECs, Josephson plasma oscillations are typically de-
scribed by means of a two-mode model [13,34], where the two
modes ψL,R are usually taken either as the interacting ground
state of the isolated traps corresponding to the left and right
wells with N/2 particles [13,14,16], or as a linear combination
of the lowest and first-excited solutions of the GP equation for
the whole system [15,19,22,34–38]. Though these approaches
may be good approximations in some cases, in general they are
not rigorous, as the first implies an ideal decoupling of the two
wells (that are instead linked), and the second implicitly makes
use of the superposition principle, that in general is not valid in
the presence of nonlinearity. In particular, since the Josephson
plasma frequency ωJ is defined in the limit of small amplitude
oscillations, it is not justified to construct the left and right
modes ψL,R by making use of the first-excited solutions of the
GP equation with order N particles, as only a small fraction of

the total number of particles is expected to populate the excited
state in that limit. In other words, each mode function (and
hence the eigenfrequencies) of the GP equation depends on the
number of particles in that mode and so a barely excited mode
is a different object from a fully excited state. Then, in general
one may expect the usual two-mode model to provide accurate
predictions for ωJ when the interaction energy does not exceed
the kinetic energy (Rabi regime [39]), but not necessarily in
the opposite limit, namely in the proper Josephson regime.
Indeed, the fact that the two-mode model can be inaccurate in
reproducing the correct value of ωJ has already been pointed
out by some authors [19,23,31,40].

In the present paper, motivated by the recent experiment
[31] that has explored the Josephson plasma oscillations
for molecular BECs with large interactions, we present a
systematic analysis of the solutions of the GP equation
by means of a two-mode Bogoliubov approach, finding an
excellent agreement for any value of the interactions. This
approach is justified by the fact that the Bogoliubov theory
correctly describes the GP dynamics in the case of small
oscillations around the ground-state solution [41]. In fact,
the relevance of the Bogoliubov theory in describing the
physics of the Josephson effect has been already discussed
by a number of authors [36,40,42,43]. In particular, in [43]
the Bogoliubov approach was used to calculate the Josephson
current between two weakly interacting BECs that are spatially
separated by a tunnel barrier. In [42] the authors demonstrated
that the quanta of the two-mode Josephson Hamiltonian H =
−EJ /N (a†b + ab†) + Ec/4[(a†a)2 + (b†b)2] are in fact the
Bogoliubov excitations of the same Hamiltonian. In Ref. [36]
it was considered a weakly interacting BEC in a box-shaped
double-well potential, and it was showed, by varying the
barrier height, that the crossover from the dipole mode to the
Josephson plasma mode occurs in the lowest-energy excitation
of the Bogoliubov spectrum. In that paper the Bogoliubov
frequency for the first-excited mode was found to be in
agreement with that calculated with the usual prescription in
terms of a linear combination of the lowest- and first-excited
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solutions of the Gross-Pitaevskii equation [15,19,34–38]. In
[40], a different approach—based on an approximation of the
Bogoliubov theory—was proposed: the ψL,R are constructed
from a linear combination of the ground-state solution ψ0, and
the first-excited state ψ1 of the GP equation with the mean-field
term generated by ψ0. The effects of higher modes have also
been considered [22,44].

Our work presents a systematic comparison of the results
directly obtained by solving the GP equation with the ones
obtained by using the Bogoliubov approach or a standard
two-mode model. This analysis reveals that the usual approach
for constructing the two-mode basis functions [15,19,34–
38] rapidly becomes inaccurate [23] as the interactions are
increased. Moreover, we show that a proper two-mode model
for describing the Josephson plasma oscillations, constructed
by means of the Bogoliubov approach, reveals that in general
the two-mode approach is formally justified only for weak
interactions, and that by increasing interactions it eventually
breaks down, even in the limit of very small amplitude
oscillations. Here we consider specifically the case of a
one-dimensional system, but the results are expected to be
valid in arbitrary dimensions.

The outline of the paper is the following: in Sec. II we
introduce the GP model we shall use throughout this work,
along with the usual two-mode model considered in the
literature (Sec. II A) and the standard Bogoliubov formalism
(Sec. II B) for describing the dynamics of excitations in the
linear regime. Consistently with the two-mode picture, only
the ground-state and the first-excited Bogoliubov modes are
considered here. Then, in Sec. III we present a systematic
comparison between the numerical solution of the GP equation
and the two approaches just mentioned above. In particular,
we show that the oscillation frequency obtained from the
Bogoliubov approach perfectly matches the GP result, whereas
the two-mode model generally fails in reproducing the correct
results. Also, in Sec. II A we discuss whether the Bogoliubov
theory gives grounds for the formulation of the problem in
terms of a two-mode model with left and right modes, finding
that it cannot be formally justified for arbitrary interactions.
Finally, conclusions are drawn in Sec. V.

II. MODEL

Let us consider a (quasi-)one-dimensional condensate of
N particles with mass m confined in a double-well potential
Vdw(x),

Vdw(x) ≡ 1
2mω2

xx
2 + V0e

−2x2/w2
(1)

[w <
√

4V0/(mω2)], whose dynamics is described by the
following Gross-Pitaevskii equation:

ih̄∂tψ(x,t) = [Ĥ0 + u0|ψ(x,t)|2]ψ(x,t), (2)

with

Ĥ0 = − h̄2

2M
∇2

x + Vdw(x) (3)

and u0 = gN , g being the one-dimensional interaction
strength, and the condensate wave function being normalized
to unity,

∫
dx|ψ(x)|2 = 1.

The above equation can be conveniently written in dimen-
sionless form, for example by expressing all the quantities in
oscillator units (e.g., energies in units of h̄ωx ; lengths in units
of ax = √

h̄/mωx)

i∂t̃ ψ̃ = [− 1
2∇2

x̃ + 1
2 x̃2 + Ṽ0e

−2x̃2/w̃2 + ũ0|ψ̃ |2]ψ̃, (4)

where ψ̃ = √
axψ , ũ0 = u0/(axh̄ωx), t̃ = ωxt , and ∇2

x̃ = ∂2
x̃ .

For simplicity, in the following the tilde will be omitted.

A. Two-mode model

The two-mode approximation—that here we review for
the sake of clarity, and for fixing the notations—consists in
assuming that the condensate wave function can be written as

ψ(x,t) = cL(t)ψL(x) + cR(t)ψR(x), (5)

where the functions ψL,R are localized in the left and right well,
have unit norm, and are orthogonal (〈ψL|ψR〉 = 0). Then the
GP equation (4) can be transformed into a set of equations for
the two coefficients cα(t) (α = L,R). By inserting (5) in (4),
left multiplying by ψL, integrating over space, and retaining
all possible terms [19], one gets

ih̄ċL(t) = cL(t)(E0L + |cL(t)|2ULLLL) − cR(t)KLR

+ 2cL(t)Re[c∗
R(t)cL(t)]ULLRL

+ cL(t)|cR(t)|2ULRRL + cR(t)|cL(t)|2ULLLR

+ 2cR(t)Re[c∗
R(t)cL(t)]ULLRR

+ cR(t)|cR(t)|2ULRRR, (6)

where we have defined

E0α ≡ 〈ψα|Ĥ0|ψα〉 =
∫

dx ψα(x)Ĥ0ψα(x), (7)

Kαβ ≡ −〈ψα|Ĥ0|ψβ〉 = −
∫

dx ψα(x)Ĥ0ψβ(x), (8)

Uαmnβ ≡ u0

∫
dx ψα(x)ψm(x)ψn(x)ψβ(x). (9)

Similarly, the equation for cR is obtained by exchanging L

with R in the former expression. Then, by defining

cα(t) =
√

Nα(t)eiφα (t) (10)

and

φ ≡ φL − φR, (11)

z ≡ NL − NR, (12)

with NL + NR = 1 [45], one eventually gets

h̄ż = 2(K − Uαααβ )
√

1 − z2 sin φ − (1 − z2)Uααββ sin 2φ,

h̄φ̇ = −(Uαααα − 2Uααββ )z − 2(K − Uαααβ )
z√

1 − z2
cos φ

+ zUααββ cos 2φ.

In the limit of small oscillations, z � 1, φ � 1, the above
equations reduce to

h̄ż 	 2(K − Uαααβ − Uααββ)φ,
(13)

h̄φ̇ 	 −(Uαααα − 3Uααββ + 2K − 2Uαααβ )z,
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corresponding to harmonic oscillations of the population imbalance z with frequency

ωfTM
J = 1

h̄

√
2(K − Uαααβ − Uααββ )(Uαααα + 2K − 2Uαααβ − 3Uααββ ). (14)

In the following, this approach will be referred to as the
full two-mode (fTM) model. Instead, the usual two-mode
approximation which neglects the terms Uαααβ and Uααββ

consists in taking

ωTM
J = 1

h̄

√
2K(2K + Uαααα), (15)

which, for small values of 2K, gives ωTM
J = √

2KUαααα/h̄,
and corresponds to the usual formula ωJ = √

EcEJ /h̄ [34],
with EJ = KN , and Ec = 2Uαααα/N . Instead, for vanishing
interactions (Uαααα = 0), Eq. (15) gives ωnoint

J = 2K/h̄, cor-
responding to the energy difference between the first-excited
state and the ground state of the linear Schrödinger equation.

With these notations, the Rabi regime is characterized
by 2Uαααα/K � 1, whereas the Josephson regime holds in
the opposite case, 2Uαααα/K 
 1 [46]. We notice that in
general one can define an additional Fock regime dominated
by quantum fluctuations, for 2Uαααα/K 
 N2 [39], that is
obviously beyond the scope of any mean-field theory, as it is
the present case.

B. Bogoliubov approach

Instead of the ansatz (5), in the limit of small oscillations
(linear regime) one can simply use the standard Bogoliubov
approach, namely (μ is the condensate chemical potential)

ψ(x,t) = e−iμt/h̄[ψ0(x) + δψ(x,t)] (16)

that, by defining

L̂ ≡ Ĥ0 + 2gψ2
0 − μ, (17)

corresponds to the following set of equations for the fluctua-
tions δψ :

ih̄∂t

(
δψ

δψ∗

)
=

(
L̂ gψ2

0

−gψ2
0 −L̂

)(
δψ

δψ∗

)
≡ L̂B

(
δψ

δψ∗

)
. (18)

Then, by expanding the column vector (δψ,δψ∗) in terms of
eigenmodes of L̂B (Bogoliubov modes) as(

δψ(x,t)

δψ∗(x,t)

)
=

∑
k

ck(t)

(
uk(x)

vk(x)

)
+ c∗

k (t)

(
v∗

k (x)

u∗
k(x)

)
, (19)

with

L̂B

(
uk(x)

vk(x)

)
= εk

(
uk(x)

vk(x)

)
, (20)

one gets

ih̄ċk(t) = εkck(t) . (21)

Consistent with the hypothesis (5), let’s now assume that
only the lowest Bogoliubov mode, with energy ε = h̄ωB , is
actually populated

δψ(x,t) = c(t)u(x) + c∗(t)v∗(x), (22)

with

c(t) = c0e
−iωB t (23)

and

c0 =
∫

dx 
0(x)[u∗(x) − v∗(x)] (24)

in the representation where the u and v functions are orthog-
onal to ψ0 [47–49], and 
0(x) being the initial wave function
(that we assume to be real). We recall that u and v obey the
standard normalization condition

∫
dx[|u(x)|2 − |v(x)|2] = 1

[41]. We also assume |c(t)|2 = |c0|2 � 1, corresponding to the
fact that in the limit of small oscillations, only a small fraction
of the total particles occupy the excited state. Then, we can
write

ψ(x,t) = ψ0(x) + c0[u(x)e−iωB t + v(x)e+iωB t ], (25)

where, for symmetry reasons, both functions u(x) and v(x) are
antisymmetric (see later on), and can be chosen real, without
loss of generality. The total density of particles is therefore

n(x,t) = |ψ0(x) + δψ(x,t)|2
	 |ψ0(x)|2 + 2c0 cos(ωBt)ψ0(x)[u(x) + v(x)], (26)

where we have discarded terms of order c2
0. The expression

for n(x) is a linear combination of a symmetric and an
antisymmetric term (respectively the first and the second term),
describing an oscillation of the particle occupation of the left
and right well, with frequency ωB . In fact, by integrating the
former expression over the positive or negative x semiaxis,
and taking into account the symmetries of the problem we can
write

NL,R(t) = A ± B cos(ωBt), (27)

where

A =
∫ +∞

0
dx|ψ0(x)|2,

(28)

B = 2c0

∫ +∞

0
dx ψ0(x)[u(x) + v(x)],

so the population imbalance, defined as z = (NL −
NR)/(NL + NR) [see Eq. (12)], oscillates as

z(t) = 2B cos(ωBt). (29)

We remark that these results follow rather straightforwardly
from the Bogoliubov expansion and the symmetries of
the system. In the following section we shall see that the
Bogoliubov approach indeed describes very accurately the
Josephson plasma oscillations in the linear regime (small
amplitude oscillations).

III. NUMERICAL RESULTS

In this section we compare the predictions of Eqs. (14)
and (15) with the numerical solution of the Gross-Pitaevskii
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equation in Eq. (4), and the Bogoliubov frequency ωB , by
varying the interaction parameter u0. In particular, here we
construct the two modes ψL,R(x) from the ground state
ψ0(x) (symmetric) and the first-excited solution ψ1(x) (an-
tisymmetric) of the stationary GP equation obtained from
Eq. (4) by posing ψ(x,t) ≡ ψ(x) exp(−iμt) (we omit the
tildas) [50]. Namely, we take the following linear combina-
tion, ψL/R ≡ (ψ0 ± ψ1)/

√
2 [34], corresponding to the most

common approach in the literature [15,19,22,34–38]. For
illustration purposes, here we choose w = 0.3 and V0 = 50
(unless otherwise stated), that correspond to a double-well
configuration, within reach of current experiments (see, e.g.,
Ref. [31]). Nevertheless, we remark that the general results of
the following analysis are independent of these specific values.
As for the interaction strength u0, that is the only free parameter
left [see Eq. (4)], we vary it in the range [1,400] in order to
cover a wide spectrum of the Josephson regime (see later
on). This choice corresponds to an intermediate interacting
regime, where the applicability of the GP theory is well
justified [51]. For example, for a typical case of an elongated
condensate of 104 87Rb atoms with trapping frequency fr =
100 Hz (radial), fz = 10 Hz (axial) (where the use of an
effective one-dimensional approach can be appropriate and
the mean-field GP equation has been tested in a wide range of
experiments), the value of the reduced 1D coupling constant
is u0 = g3D/(3πa2

r ) = 3 × 102, ar = √
h̄/(m2πfr ) being the

radial oscillator length (u0 = 3 × 103 for fr = 1 kHz). The
same considerations apply also in the presence of a barrier, as
Josephson oscillations are essentially long-wavelength “clas-
sical” excitations that can be well described by the GP theory,
even in the Thomas-Fermi regime (see, e.g., Refs. [11,14,31]).

We prepare the initial state as the ground state ψ0(x) of
the double-well potential (see above), and we compute the
corresponding Bogoliubov spectrum, for different values of
the interaction constant u0 [52]. Then, at time t = 0, we
trigger the dynamics by suddenly displacing the potential by
a (small) fixed distance δx = 0.002, in order to guarantee that
the system remains in the linear regime (harmonic oscillations)
in the whole range of interactions considered here. This
corresponds to an initial population imbalance z0 of the order
of 0.1%. In Fig. 1 we show the first oscillations of the
population imbalance z(t) obtained by solving the GP equation
in Eq. (4) [53] (points), along with the harmonic oscillation
with frequencies ωfTM

J , ωTM
J , and ωB (for the same initial
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FIG. 1. Oscillations of the population imbalance z(t), for u0 = 16
(μ/V0 = 0.1).
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FIG. 2. Josephson frequency as obtained from the different
approaches discussed in the text [Eqs. (14), (15), and the Bogoliubov
frequency ωB ], compared with the results of the GP equation (points),
as a function of u0, for V0 = 50. The upper x axis shows the
corresponding value of of μ/V0 (that is a monotonic increasing
function of u0).

imbalance), corresponding to the predictions of the various
approaches discussed in the previous section [see Eqs. (14),
(15), and (29), respectively], for u0 = 16 (μ/V0 = 0.1). This
figure shows that the prediction of the Bogoliubov approach
perfectly fits with the GP solution, whereas the usual two-mode
model deviates significantly, regardless of the approximation
used.

In order to provide a comprehensive overview of the
behavior of the system as a function of the interaction, in
Figs. 2 and 3 we plot the Josephson frequency as obtained
from the different approaches discussed in the text, compared
with the results of the GP equation (points), for increasing
interactions. The latter is obtained by fitting the oscillations
of z(t) with a function fz(t) ≡ A cos(ωt), with A and ω as
fitting parameters. In Fig. 2 we keep the barrier intensity fixed
to V0 = 50, and we vary the interaction parameter u0 (that,
in this case, corresponds to 3 × 102 � 2Uαααα/K � 3 × 105,
deeply in the Josephson regime). For convenience, we also
show the values of the ratio μ/V0 (upper x axis), that is a
monotonic increasing function of u0. In this case, the failure
of the two-mode approach for relatively large values of u0
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FIG. 3. Josephson frequency as obtained from the different
approaches discussed in the text, compared with the results of the
GP equation (points), as a function of u0 for fixed μ/V0 = 0.25.

023627-4



JOSEPHSON PLASMA OSCILLATIONS AND THE GROSS- . . . PHYSICAL REVIEW A 95, 023627 (2017)

can be attributed both to the fact that the increase of the
interactions makes the use of the first-excited solution of
the GP equation more and more inaccurate, and also because
the system eventually exits the weak-coupling regime, as the
tunneling increases with μ/V0. Then, in order to focus on the
former mechanism, in Fig. 3 we show the same quantities,
again as a function of u0, but at a fixed ratio μ/V0 = 0.25
(V0 here is varied along with u0, in order to keep the ratio
μ/V0 fixed). In this case the first point in the graph lies
close to the boundary between Rabi and Josephson regimes,
but then the system rapidly enters the Josephson regime
(5 � 2Uαααα/K � 5 × 106).

These figures show that the Bogoliubov frequency perfectly
matches the frequency extracted from the GP equation in all the
range of interactions considered here, whereas the usual two-
mode model is reliable only for small values of u0, reflecting
the fact that a proper treatment of small amplitude oscillations
in an interacting system requires the use of the Bogoliubov
approach, as expected.

IV. TWO-MODE MODEL IN THE MANNER
OF BOGOLIUBOV

In this section we shall discuss whether the Bogoliubov
frequency ωB shown in Figs. 2 and 3 can be related to a
two-mode model with the left and right basis functions defined
by means of the functions entering the Bogoliubov expansion.
We anticipate that this is so only for not too large interactions,
where the shape of the u and v functions still resemble that
of the ground state ψ0. Conversely, as u0 is increased, the
interactions distinctively affect the shape of the u and v

functions in the tail region (see later on), so that the three
functions entering the Bogoliubov expansion in Eqs. (16) and
(22) cannot be rewritten in terms of just two basis functions.

Let us start by recalling that in the noninteracting limit the
v components of the solutions with positive energy (positive
norm [49]) are vanishing, so that the standard decomposition
in terms of the ground state ψ0 and the first-excited state u,

ψL,R(x) = 1√
2

[ψ0(x) ± u(x)], (30)

yields a good basis of functions localized in the left and
right well. Essentially, this decomposition is possible when
the portion of each function to be decomposed has the same
shape of the basis functions ψL,R , modulo a scale factor.
Notice also that in general one has ψL(x) = ψR(−x), owing
to the symmetries of the problem.

When interactions are present, the expression in Eq. (25)
contains three functions—namely ψ0, u, and v—and in general
it is not obvious that such an expression can be projected onto a
basis of left and right functions, as the shape of the three func-
tions may be affected differently by the interactions. In par-
ticular, we shall see that for large interactions, though v(x) 	
−u(x), their shape can be quite different from that of ψ0.

However, we notice that for not too large interaction
the expression in Eq. (30) still yields a good basis of
functions localized in the left and right well, provided that we
change the normalization of the Bogoliubov functions (u,v →
ũ,ṽ) as

∫
dx|ũ(x)|2 = 1 and

∫
dx|ṽ(x)|2 = 1 − 1/Nu = Nṽ

[where we have introduced the following notation: Nf ≡∫
dx|f (x)|2]. This is shown in Fig. 4(a), where we plot the

ground-state wave function ψ0(x), the Bogoliubov functions
ũ(x) and ṽ(x), and the left and right basis functions ψL,R , along
with the double-well potential, for u0 = 16. In this regime,
Eq. (30) should be used along with the following expression
for ṽ,

ṽ(x) = α√
2

[ψL(x) − ψR(x)], (31)

(a)

ψ
0, 

u,
 v

ψ0
u
v

-10 -5 0 5 10

φ L
,φ

R

x

R
L

-10 -5 0 5 10

(b)

ψ
0, 
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 v

ψ0
u
v

-10 -5 0 5 10

φ L
,φ

R

x

R
L

-10 -5 0 5 10

FIG. 4. (Top) Plot of the ground-state wave function ψ0(x), and of the Bogoliubov functions ũ(x) and ṽ(x), for (a) μ/V0 = 0.1 (u0 = 16)
and (b) μ/V0 = 0.5 (u0 = 220). (Bottom) Left and right states obtained from symmetric and antisymmetric combination of ψ0(x) and ũ(x);
see Eq. (30). In both panels, the double-well potential is also shown.
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with α/
√

2 = 〈ṽ|ψL〉 = −〈ṽ|ψR〉 and α2 = Nṽ . Then, from
Eqs. (25), (30), and (31), one gets

ψ(x,t) = ψ0(x) + c̃0[ũ(x)e−iωB t + ṽ(x)e+iωB t ]

= 1√
2
ψL(x)[1 + c̃0(e−iωB t + αe+iωB t )]

+ 1√
2
ψR(x)[1 − c̃0(e−iωB t + αe+iωB t )], (32)

with c̃0 = Nu

∫
dx 
0(x)[ũ∗(x) − ṽ∗(x)] [see Eq. (24)]. Then,

comparing the previous expression with Eq. (10), one has

cL,R(t) = 1√
2

[1 ± c̃0(1 + α) cos(ωBt) ∓ ic̃0(1 − α) sin(ωBt)],

(33)

so that the total number on each side of the barrier, NL,R(t) =
|cL,R(t)|2, is

NL,R(t) 	 1
2 [1 + c̃0(1 − α) sin(ωBt) ± 2c̃0(1 + α) cos(ωBt)],

(34)

where quadratic terms in c̃0 have been discarded, consistent
with the assumption in Eq. (25). The previous expression
implies that the population imbalance oscillates with frequency
ωB , namely

z(t) = 2c̃0(1 + α) cos(ωBt), (35)

that is exactly the Bogoliubov frequency already shown and
compared with the other methods in Figs. 2 and 3 [see also
Eq. (29)]. Similarly, one can compute the phase difference as
[see Eq. (11)]

φ(t) = φL − φR 	 −2c̃0(1 − α) sin(ωBt), (36)

corresponding again to sinusoidal oscillations at the plasma
frequency, with a phase shift of π/2 with respect to z(t), as
expected for a Josephson plasma oscillation.

This approximate picture breaks down for higher values
of the interactions, where one may still have v(x) 	 −u(x),
but the combination in Eq. (30) no longer provides functions
localized in the left and right well. As anticipated, this is due
to the fact that the shape of u and v is quite different from
that of ψ0. An example is shown in Fig. 4(b), obtained for
u0 = 220, where it is evident that the interactions strongly
modify the shape of the u and v functions in the tail region,
with respect to that of the ground state ψ0. Then, if one tries
to construct the functions ψL/R according to Eq. (30), they
would not be localized in one of two wells [see bottom panel

of Fig. 4(b)]. As a matter of fact, this implies that the three
functions entering the Bogoliubov expansion in Eqs. (16) and
(22) cannot be rewritten in terms of just two basis functions.

These results show that not only the standard two-mode
model (in any of its versions) provides inaccurate results in
many regimes, but also that in general a two-mode approach
is formally justified only for not too large interactions.

V. CONCLUSIONS

We have shown that the frequency of the Josephson plasma
oscillations for a condensate in a double well (within the Gross-
Pitaevskii theory) corresponds to the Bogoliubov frequency of
the lowest-excited mode, for arbitrary values of the interac-
tions. This contrasts to the prediction of the usual two-mode
approach—in terms of linear combinations of the low-lying
states of the Gross-Pitaevskii equation—that is reliable only in
the weak link regime, for low values of the interactions. These
results have been found by means of a systematic analysis of
the Gross-Pitaevskii equation and the Bogoliubov equations
as a function of the interactions. They confirm some previous
analyses performed at fixed values of the interaction, by
different authors [23,36,40,42,43]. In addition, we have shown
that the Bogoliubov approach provides a proper formalism for
defining a two-mode model, also revealing that in general the
two-mode approach is justified only for weak interactions, and
that it eventually breaks down by increasing interactions, even
in the limit of very small amplitude oscillations. Though we
have considered specifically the case of a one-dimensional
system, the general results obtained here are expected to be
valid in arbitrary dimensions. Moreover, we expect the analysis
in terms of the Bogoliubov modes to be extremely effective
also in the nonlinear regime [47,48], when the system exits
from the plasma oscillations regime. This will be the subject
of a future work.
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