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Bose-Einstein-condensate polaron in harmonic trap potentials in the weak-coupling regime:
Lee-Low-Pines–type approach
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We have calculated the zero-temperature binding energy of a single impurity atom immersed in a Bose-Einstein
condensate (BEC) of ultracold atoms. The impurity and the condensed atoms are trapped in the respective axially
symmetric harmonic potentials, where the impurity interacts with bosonic atoms in the condensate via low-energy
s-wave scattering. In this case, bosons are excited around the impurity to form a quasiparticle, namely, a BEC
polaron. We have developed a variational method, a la Lee-Low-Pines (LLP), for description of the polaron that
has a conserved angular momentum around the symmetric axis. We find from numerical results that the binding
between the impurity and the excited bosons breaks the degeneracy of the impurity energy with respect to the
total angular momentum of the polaron. The angular momentum is partially shared by the excited bosons in a
manner that is similar to the drag effect on the polaron momentum by a phonon cloud in the LLP theory for the
electron-phonon system.
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I. INTRODUCTION

Polarons originally meant electrons dressed by locally
excited phonons, which comprise one of the elementary
excitations in ionic crystals. These excitations provide a
widely applicable physics concept for quasiparticles in various
environmental media [1–5]. Recently, many-body systems of
trapped ultracold atoms allow us to access the properties
of such quasiparticles in a clean and controlled manner.
Examples include studies on Bose-Einstein-condensate (BEC)
and Fermi polarons that are impurity atoms immersed in
Bose-Einstein-condensed atoms [6–20] and degenerate Fermi
atoms [21–28], respectively, as well as on polarons in optical
lattices [29]. Experimental realizations of BEC polarons were
achieved first in a weak-coupling regime [30–32]. Then, recent
experiments in a strong-coupling regime around the unitary
limit have observed a behavior of the binding energy between
an impurity and excited bosons in the BEC via radio-frequency
(RF) spectroscopy and in situ imaging technology [33,34].
These results show a smooth crossover from a weak mean-field
to a strong molecular regime. In these experiments, a number
of bosonic atoms are optically trapped to form a BEC, while
an impurity atom immersed in the condensate starts to interact
with bosons. Consequently, a polaron, i.e., an impurity accom-
panied by locally excited bosons, is formed. The interaction
between the impurity and bosons is characterized by an s-wave
scattering length for low-energy dynamics, while its sign and
strength can be tuned by the Feshbach resonance from a weak-
to a strong-coupling regime. The RF spectroscopy measures
the energy shift between hyperfine states of the impurity due to
the interaction, which corresponds to the binding (interaction)
energy of the polaron.

These experimental results for the BEC polarons are, as a
whole, in agreement with theoretical predictions, which have
been so far obtained entirely for spatially uniform systems.
However, the real systems are in optical traps, which are well
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described by harmonic oscillator potentials. In the present
study we investigate the properties of a BEC polaron in the case
in which a single impurity atom and Bose-condensed atoms
are put in the respective axially symmetric harmonic potentials
in three dimensions and interact attractively with each other in
a regime where the coupling is weak or even intermediate, but
is still far away from the unitarity. Since the axial component
of the total angular momentum of the system is conserved
in such axially symmetric potentials, we focus on how the
polaron’s binding energy depends on a given total angular
momentum of the impurity and excited bosons. We also figure
out detailed physics, such as a drag effect by excited bosons,
that underlies the mean-field result in the trapped systems,
although the mean-field result is occasionally referred to as a
reference theory at weak coupling.

This paper is organized as follows. In Sec. II we present
the low-energy effective Hamiltonian for a single impurity
atom and bosons in axially symmetric harmonic potentials,
and, by assuming that most of the bosons are in a BEC,
i.e., at the lowest energy level, implement the Bogoliubov
approximation to obtain a Yukawa-type interaction between
the impurity and excited bosons. In Sec. III, for the state of
the immersed impurity specified in terms of the harmonic
oscillator eigenstates, we employ a variational method, a la
Lee-Low-Pines (LLP) [5], to obtain the ground state of a
polaron under fixed total angular momentum around the
symmetric axis. In Sec. IV, we present numerical results for
the properties of polarons in various states by utilizing the
parameter values that are used in experiments. The last section
is devoted to summary and outlooks.

II. EFFECTIVE HAMILTONIAN

We consider a zero-temperature atomic many-body system
of bosons and an impurity that are trapped in axially symmetric
harmonic potentials in three dimensions. First, bosonic atoms
(denoted by a symbol “b”) are condensed in the lowest energy
level, and then a single impurity atom is introduced to interact
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attractively with bosons. Here we assume that the impurity is
a fermion (denoted by a symbol “f ”) for later convenience. A
low-energy effective Hamiltonian for such a system is given by

Heff(r) = H
f

ho(r) +
∫

r′
φ†(r′)

[
Hb

ho(r′) + gδ(3)(r − r′)
]
φ(r′)

(1)

= H
f

ho(r) +
∑

s

Eb
s b

†
sbs + g

∑
s,s ′

φb
s (r)∗φb

s ′ (r)b†sbs ′ ,

(2)

H
b,f

ho (r) = 1

2mb,f

(
p2

z + p2
r + L2

z

r2

)
+ mb,f ω2

bt,f t

2
r2

+ mb,f ω2
b,f

2
z2, (3)

where p2
z ≡ − ∂2

∂z2 , p2
r ≡ − 1

r
∂
∂r

r ∂
∂r

, Lz ≡ −i ∂
∂ϕ

is the angular
momentum operator around the z axis (the axial symmetry
holds around the z axis), r = (r,ϕ,z) is the cylindrical
coordinate of the impurity, ωb(ωf ) and ωbt (ωf t ) are the
frequencies of the harmonic potentials in z and radial r

directions, respectively, for bosons (impurity), and g = 2πabf

mr

is the coupling constant between the boson and the impurity
given in terms of an s-wave scattering length abf , which is
assumed to be negative and short, and the reduced mass mr =
mbmf

mb+mf
with mb (mf ) being the mass of boson (impurity) [35].

We have ignored a possible boson-boson interaction, which
would not bring qualitative changes in the present study as
long as it is repulsive and so weak that the interaction energy is
smaller than the trap frequency. In the case of relatively strong
boson-boson interactions, i.e., N0abb/ā � 1, where N0 is the
number of condensed bosons, abb the boson-boson scattering
length, and ā the averaged harmonic amplitude [35], the con-
densate of trapped bosons is well described by semiclassical
approximations such as the Thomas-Fermi approximation,
while low-energy excitations upon it become collective modes
that still have discrete quantum numbers associated with
symmetries of the system [36,37]. In contrast, the boson sector
in our system with abb = 0 is, for any state, in the quantum
regime. No semiclassical approximation is thus relevant,
which allows us to easily examine how excited bosons with
definite quantum numbers distribute around the impurity, as
will be seen later. As for the relevance to possible experiments,
the present system is not necessarily academic, but vanishing
abb can be realized experimentally, e.g., for rubidium isotopes
85Rb and 87Rb, by using the Feshbach resonance [38,39],
while the boson-impurity scattering length is left finite. It is
also noted that the Bose collapse, not desired in this study, is
prevented by the zero-point energy in trap potentials even for
negative abb as long as it is sufficiently small [40].

We have used the second quantized representation only for
bosons and expanded the boson field operator φ(r) in terms of
the harmonic potential eigenfunctions φb

s (r),

φ(r) =
∑

s

φb
s (r)bs, (4)

where s denotes the quantum number of the eigenstate
whose single-particle energy is given by Eb

s , and bs (b†s )

is the corresponding annihilation (creation) operator. The
explicit representation of a set of the quantum numbers
will be given just below. We employ the abbreviation

∫
r ≡∫∞

−∞ dz
∫∞

0 drr
∫ 2π

0 dϕ and the unit in which h̄ = 1 through-
out the paper.

Bogoliubov-type approximation

Since most of the bosons are in a BEC in the case of weak
coupling and zero temperature, we implement the Bogoliubov-
type approximation for the effective Hamiltonian; i.e., only
interaction processes involving the condensed bosons are taken
into account,

Heff � H = H
f

ho(r) + Eb
0N0 + gN0|φb

0 (r)|2 +
∑
s �=0

Eb
s b

†
sbs

+ g
√

N0

∑
s �=0

[
φb

0 (r)∗φb
s (r)bs + φb

s (r)∗φb
0 (r)b†s

]
,

(5)

where s = 0 denotes the lowest energy level at which the
bosons are condensed, and b0,b

†
0 � √

N0, with N0 being
the number of the condensed bosons. We then express the
Hamiltonian explicitly as

H = 1

2mf

(
p2

z + p2
r + L2

z

r2

)
+ mf ω2

f t

2
r2 + mf ω2

f

2
z2

+Eb
0N0 + gN0

∣∣φb
0,0,0(r,ϕ,z)

∣∣2+∑
n,nt ,m

′
Eb

n,nt
b†n,nt ,m

bn,nt ,m

+ g
√

N0

∑
n,nt ,m

′[
�n,nt ,m(r,z)eimϕbn,nt ,m + �∗

n,nt ,m
(r,z)

× e−imϕb†n,nt ,m

]
, (6)

where the eigenenergies and eigenfunctions with a normaliza-
tion factor N for free bosons are given by

Eb
n,nt

= ωb

(
n + 1

2

)
+ ωbt (nt + 1), (7)

φb
n,nt ,m

(r) = N eimϕ	b
nt ,|m|(r)	b

n (z), (8)

with the eigenfunctions in z and radial directions [41],

	b
n (z) ≡ e− mbωb

2 z2
Hn(

√
mbωbz), (9)

	b
nt ,|m|(r) ≡ r |m|e− mbωbt

2 r2

(
nt−|m|

2

)
!
(|m| + 1)



(|m| + 1 + nt−|m|

2

)
×L

(|m|)
nt −|m|

2

(mbωbt r
2), (10)

given in terms of the Hermite and Laguerre polynomials, Hn(x)
and L(k)

n (x), respectively. The primary quantum numbers
in z and radial directions are given by n = 0,1,2, . . . and
nt = 0,1,2, . . ., respectively, and the energy level Eb

n,nt
is

degenerate for the eigenvalues of Lz: |m| = nt , nt − 2, nt −
4, . . . ,1, or 0. We have also defined

�n,nt ,m(z,r) ≡ e−imϕφb
n,nt ,m

(r)φb
0,0,0(r)∗ (11)

and its complex conjugate �n,nt ,m(z,r)∗. Note that in the
Hamiltonian (6) the symbol

∑
n,nt ,m

′ denotes the summation
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over the boson’s eigenstates except n = nt = 0, which corre-
sponds to the state of the BEC.

The eigenenergy and the corresponding eigenfunction of a
bare (free) impurity in a state of (n̄,n̄t ,m̄) determined by the
harmonic potential are obtained by replacing the boson’s mass
and frequencies in (7) and (8) with those of the impurity:

E
f
n̄,n̄t

= ωf

(
n + 1

2

)
+ ωf t (nt + 1), (12)

φ
f
n̄,n̄t ,m̄

(r) = N eim̄ϕ	
f

n̄t ,|m̄|(r)	f
n̄ (z). (13)

III. VARIATIONAL METHOD A LA LLP

We are interested in the ground state and low-lying excited
states of a single impurity atom immersed in the BEC
background, as dictated by the Hamiltonian (6). In order to
construct a solution with the total angular momentum in the
z direction conserved, we first use a gauge transformation S,
i.e., cranking of all bosons around the z axis by ϕ, the angle of
the impurity position [42,43],

S = exp

(
−iϕ

∑
n,nt ,m

m b†n,nt ,m
bn,nt ,m

)
, (14)

which transforms the operators as follows:

S−1bn,nt ,mS = e−imϕbn,nt ,m, S−1b†n,nt ,m
S = eimϕb†n,nt ,m

,

(15)

S−1(−i∂ϕ)S = −i∂ϕ −
∑

n,nt ,m

m b†n,nt ,m
bn,nt ,m. (16)

Thus, the transformed Hamiltonian reads

H ′ ≡ S−1HS

= p2
r

2mf

+ 1

2mf r2

(
−i∂ϕ −

∑
n,nt ,m

m b†n,nt ,m
bn,nt ,m

)2

+ mf ω2
f t

2
r2 + p2

z

2mf

+ mf ω2
f

2
z2 + Eb

0N0

+ gN0

∣∣φb
0 (r)
∣∣2 +

∑
n,nt ,m

′
Eb

n,nt
b†n,nt ,m

bn,nt ,m

+ g
√

N0

∑
n,nt ,m

′[
�n,nt ,m(r,z)bn,nt ,m+�∗

n,nt ,m
(r,z)b†n,nt ,m

]
.

(17)

In the gauge transformed system, the total angular momentum
of the system (or a polaron) is converted to that of the impurity,

S−1

(
−i∂ϕ +

∑
n,nt ,m

m b†n,nt ,m
bn,nt ,m

)
S = −i∂ϕ = Lz, (18)

which is a conserved quantity: [Lz,H
′] = 0. In this respect we

can define the angular momentum operator of the impurity as

Limp,z ≡ S−1(−i∂ϕ)S = −i∂ϕ −
∑

n,nt ,m

m b†n,nt ,m
bn,nt ,m. (19)

This is a very convenient property when we describe the
system with a conserved total angular momentum of Lz. The

cost we have to pay is that an interaction among bosons
newly appears in the transformed Hamiltonian H ′. Here we
should note that a more general transformation than (14) is
presented in the literature [44] for the description of a rotating
impurity, so-called angulon [45], which is characterized by
the transfer of the angular momentum between the impurity
and the environmental bosonic degrees of freedom and by
structural deformations of the bosonic distribution around the
impurity. Although the system of an angulon assumes an
infinite background space, in contrast to our case of trapped
atoms, emphasis is commonly put on the conserved quantity
of the system, i.e., the total angular momentum.

Now we take the expectation value of H ′ over an impurity
state, which we approximate to be an eigenstate determined
by the harmonic potential for a bare impurity: φ

f
u (r) that has a

set of the quantum numbers u = (n̄,n̄t ,m̄) in (13),

Hu ≡
∫

r
φf ∗

u (r)H ′φf
u (r) (20)

= Ef
u + Eb

0N0 + gN0C0,0;u,u +
∑

n,nt ,m

′
Eb

n,nt
b†n,nt ,m

bn,nt ,m

+ 1

2mf

〈
1

r2

〉
u

(−2m̄m̂ + m̂2)

+ g
√

N0

∑
n,nt ,m

′[
C̄n,nt ,m;ubn,nt ,m + C̄∗

n,nt ,m;ub
†
n,nt ,m

]
, (21)

where we have introduced the operator for the total angular
momentum (z component) of excited bosons,

m̂ ≡
∑

n,nt ,m

m b†n,nt ,m
bn,nt ,m, (22)

and defined the following quantities:〈
1

r2

〉
u

≡
∫

r

1

r2

∣∣φf
u (r)
∣∣2, (23)

C̄n,nt ,m;u ≡
∫

r
�n,nt ,m(r,z)

∣∣φf
u (r)
∣∣2, (24)

C0,0;u,u ≡
∫

r

∣∣φb
0 (r)
∣∣2∣∣φf

u (r)
∣∣2 = C̄0,0,0;u. (25)

Note that the Hu gives an effective Hamiltonian for excited
bosons around the impurity whose angular momentum m̄ is
equivalent to the total angular momentum of the system (a
polaron) and that this impurity state is only an approximate
solution in weak coupling, while becoming the exact one when
the interaction is turned off. We can improve the solution,
e.g., by overlapping different impurity states with the same
m̄, or solving the impurity state in a self-consistent potential
generated by the excited bosons.

Next we take the expectation value of Hu over a coherent
state of the excited bosons [5], which is given by a unitary
transformation of the boson’s Fock vacuum |0〉,

|φch〉 = exp
∑

n,nt ,m

′(
fn,nt ,mb†n,nt ,m

− f ∗
n,nt ,m

bn,nt ,m

)|0〉, (26)

where fn,nt ,m (or its complex conjugate f ∗
n,nt ,m

) is a variational
parameter. Its physical meaning is the probability amplitude
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of an excited boson being in a state of (n,nt ,m):

fn,nt ,m = 〈φch

∣∣bn,nt ,m

∣∣φch

〉
. (27)

Then the expectation value of Hu, i.e., the energy of a polaron
with a core impurity in a state u = (n̄,n̄t ,m̄), becomes

Eu ≡ 〈φch|Hu|φch〉
= E

f
n̄,n̄t

+ Eb
0N0 + gN0C0,0,u,u +

∑
n,nt ,m

′
Eb

n,nt

∣∣fn,nt ,m

∣∣2

+ 1

2mf

〈
1

r2

〉
u

⎡
⎣− 2m̄

∑
n,nt ,m

′
m
∣∣fn,nt ,m

∣∣2

+
∑

n,nt ,m

′
m2
∣∣fn,nt ,m

∣∣2 +
(∑

n,nt ,m

′
m
∣∣fn,nt ,m

∣∣2)2
⎤
⎦

+ g
√

N0

∑
n,nt ,m

′[
C̄n,nt ,m;ufn,nt ,m + C̄∗

n,nt ,m;uf
∗
n,nt ,m

]
.

(28)

Then taking the variation for the saddle-point condition as

δEu

δf ∗
n,nt ,m

= Eb
n,nt

fn,nt ,m + 1

2mf

〈
1

r2

〉
u

[
− 2m̄m + m2

+ 2m

(∑
n,nt ,m

′
m
∣∣fn,nt ,m

∣∣2)]fn,nt ,m

+ g
√

N0C̄
∗
n,nt ,m;u = 0, (29)

we obtain a variational solution for the boson probability
amplitude,

fn,nt ,m;u = −g
√

N0C̄
∗
n,nt ,m;u

×
[
Eb

n,nt
+ m2 − 2(1 − η)m̄m

2mf

〈
1

r2

〉
u

]−1

, (30)

where we have assumed that the excited bosons by the impurity
partially share the total angular momentum of a polaron m̄ with
a ratio 0 � η � 1:

η m̄ =
∑

n,nt ,m

m
∣∣fn,nt ,m;u

∣∣2. (31)

We call η the drag parameter, since the above mechanism
is very similar to the drag effect in uniform systems on a
conserved polaron’s total momentum [5]. We can determine
the numerical value of the parameter η by solving Eq. (31) with
the solution (30). It should also be noticed that the variational
solution (30) is now a function of m̄, and the dependence on m̄

brings an “anisotropy” in the summation of m in (31) to make
the right-hand side finite.

Finally, by plugging the solution (30) back into (28), we
obtain the expression for the energy of the polaron in the state

of u = (n̄,n̄t ,m̄) as

Eu = E
f
n̄,n̄t

+ Eb
0N0 + gN0C0,0;u,u

− 1

2mf

〈
1

r2

〉
u

(∑
n,nt ,m

m
∣∣fn,nt ,m;u

∣∣2)2

+ g
√

N0

∑
n,nt ,m

′
C̄n,nt ,m;ufn,nt ,m;u

≡ E
f
n̄,n̄t

+ Eb
0N0 + Emf,u + Eint,u, (32)

where we have defined the mean-field energy and the interac-
tion energy, respectively, as

Emf,u = gN0C0,0;u,u = gN0C̄0,0,0;u, (33)

Eint,u = − m̄2η2

2mf

〈
1

r2

〉
u

− N0g
2
∑

n,nt ,m

′
∣∣C̄n,nt ,m;u

∣∣2
Eb

n,nt
+ m2−2(1−η)m̄m

2mf

〈
1
r2

〉
u

= −|m̄|η2ωf t

2
− N0g

2
∑

n,nt ,m

′
∣∣C̄n,nt ,m;u

∣∣2
Eb

n,nt
+ m2−2(1−η)m̄m

2|m̄| ωf t

.

(34)

In the interaction energy (34), the first term comes from de-
crease in the rotation energy of the impurity by the drag effect,
while the second term looks like a second-order perturbation
result that arises from virtually excited bosons, although the
nonperturbative nature is involved via the parameter η that is
self-consistently determined from the variational solution. In
fact, the denominator of the second term can be decomposed
up to the minus sign as

[
E

f
n̄,n̄t

+ m̄2
imp

2mf

〈
1

r2

〉
u

]

−
[
Eb

n,nt
+ E

f
n̄,n̄t

+ (m̄imp − m)2

2mf

〈
1

r2

〉
u

]
, (35)

where the first term corresponds to the impurity’s single-
particle energy E

f
n̄,n̄t

, which is independent of m̄, plus the
rotation energy with m̄imp ≡ (1 − η)m̄, the angular momentum
of the impurity, while the second term corresponds to an
intermediate state in which an excited boson of (n,nt ,m) takes
the angular momentum m off the impurity.

We conclude this section by considering transition am-
plitudes by single-boson emission. As will be shown in
the next section, the ground state of a polaron is given by
u = (n̄,n̄t ,m̄) = (0,0,0), while the other states correspond to
excitations. The transition rate to a lower energy state by
single-boson emission is proportional to the matrix element
squared in perturbative treatment: Defining a polaronic state in
u = (n̄,n̄t ,m̄) by |ψu(r)〉 = Sφ

f
u (r)|φch〉u, with |φch〉u denot-

ing the boson’s coherent state (26) that has the solution (30)
used for fs;u, we obtain the matrix element between the initial
polaronic state u and the final polaronic state u′ = (n̄′,n̄′

t ,m̄
′)
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accompanied by a boson emitted to a state s = (n,nt ,m) as

Au→(u′,s) =
∫

r
〈ψu′(r)|bsHint(r)|ψu(r)〉 = δm+m̄′,m̄ g

√
N0

∑
s ′

Fs ′,s;u′,u, (36)

where

Fs ′,s;u′,u = exp

[
−1

2

∑
s ′′

(fs ′′;u′ − fs ′′;u)2

]
1

2π

∫
r
	

f

n̄′ (z)∗	f

n̄′
t ,m̄

′ (r)∗	f
n̄ (z)	f

n̄t ,m̄
(r)[�s ′(r,z)fs;ufs ′;u + �s ′ (r,z)∗(fs;uf

∗
s ′;u′+δs,s ′ )]

= δs,s ′

∫ ∞

−∞
dz

∫ ∞

0
drr 	

f

n̄′ (z)∗	f

n̄′
t ,m̄

′ (r)∗	f
n̄ (z)	f

n̄t ,m̄
(r)�s(r,z)∗ + O(g2), (37)

and Hint is the last term of the right side of Eq. (6). There
appears a selection rule for the angular momentum δm+m̄′,m̄
in (36), and if we consider as well the energy conservation
E

f
u = Eb

s + E
f

u′ to leading order in the coupling constant, the
transition is allowed only in the special case of ωf = ωb and
ωf t = ωbt . This does not immediately imply the stability of
the polaronic state u, since there exist other decay processes,
e.g., three-body loss [46], which cannot be treated directly in
our Hamiltonian.

IV. NUMERICAL RESULTS AND DISCUSSION

We present numerical results for the properties of a polaron
in the ground and low-lying excited states, employing the
parameter values that are used in the experiment for the
boson-fermion mixture of 87Rb bosons in a BEC and 40K
impurity fermions [34],

N0 = 2

2π
×105, abf = −187a0

(
1 − −3.04

B − 546.62

)
,

abb = 100a0, (38)

ωb

2π
= 183 Hz,

ωbt

2π
= 37 Hz,

ωf

2π
= 281 Hz,

ωf t

2π
= 50 Hz, (39)

where a0 = 5.291 77×10−11 m, the Bohr radius, and the
scattering length abf is tunable by an external field B (unit

G). For normalizations, we also use the boson’s inverse length
scale and zero-point energy: kref ≡ (900a0)−1 and Eref/2πh̄ ≡
25 kHz. Incidentally, we can estimate from N0 an average
density of the BEC in the oval sphere of harmonic amplitudes

as n0 = N0[ 4π
3

√
2h̄

ωbmb

√
2h̄

ωbtmb

2
]
−1

= 2.389×1014 cm−3, which
is of the order of a peak density in the experiment. Note that
although these numbers lead to N0abb/ā ∼ 10, which indicates
that the bosonic sector is semiclassical, we will use them for
numerical purpose in this study, except that we set abb = 0.
Nevertheless, in the experimental setup abb can be vanishingly
small by the Feshbach resonance, as mentioned earlier, and
ā is also tunable by the trap frequencies, while N0 should be
sufficiently large for the Bogoliubov-type approximation to be
valid.

A. Mean-field energy and interaction energy

We proceed to exhibit in Fig. 1 the mean-field and interac-
tion energies, (33) and (34), for low-lying states of the im-
purity: n̄ = 0,1,2, n̄t = 0,1,2,3,4,5 (|m̄| = n̄t , n̄t − 2, n̄t −
4, . . . ,1, or 0), at (abf kref)−1 = −900a0/187a0 = −4.813.
Here we have taken the sum over (n,nt ) up to
(nmax = 8, ntmax = 2nmax) for boson excitations. We found a
gradual convergence: Increase in nmax by 50% results in a few
% changes in η and Eint.

The mean-field energy dominates the binding energy of
a polaron in comparison with the interaction energy. The
ground state is given by the impurity state (n̄ = 0, n̄t = 0,
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FIG. 1. Mean-field energy (33) and interaction energy (34), plotted as a function of n̄t . The number affixed to each bar denotes the value
of |m̄|.

023626-5



EIJI NAKANO, HIROYUKI YABU, AND KEI IIDA PHYSICAL REVIEW A 95, 023626 (2017)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 2 3 4 5

1

2

1

3

2

4

1

3

5

1

2
1

3
2
4

1
3
5

1

2 1
3 2

4
1
3
5

n̄ = 0
n̄ = 1
n̄ = 2

n̄t

η

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 1 2 3 4 5

0

1

0

2

1

3 0

2

4

1

3

5
0

1

0
2

1

3 0
2

4

1
3
5

0

1

0
2

1
3 0

2

4

1
3
5

n̄ = 0
n̄ = 1
n̄ = 2

n̄t

N
ex

c

FIG. 2. Drag parameter (31) and the number of excited bosons (40), plotted as a function of n̄t . The number affixed to each bar denotes the
value of |m̄|.

m̄ = 0), followed by the first and second excited states of
(n̄ = 0, n̄t = 2, m̄ = 0) and (n̄ = 1, n̄t = 0, m̄ = 0), which
can be accounted for by a larger overlap of the wave function
of the BEC with those of m̄ = 0 impurity states than m̄ �= 0
[see the mean-field energy (33) with (25)]. It should be noted
that the interaction energy for m̄ = 0 is equivalent to the
second-order perturbation due to virtual boson excitations,
because fn,nt ,m;u = 0 for m �= 0 [see Eq. (29) with 〈 1

r2 〉u =
mf ωf t

|m̄| ] and hence only m = 0 states for boson excitations
contribute to the summation in (34). This, in turn, leads to
no drag effect η = 0 for m̄ = 0 via (31), as will be seen again
later.

Looking into the dependence of the interaction energy on
the quantum numbers u = (n̄,n̄t ,m̄), we find that the states
with |m̄| = 1 for n̄t = 1,3,5 gain relatively larger interaction
energies than others. This tendency can be understood from
the fact that, in the summation over a given m and −m

in (34), the denominator gets smaller for larger values of |m̄|,
while the overlap integral C̄n,nt ,m;n̄,n̄t ,m̄ in the numerator gets
smaller even more rapidly. From the above observation, it
turns out that the interaction between the impurity and bosons
breaks the degeneracy of the single-particle energy E

f
u for a

bare impurity state u = (n̄,n̄t ,m̄) with respect to m̄, and that the
mean-field and interaction energies split for |m̄| � n̄t , where
n̄t � 2 (the reflection symmetry still keeps any m̄ and −m̄

states degenerate).
Here we should mention that experimental observations

of motional coherence of trapped impurity atoms in the
two lowest energy levels, in both the presence and the
absence of the BEC background, has recently been achieved
by motional Ramsey spectroscopy [31], which leads to the
energy shift of the trapped impurity due to coupling with the
BEC background, i.e., “phononic Lamb shift,” for a weakly
coupled impurity-boson interaction [47]. In analyzing this
experimental result, Bogoliubov phonons of the BEC in free
space and impurities trapped only in a single dimension were
used. In this analysis, the angular momentum is not relevant.
However, such experimental techniques could be utilized also
for observations of fine level splittings between different
angular momenta obtained in the present study.

B. Drag parameter η and the number of excited bosons

The above observation about the m̄ �= 0 states also reflects
the drag parameter (31) and the number of excited bosons due
to the interaction with the impurity, which is defined by

Nexc =
∑
s �=0

〈b†sbs〉 =
∑

n,nt ,m

′∣∣fn,nt ,m;u

∣∣2, (40)

with fn,nt ,m;u given by (30).
As shown in Fig. 2, the drag parameter η becomes nonzero

for the m̄ �= 0 states, which takes on an especially large value
for the |m̄| = 1 states for a reason similar to the case of the
interaction energy. Also, the distribution of η has a pattern
common to that of the number of excited bosons, except that
the latter is nonzero even for the m̄ = 0 states. This behavior is
natural because η is a fraction of the total angular momentum
of a polaron carried by excited bosons.

The number of excited bosons also tells us if the present
Bogoliubov-type approximation is valid. Figure 2 shows
that Nexc is about 0.1 at most. If Nexc is around unity, it
obviously implies a breakdown of the present approximation,
so that we need to restore the four-point residual interaction
between the impurity and excited bosons, which is responsible
for correlation effects such as quasibound states among the
impurity and bosons.

C. Extension to strong-coupling regime and lighter bosons

Hitherto we have fixed the coupling strength g to a constant
that lies in a weak-coupling regime. Now we take some typical
values of the coupling strength to observe how the system
transforms toward the strong-coupling regime, and illustrate
in Fig. 3 the coupling strength dependence of the binding
energy of a polaron, which is defined by

Ebound ≡ Emf + Eint, (41)

and the number of excited bosons (40). The figure shows
that the binding energy increases monotonically in magnitude
and that there appears a bunch of excited states above the
ground state (n̄,n̄t ,m̄) = (0,0,0), which do not undergo level
crossings with increasing coupling strength. Moreover, the
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FIG. 3. The polaron’s binding energy (41) and the number of excited bosons (40) for n̄ = 0,1,2, and n̄t = 0,1,2,3,4,5, plotted as a function
of the inverse scattering length (abf kref )−1 = −4.813, −4, −3, −2. Indication of the quantum numbers (n̄t ,m̄) for each bar is omitted.

number of excited bosons, being largest for the state of
(n̄,n̄t ,|m̄|) = (0,1,1), increases above 0.5 at (abf kref)−1 = −2,
which implies the limitation of the present approximation
where the residual boson-fermion interaction is assumed to
be negligible; i.e., b

†
s ′bs � 1.

It is also interesting to see how our results are modi-
fied when bosons are significantly lighter than an impurity,
since the LLP theory works better for relatively heavier
impurities [5,48].1 In the dimensionless expressions for the
mean-field and interaction energies [see (A12) and (A13) in
the Appendix], the dependence on the boson and fermion mass
can be factored out except for rescaling factors of the boson’s
coordinates in the wave functions, z = Rζ and r = Rtρ, which
propagates to the overlap integrals inherent in C̃s,u(R,Rt )
in (A13). In the case of a heavy impurity and/or light bosons,
the overlap of the wave functions of the condensed and excited

1The LLP theory is originally applied to a Fröhlich-type Hamilto-
nian, which is essentially the same as ours (5) in the absence of the
residual four-point interaction, and gives the exact solution at heavy
impurity limit.

bosons becomes larger at the origin in the integral, which leads
to a possible enhancement of these energies.

In Fig. 4 we show the binding energy obtained by replacing
the boson mass mb with mb/4, which is about a half of
mf . We find from the figure that the virtual excitation of
bosons is favored and that a larger binding energy is gained
in comparison with the results obtained for the boson mass
mb and the same coupling constant 1/abf kref = −4.813. It
is interesting to observe that the number of excited bosons
gets larger for higher angular momentum states, in contrast to
the heavier boson case. This is because the overlap integrals
associated with C̃s,u(R,Rt ) in (A10) are enhanced for lighter
bosons. These results imply that the salient features obtained
in this study, such as the energy splitting and the drag effect for
nonzero angular momentum states, become more prominent
for mb � mf .

V. SUMMARY AND OUTLOOKS

We have investigated the properties of a single BEC polaron
trapped in an axially symmetric harmonic potential in a weak-
to intermediate-coupling regime, and for this purpose we have
developed a formulation based on an LLP-type variational
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method [5]. We have obtained the mean-field energy (33) of
O(g), whose magnitude is determined by the overlap of wave
functions between the impurity and BEC states and dominates
the total binding energy of a polaron. We have also found
that the interaction between the impurity and excited bosons
breaks the level degeneracy with respect to the total angular
momentum around the symmetric axis. Our result shows
that the interaction energy (34) includes an overall factor of
O(g2) and also a nonperturbative effect through the coefficient
η, the ratio of the angular momentum carried by excited
bosons to the total angular momentum m̄, but in the case
of m̄ = 0 the interaction energy reduces to the second-order
perturbation theory involving virtual boson excitations. This
situation is similar to the LLP description of spatially uniform
electron-phonon systems, according to which a drag parameter
η is introduced for the total momentum of a polaron. Possible
improvement beyond the present approximation to which we
have simply taken a single eigenstate given by the harmonic
potential for the impurity is that we can variationally determine
the impurity state as well, especially for m̄ = 0.

For elaborate comparison with experimental results in a
weak- to strong-coupling regime, there remain several steps.
When the s-wave scattering for boson-boson interactions is
turned on, the excitation spectrum of the boson sector would
be modified, e.g., in the Thomas-Fermi regime the energy
dependence on the quantum numbers would be drastically
changed [36,37]. For a microscopic description of such a
semiclassical regime we need to solve, e.g., the Gross-
Pitaevskii equation for the condensed and excited states,
and obtain the effective low-energy modes coupled to the
impurity [49]. In the real experimental situations, impurity
atoms themselves can form many-body systems and hence
possible realizations of many-polaron systems if they are
dilute enough for the quasiparticle picture to be valid. In such
cases we need to take into account the particle statistics of
impurities, e.g., Pauli blocking effect for fermionic impurities,
in addition to finite-temperature effects, and also effects of
interaction among polarons [50–54], which may modify the
polaron properties such as the spectral width and lifetime.

For strong coupling near the unitary limit of the boson-
impurity interaction, or even for intermediate coupling, the
present approximation seemingly breaks down. In these
regimes we have to restore the four-point boson-impurity in-
teraction, which has been discarded in the present Bogoliubov-
type approximation, but is responsible for scattering processes
between the impurity and excited bosons and, around the
unitary limit, for quasi bound states between them [10]. For
a smooth description of trapped systems from a weak- to
strong-coupling regime, it might be convenient to build such
few-body correlations (quasi bound states) among the impurity
and bosons into the present LLP-type approximation [55].
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APPENDIX: DIMENSIONLESS VARIABLES
FOR NUMERICAL CALCULATIONS

We introduce the dimensionless variables, ζ ≡ √
mf ωf z

and ρ ≡ √
mf ωf t r , and the normalized eigenfunctions

as

φn,nt ,m(ζ,ρ,ϕ) = 1√
2π

eimϕψn(ζ )ψnt ,|m|(ρ), (A1)

∫ ∞

−∞
dζψ∗

n (ζ )ψn′(ζ ) = δn,n′ ,

∫ ∞

0
dρρψ∗

nt ,|m|(ρ)ψn′
t ,|m|(ρ) = δnt ,n

′
t
, (A2)

where

ψn(ζ ) :=
√

1

2nn!
√

π
e− 1

2 ζ 2
Hn(ζ ), (A3)

ψnt ,|m|(ρ) :=
√√√√2

(
nt−|m|

2

)
!(

nt+|m|
2

)
!
ρ|m|e− 1

2 ρ2
L

|m|
nt −|m|

2

(ρ2). (A4)

Relations to the normalized eigenfunctions with the original
coordinates are given by

	n(z) = (mf ωf )1/4ψn(
√

mf ωf z), (A5)

	nt ,m(r) = (mf ωf t )
1/2ψnt ,m(

√
mf ωf t r). (A6)

For numerical calculations, various quantities are given in
terms of the corresponding dimensionless quantities,〈

1

r2

〉
n̄,n̄t ,m̄

= mf ωf t

∫ ∞

0
dρρ−1

∣∣ψn̄t ,m̄(ρ)
∣∣2 = mf ωf t

|m̄| ,

(A7)

where |m̄| = n̄t , n̄t − 2, n̄t − 4, . . . ,1, or 0,

C̄n,nt ,m;n̄,n̄t ,m̄ ≡
∫

x
�n,nt ,m(x)

∣∣φf
n̄,n̄t ,m̄

(x)
∣∣2

= √
ωbmb ωbtmb C̃n,nt ,m;n̄,n̄t ,m̄(R,Rt ), (A8)

where R =
√

ωbmb

ωf mf
, Rt =

√
ωbtmb

ωf tmf
, and

C̃n,nt ,m;n̄,n̄t ,m̄(R,Rt ) ≡ 1

2π

∫ ∞

−∞
dζψ∗

0 (Rζ )ψn(Rζ )|ψn̄(ζ )|2

×
∫ ∞

0
dρρψ∗

0,0(Rtρ)ψnt ,m(Rtρ)

× ∣∣ψn̄t ,m̄(ρ)
∣∣2. (A9)

1. Probability amplitude

In the formula for the number of excited bosons (40), the
probability amplitude squared can be rewritten in terms of the
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dimensionless variables as∣∣fn,nt ,m;u

∣∣2
= N0G

2

∣∣C̃n,nt ,m;n̄,n̄t ,m̄(R,Rt )
∣∣2[

ωb

ωf t

(
n + 1

2

)+ ωbt

ωf t
(nt + 1) + m2−2(1−η)m̄m

2|m̄|
]2 ,

(A10)

G ≡ (2πabf

√
ωbmb)

(
mf

mb

+ 1

)
R2

t . (A11)

The above expression can also be used in the self-consistent
Eq. (31) for η. Note that we cannot expand the right-hand side
of the self-consistent equation to the linear order in m̄, unlike
the drag parameter for the polaron’s total momentum in the
LLP theory for uniform systems.

2. Mean-field and interaction energies

The mean-field and interaction energies for the state of
u = (n̄,n̄t ,m̄) become

Emf,u

ωf t

= N0GC̃0,0,0;n̄,n̄t ,m̄(R,Rt ), (A12)

Eint,u

ωf t

= −|m̄|η2

2
− N0G

2

×
∑

n,nt (�=0),m

∣∣C̃n,nt ,m;n̄,n̄t ,m̄(R,Rt )
∣∣2

ωb

ωf t

(
n + 1

2

)+ ωbt

ωf t
(nt+1) + m2−2(1−η)m̄m

2|m̄|
.

(A13)
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