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Quantum-fluctuation-induced time-of-flight correlations of an interacting trapped Bose gas
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We investigate numerically the momentum correlations in a two-dimensional, harmonically trapped interacting
Bose system at 7 = 0 temperature, by using a particle number preserving Bogoliubov approximation. Interaction-
induced quantum fluctuations of the quasicondensate lead to a large anticorrelation dip between particles of wave
numbers k and —k for |k| ~ 1/R., with R, the typical size of the condensate. The anticorrelation dip found
is a clear fingerprint of coherent quantum fluctuations of the condensate. In contrast, for larger wave numbers,
|k| > 1/R., a weak positive correlation is found between particles of wave numbers k and —k, in accordance
with the Bogoliubov result for homogeneous interacting systems.
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I. INTRODUCTION

As demonstrated first by Hanbury Brown and Twiss, quan-
tum statistics are efficiently probed through detecting noise
correlations. In their seminal experiments Hanbury Brown
and Twiss observed positive cross correlations in the shot
noise of photons emitted by independent light sources [1]. As
understood later, this photon bunching originates simply from
constructive interference between indistinguishable particles,
obeying Bose-Einstein statistics, and has lately been also
demonstrated by interferometry of bosonic atoms [2]. An
analogous phenomenon is observed for fermions, where the
antisymmetry of the wave function results in an antibunching
behavior [3]. Quantum-statistics related correlations play an
important role in solids, too, where they lead to the emergence
of Pauli correlation holes [4], or can conspire with interactions
to lead to the emergence of magnetism [5].

Measuring Hanbury Brown—Twiss-like noise correlations
in time-of-flight (ToF) images has also been proposed as an
efficient tool for detecting correlated states in ultracold atomic
systems [6]. Following this suggestion, density correlations in
expanding atomic clouds have been used to demonstrate the
emergence of ordered phases in both interacting bosonic and
fermionic systems [7-18], proving that noise detection can
also be used to reveal interaction-induced strongly correlated
structures.

Trapped cold atomic systems should provide an ideal test
ground to study quantum correlations in isolated bosonic and
fermionic systems, and the influence of interactions on these
correlations [19-24]. Time-of-flight experiments in reduced
dimensions [25] grant direct and controlled access to the
observation of the number 7 of particles with momentum
hik as well as to the correlation function C(k,k') = (87 87iy)
[26-31].

For a very long time [32-35], theoretical predictions
regarding the nature of momentum space correlations and ToF
correlations in Bose systems remained somewhat controver-
sial.

Two- and three-dimensional weakly interacting homoge-
neous systems are quite well described by a Bogoliubov
mean-field approximation, where the ground state is found
to be a squeezed state generated by the pair creation operators,
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13|T(l3T_k, with IQIT( denoting the creation operator of a boson
[36]. This squeezed structure would imply perfect positive
correlations between particles of wave numbers k and —k
[32]. However, in a one-dimensional Luttinger liquid, both
correlations and anticorrelations have been predicted [32,35],
and anticorrelations have also been predicted between par-
ticles with opposite momenta [33] in harmonically confined
noninteracting Bose gases.

Very recently, experiments on one-dimensional interacting
bosons—corroborated by detailed theoretical calculations—
managed to clarify somewhat this controversial situation [31]:
they confirmed the predictions of strong anticorrelations of
Ref. [35] at the momentum scale corresponding to the thermal
length, Iy = ,othz/ka T, with p|p the density of the one-
dimensional gas.

The purpose of the present paper is to understand the
role of interaction-induced quantum fluctuations of higher-
dimensional condensates. To be specific, we focus on d =
2-dimensional interacting (quasi) condensates, where the
correlation function C(k,k’) is still directly accessible ex-
perimentally, while a mean-field approach is still reliable.
Extensions to d = 3 dimensions are straightforward. Focusing
on interaction-induced quantum fluctuations, we consider the
case of T = 0 temperature only [37].

In the presence of interactions, quantum fluctuations de-
plete the condensate wave function just as thermal fluctuations
do in an ideal gas (see Fig. 1). Anticorrelations can be inter-
preted as a sign of conspiracy of particle number conservation
and confinement: they stem from particle number preserving
processes, coherently transferring particle pairs between the
single mode condensate and the noncondensed fraction of the
gas (see Secs. III C and III D).

To capture this physics in a trapped gas, we shall employ a
particle number preserving Bogoliubov approximation, similar
to the one described in Ref. [38]. For sufficiently weak
interactions, most of the atoms condense into a single wave
function, thereby forming a single mode condensate ¢g(x).
Correspondingly, the bosonic field operator ¥ (x) can be
decomposed as

V(%) = po(x)by + 89 (x), (1)
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FIG. 1. Sketch of the origin of quantum-fluctuation-induced
quasiparticle correlations in a trap. Even at T =0, interaction-
induced quantum fluctuations of the condensate induce virtual
quasiparticle excitations, and amount to fluctuations and correlations,
measurable through ToF experiments. The pair structure of excita-
tions induces positive correlation between particles with opposite
wave numbers k and —k.

where by annihilates a particle from the condensate. If the
average number of particles in mode ¢y(x) greatly exceeds
that of noncondensed particles, the operator 8 (x), describing
quantum fluctuations of the condensate, is small, and can be
accounted for by the particle number conserving mean-field
approach used here, an approach well suited to describing
experiments with a fixed number of particles.

As we shall see, the spatial extension of the condensate (R,)
takes over the role of /4 in one-dimensional condensates [31],
and determines the region of anticorrelations in momentum
space. However, in addition to anticorrelation between small
momentum particles with k &~ —k’ and |k| ~ 1/R,, a clear
forward correlation appears for particles of similar momenta,
k ~ k/. Momentum space correlations thus exhibit a p-wave
structure. As already explained, these structures are due
to interaction-induced coherent quantum fluctuations of the
condensate, present even at zero temperature.

The expected positive correlations, predicted by Bogoli-
ubov theory, only appear at large wave numbers, |k| > 1/R,,
where C(k, — k) displays a slowly decaying positive tail of
“d-wave”-like structure in momentum space. In this large
momentum regime, short-distance correlations at a scale
A ~ 2m /|K| are probed, where correlations can be well approx-
imated by those of a homogeneous system. The observation
of Bogoliubov squeezing and the corresponding positive pair
correlations would thus require investigating the fails of ToF
images with high resolution.

The paper is organized as follows: In Sec. II, we outline
the particle number preserving Bogoliubov approximation
following the treatment of Ref. [38], and provide details on the
numerical solution of the corresponding equations (Sec. II B).
Our results are discussed in Sec. III. Our conclusions are
summarized in Sec. IV.

II. METHODS

A. Particle number preserving Bogoliubov approximation

We consider a closed, interacting quasi-two-dimensional
Bose gas in a harmonic trap. Such quasi-two-dimensional
gases can be experimentally realized in highly anisotropic
harmonic potentials, where the transverse confinement, w,, is
much stronger than the trapping frequencies in the remaining
two directions [21]. In this strong vertical confinement limit,
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the motion of the particles is frozen along the z direction,
and the system is described by an effective d = 2-dimensional
Hamiltonian:

s R? .
H = /dzx[wT(x)(——Vz + U(X))i/f(x)
2m
+ 391000 0o x| @

Here &(x) denotes the bosonic field operator, and m is the
atomic mass. The harmonic potential

U(x) = tmaw’x*

is responsible for the weak confinement of the atoms in the
lateral direction, and the interaction between the atoms is
described by a repulsive Dirac-delta potential, V(x — X') =
g8(x —x') [39]. Here the effective interaction g depends
sensitively on the vertical confinement, w,, and the three-
dimensional scattering length asp [40]. It depends, however,
only logarithmically on the local chemical potential of the
Bose gas, and can therefore be replaced by its value at the
center of the trap for our purposes.

For sufficiently weak interactions, the majority of the atoms
condense into a single wave function, and the system can be
analyzed by using a Bogoliubov mean-field approximation.
This approach is justified if the expectation value of the number
of noncondensed particles, (81\7 ), is only a small fraction of
the total particle number N:

(8N)y < N. (3)

This condition is necessary for a usual mean-field treatment
but, in d = 2 dimensions, considered here, it is not entirely
equivalent to the requirement of weak interactions. A d = 2-
dimensional Bose gas can be considered weakly interacting
even in the vicinity of the critical (Kosterlitz-Thouless)
temperature T, provided that the dimensionless interaction
strength g satisfies [40]

gm
w”
Standard mean-field theory can, however, be applied only in
the regime where the system size is smaller than the phase
correlation length. For typical weakly interacting trapped
systems, the latter condition is satisfied only for temperatures
T/T. < 0.2 [40,42]. At slightly larger temperatures, but still
below the critical temperature of the Kosterlitz-Thouless phase
transition, a so-called quasicondensate regime appears with
large phase fluctuations. Here the usual Bogoliubov mean-field
approach fails; however, the gradient of the phase still remains
small and allows a perturbative, generalized Bogoliubov
treatment [41,42]. At T ~ 0, however, condition (4) is not
necessary, and Eq. (3) is satisfied even for slightly larger
interaction values, g§ ~ 1.

Below we will concentrate on the regime of a true conden-
sate, and will perform calculations at 7 = O temperature. To
account for correlations between the condensate and noncon-
densed particles, we shall use a particle number conserving
Bogoliubov approach described in Ref. [38]. For that purpose,
we decompose the field operator v/ (x) according to Eq. (1), and
separate the single mode part ~¢((x). The remaining part of the
field operator, 81/(x), describes interaction-induced quantum

8 < 1 “)

023625-2



QUANTUM-FLUCTUATION-INDUCED TIME-OF-FLIGHT ...

fluctuations of the condensate (see Fig. 1), and can be chosen
to be orthogonal to the wave function ¢y (x):

f d*x g} (x)8¢ (x) = 0.

Next, following Refs. [38,43], we introduce a particle number
preserving field operator
1

Ax) = 7 b} 89 (x), 5)

with Ny = 132;50 denoting the number of particles condensed

into the single mode part of the condensate. The field A(x)
satisfies the commutation relations

[A(x),A(Xx)] =0,
[A®),AT(X)] = 8(x — X) — po(X)gpg(x) = (x| Qo|X),

with Qo = Id — |¢o)(¢o| denoting the projection onto the
subspace orthogonal to |¢g). The operator A transfers one
particle from the noncondensed fraction to the condensate,
while keeping the total particle number constant. Notice that,
in contrast to /(x), A(x) conserves the particle number, and is
therefore more appropriate to describe fluctuations in a closed
(microcanonical) trap.

To generate the Gross-Pitaevskii (GP) equation determining
the condensate wave function ¢y(x), we use the ansatz (1) and
approximate the Hamiltonian (2) by expanding up to second
order in the operator A ~ 8. Particle number conservation is
imposed by the exact relations

st = [@xsiimsio =[x Mo,

which we also assert in course of the expansion. Requiring
the disappearance of terms linear in A yields the usual Gross-
Pitaevskii equation for ¢,

hz
<—%V2 + U(X))%(X) + gN19o(X)[*@o(x) = pepo(x),
(6)

with the Lagrange multiplier ¢ introduced to ensure that ¢
remain normalized. Second-order terms in A generate the
equation of motion of the field operator,

A AX)Y Ax)
0, (AT(X)> = EGP(")(&J{(X)),

with the Bogoliubov operator Lgp expressed as

Lo — Qo(H + gNlgol?) Qo gN Qo5 O
o —gN Qi@ Q0 —OL(H + gNlgol?) O}
(7)

and

hZ
H(x) = —%vz + UX) — p+ gNlpox)|? 8)

denoting the mean-field single particle Hamiltonian. The
Lagrange multiplier p appears here as a chemical potential,
expressing that the condensate serves as a particle reservoir
for the noncondensed fraction of the gas.
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The eigenvalues and eigenvectors of the non-Hermitian op-
erator Lgp determine the excitation modes of the condensate.
The Bogoliubov operator Lgp has a pair of zero modes [38,44]

(90(x),0),  (0,¢5(x))

corresponding to—physically meaningless—global phase ro-
tations of the condensate. All other nonzero eigenvalues of Lgp
come in pairs, ¢, and correspond to quasiparticle excitations.
By denoting the eigenvector of positive eigenvalue & > 0
(s =1,2,..) by (us(x),v5(x)), we find that (v} (x),u(x)) is
also an eigenvector of eigenvalue ¢_; = —eg;. The positive
eigenvectors of s,s" > 0 satisfy the orthogonality condition

/dzx[ujf(x)us/(x) — vy (X)vy(X)] = 8,y

Moreover, together with the condensate wave function they
form a complete basis, expressed by the relation

D s (e (x) = v Xy (X)]

€,>0

+ po(X)py(x') = 8(x — x)). €))

These eigenfunctions of Lgp can then be naturally used to
expand the field operator A(x) as

A) = by us(x) + bl v} ()], (10)

&y>0

where the b,’s satisfy bosonic commutation relations and
annihilate quasiparticles of (positive) energy &,. In terms
of these quasiparticle excitations, within the Bogoliubov
approximation, the Hamiltonian takes on a simple diagonal
form:

H=Eo+ Y &blb.

&,>0

The ground state of the system is thus simply the vacuum state
of the annihilation operators b;. We remark that the ground-
state energy, Ey, incorporates interaction dependent negative
corrections to the Gross-Pitaevskii mean-field energy, resulting
from the quantum depletion of the condensate.

Let us now turn to the computation of the expectation value
(fix) and the correlation function (7ix7ik ). The particle number
operator ik corresponding to wave number k is defined as

At oA

ik = Y Y,
where vy is the Fourier transform of the field operator:
Vi = / d*x e (x).

In order to calculate the expectation value and correlation
function of the operator 71k, we use Eqs. (1) and (5) to express

~

fix in terms of the operator A, to find
A = Nlgo®)I* = lo®)I* 8N + v/ N (k) Ak
+VNeo®) Al + Al A+ 0GRPN12), (1)
with Ay denoting the Fourier transform of A:

Aw =) [h uy(k) + b v (—K)].

&3>0
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Notice that the second term in Eq. (11) does not appear in
the usual Bogoliubov approach. It is a direct consequence
of the particle number conserving method, and leads to
corrections in the expressions of the correlation functions. This
term may be contrasted to the third and fourth terms, which
are also related to particle number conserving processes but
appear already within the usual Bogoliubov approach; these
describe the annihilation (creation) of a particle in the cloud
of quantum fluctuations, while adding (removing) a particle to
the condensate (from the condensate).

Notice that the usual and heuristic identification 7y <>
[A\L[\k is not appropriate for a trapped microcanonical con-
densate, where correlations between the single mode part
of the condensate and 81}(){) cannot be neglected. For a
homogeneous condensate, however, gag"m(k #0)=0, and

Eq. (11) reduces to the simple relation, ﬁ'ﬁ;“(‘) = [\lf\k.

J
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The ground-state expectation value of 7y is thus given in
terms of eigenfunctions (u,(x),v,(x)) as

(n) = Nlgo®)> + Y [v,(—k)P

&gs>0

ol Y [ exiwr. a2

£>0

Here the first term is simply the Gross-Pitaevskii result,
describing a situation when all particles belong to the single
mode condensate. The sum ) |vs(—k)|? takes into account
the contribution of the noncondensed fraction of the gas, while
the last term originates from the depletion of the condensate
due to particle number conservation. Similarly, the correlation
function of 71 and 7iy operators can be expressed as

COK) =l o) — () (D) = N5 (K) 1, (K) + go(k) v, (—K)]Tpo(K) ek (K') + 5 (K) v (—K)]

+ Y (Bonbas t ssl,@w)(vs,(—k>uh<k> — lpo®)I? / d’x vsl(x)usxx))

51,52, 83,54

x (v:;<—k’>u;‘;<k’> ~ P [ ax v;;<x>u;:<x>).

This equation can be rewritten in a form more convenient for numerical calculations, using the completeness relation Eq. (9).
Expressing ) u(K)u? (k') from the Fourier transform of Eq. (9) allows us to separate the singular, ~8(k — K') terms appearing
in the diagonal correlation function C(k,k). As a result, the correlation function can be written as a sum of three contributions

C(k.K) = 27)*8(k — K){Ax) + CVKK) + CPk K, (13)

with (7ix) given by Eq. (12), and

CP k)= N Z[%(k)(pé (k) s (K) v5 (—K') + @o(K)po(k) v, (—K) 15 (K') + @o(K)p5(K) vs(—K) v; (—k')

+ 95 oK) v} (k) v, (—K)] = N o) [o(K) |,

(14a)

COkk)= )" (vx,<—k>us2<k> — lpo(k)[? / d*x vsl(xm(x)) (vg(—k’)u;‘, (k') — |o(K))|? / d*x v} (Xu, (x))

81,82

+y (v (—K)v}, (—k) — lgo®)* / d*x vy, (x)v;(x)) (v:, (K)o, (—K) — oK) f d*x v}, (x)vxz(x))

S1, 82

— o5 () D~ v (—lvr(—k) — lpo®)* Y [ (=K = lpo®)I* Y [ug(— k)

@ Y [ dxin

Here, besides Eq. (9), we have used the fact that the
eigenfunctions u,; and v} are orthogonal to the condensate
wave function ¢.

The first term in Eq. (13) denotes the shot noise. The
first correction, C(V(k,K), is proportional to the total particle
number N, and includes terms of second order in fluctuations,
O(|8v|%), describing correlations between the single mode
condensate and the noncondensed part of the wave function
[45]. The second correction, C?(k,K), is of fourth order in
fluctuations, O(|8¥|*), and takes into account correlations

(14b)

(

inside the noncondensed cloud and subleading corrections to
the condensate-quasiparticle correlations contained in C.
These latter are generated by the second term in Eq. (11), and
account for the depletion of the single mode condensate. The
“cylindrically symmetrical” terms in Eq. (14b), proportional
to |@o(k)|? (or |@o(K')|?), stem from correlations between the
condensate and the noncondensed fraction of the gas, and
only appear in the particle number preserving Bogoliubov
approach. The remaining terms in C® describe correlations
inside the noncondensed cloud.
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B. Numerical solution

To evaluate the expectation value (12) and the correlation
functions (14a) and (14b), we first need to compute ¢y by
solving the inhomogeneous Gross-Pitaevskii equations (6)
numerically, and we then have to determine the spectrum of
Lgp. For this purpose, we shall expand all wave functions in
terms of two-dimensional harmonic oscillator eigenfunctions
[46].

As a first step, we introduce the dimensionless variables
[47]

hw X;

_ﬂ’ yi:R_C’

with R. = \/2u/mw? denoting the size of the condensate, and
rewrite all equations in terms of dimensionless parameters.
The dimensionless condensate wave function ¢y of N bosons
can then be expressed as

do(y) = VN R. go(y R,).

This function is normalized to N and, by Eq. (6), minimizes
the dimensionless energy functional

¢

& = / sz(C2|Vy¢0(Y)|2 + (y* = Dlgo(y)I*

8

+ 2uR?

|¢0(Y)|4>-

We can therefore determine it by expanding ¢o(y) in terms of
d = 2-dimensional harmonic oscillator eigenfunctions,

Keut ’\‘2 y2
do(y) = ) are ¥ Ly <—),
k=0 ;

with L; the kth Laguerre polynomial and k. the finite cutoff
introduced for numerical calculations, and then by determining
the coefficients gy via the gradient method.

Having the condensate wave function ¢y at hand, we
determine the Bogoliubov eigenfunctions u,(x) and vs(x) by
solving the eigenvalue equation of Lgp. In order to take into
account the projection Qp in Eq. (7), we modify Lgp by a
“Lagrange multiplier”

) <H+8N|¢0|2+?»P0

- —g N (@))?

gN ¢} )
GP — s

—H — g Nlgol* + 1Py
15)

with Py = |¢o) (@o| denoting the projection to the condensate
wave function and H the mean-field Hamiltonian, given by
Eq. (8). The parameter X is chosen to be large enough to ensure
that the low-energy eigenfunctions of Lp, orthogonal to ¢y,
be clearly separated from the high-energy spectrum, having
finite overlap with the condensate wave function. By keeping
only the eigenfunctions of low eigenvalues, annihilated by Py,
we can determine the excitation spectrum and eigenvectors of
the original projected Bogoliubov operator Lgp.

Similar to ¢y, we determine the eigenfunctions u,(x) and
vy(x) from the eigenvalue equation of L, by expanding
them in terms of oscillator eigenfunctions. The calculation
can be simplified by making use of the rotational symmetry
of the condensate, and treating sectors with different angular
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FIG. 2. Radial part of the dimensionless Bogoliubov eigenfunc-
tions R u, ,(X), R.v,,,(X) plotted as a function of the dimensionless
radial coordinate y = |x|R, for (n,m) = (50,0) (top) and (n,m) =
(40,20) (bottom), corresponding to excitation energies €590/ = 1.6
and e4920/1 = 1.5, respectively. Here R. = ./2u/(m w?) is the
typical size of the condensate, ¢ ™' = 2u/(iw) = 100, and uR?/g =
1250, corresponding to N = 1962 particles and (§N) = 608. In the
top figure, the dimensionless single mode condensate wave function
¢ is also displayed. The anomalous part v, , is nonzero only in
the regime of the condensate, while the normal part u,, of the
wave function can be more extended. For m # 0 both u,,,, — 0 and
v,.m — 0 at the center of the trap.

momenta m separately. Eigenvectors can then be classified
using radial and angular momentum indices, s = (n,m), and
the eigenfunctions can be expanded in polar coordinates as

keut (m) |m] 2
Mn,m(Y) _ Uk img (L) [m] <y_> 7%
(Un,m(y)> B g ( 2’;))6 \/Z Lk ¢ 7
(16)

with LLm‘ denoting the generalized Laguerre polynomial of in-
dices k and |m|. Substituting this expression into the eigenvalue

equations (15) allows us to determine the coefficients “;(1]/?)

and /3,(1',':). Finally, as a last step, we can now take the Fourier
transform of the functions ¢y(y), u,(y), and vs(y) numerically
and evaluate the expectation value (7ix) and the correlation
function C(k,k") [48].

III. RESULTS
A. Wave functions

Typical examples of the condensate wave functions and
the radial parts of the Bogoliubov eigenfunctions are shown
in Fig. 2. The anomalous component of the quasiparticle
wave function, v, ,,(y), originates from the interaction with
the single mode part of the condensate, and its support
is determined by the extension of the latter. In contrast,
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FIG. 3. Radial part of the dimensionless Fourier-transformed
Bogoliubov eigenfunctions u, ,(K)/R., v,.(k)/R. as a function
of the dimensionless wave number |[k|R. for (n,m) = (50,0) and
(n,m) = (40,20), corresponding to excitation energies €59/ = 1.6
and e4920/1 = 1.5, respectively. Here R. = ./2u/(m w?) is the
typical size of the condensate, ¢ ™' = 2u/(iw) = 100, and uR? /g =
1250, corresponding to N = 1962 particles and (SN) = 608. The
anomalous component v, ,(k) has a well-defined peak at wave
number |Kp..| and vanishes for lower |k|, while the normal part
u, (k) is extended in momentum space.

the normal component u, ,(y) is not constrained to the
regime ¢y # 0, and for high-energy quasiparticles it resembles
a harmonic oscillator wave function. Furthermore, as the
corresponding excitation energy &, ,, increases, the interaction
energy becomes negligible compared to the kinetic and
potential energies, leading to a decrease in the amplitude of
Vo ().

The Fourier transforms of the radial parts of the eigen-
functions are plotted as a function of the dimensionless wave
number |k| R, in Fig. 3. The normal component u, , (k)
involves many momenta, and is therefore quite extended
in Fourier space. The Fourier transform of the anomalous
component v, ,(k), however, exhibits a well-defined peak at
Kpeax. This is explained by the fact that v, ,,(y) is constrained
to the regime where the condensate is present, and there it
oscillates with an approximately constant radial wave number,
k ~ kpea_k~

B. Particle number distributions

The expectation values of the particle number 7y, de-
termined from Eq. (12), are plotted in Fig. 4 for different
dimensionless interaction strengths g. The contribution (87ix)
of the noncondensed particles is shown separately. The
expectation values are dominated by the single mode part
of the condensate, giving rise to a large and narrow peak
at small wave numbers, |k| < 1/R.. Increasing g amounts
to more extended condensate wave functions in real space,
and thereby a narrower peak in (7ix). The noncondensed
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FIG. 4. Dimensionless expectation values (fi)/[2 as a function
of |k|ly for N = 1962 and for dimensionless interaction strengths
g =1 and 4, corresponding to (SN) = 145 and 608. Dotted lines
represent contributions of noncondensed particles (87y)/12, with
ly = /i/(mw), multiplied by a factor of 50 for better visibility. The
extension of the condensate increases with increasing g, and the peak
in (f1x) gets narrower. The long tail quasiparticle contributions (67i)
get more pronounced with increasing g.

fraction, (87ik), gives only a negligible correction for small
momenta, |k| < 1/R.. However, it decays approximately as
1/|k|, much more slowly than the central condensate peak,
and dominates the large wave-number behavior, |k| > 1/R,.
For even larger values beyond the inverse healing length,
K| > /mu/h =§&; U (87k) goes rapidly to zero in a universal
fashion as ~1/|k|*[30,49,50] (see also Fig. 5). Although small
in amplitude, the contribution from §ny hosts about ~ 30% of
the particles for the interactions considered here. Increasing g
depletes the condensate further and leads to a gradual increase
in <3ﬁk)

The expectation value of the noncondensed fraction, (§7i),
is investigated in more detail in Fig. 5, where we compare
our numerical results with the momentum distribution of a
homogeneous gas. Decreasing the trapping frequency w, while
keeping the density of the condensate at the center of the
trap and the interaction strength (or, equivalently, the healing
length &, =/7i/,/mt) constant, amounts to a slowly varying
condensate wave function in a wide central region. Therefore,
in this limit, a homogeneous system is expected to yield a good
approximation for the noncondensed fraction (7). To make a
precise comparison, however, we need to keep in mind that ny
is dimensionful, and scales as nj ~ (length)z. In our case, the
size of the condensate R, plays the role of the system size L of a
homogeneous system. Therefore, to recover the homogeneous
result, we need to investigate the dimensionless expectation
value (§71k)/ RZ. Since the density of the condensate at the
center of the trap scales as p(0) ~ N/R?* ~ N{z/é,%, we
calculated (37)/ R? for different ¢ values, while keeping N ¢?
and &, constant. As shown in Fig. 5, with decreasing w, the
height of the peak in (d7ik)/ RZ scales as ~1/w, and the peak
position shifts to smaller wave numbers, such that the high
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FIG. 5. Scaling collapse of (87k)/R?, plotted as a function of k &,
for different { =hw/(2 1)’s, while keeping § = 4 and p(0) constant.
Here R, = /214/(m w?) is the typical size of the condensate, &, =
h/\/m s the healing length with 1 = gp(0), and we used ¢ -1 =125,
¢~''=50, and =" = 100, corresponding to (N, (8N)) = (121,34),
(N, (§N)) = (489,145), and (N, (8N)) = (1962,608), respectively.
The homogeneous momentum distribution, Eq. (17), is also plotted
for comparison, yielding good agreement with the common envelope
function traced out by (67ix)/ Rf as w decreases. Inset: Noncondensed
contribution (87k)/R?, plotted as a function of k R, for § = 4 and
¢~! =25, using the logarithmic scale on both axes. Homogeneous
distribution, Eq. (17), is also shown. For large wave numbers [k| >
1/&;, the universal power law decay ~1/|k|* is recovered.

momentum part traces out a common envelope function, just
the momentum distribution of a homogeneous gas.

The momentum distribution of a homogeneous system of
size R. and density py is given by [51]

1 (kg))® +2
Rem 2\ (ked)[(keD)? +4]

with S,? =hi//mgpo the healing length of the homogeneous
gas, and R?>7 the volume of the cylindrically symmetric
system. To make a quantitative comparison with our numerical
results, plotted in Fig. 5, to Eq. (17), we have chosen pj as
the average density of the inhomogeneous trapped gas. In the
limit of small confining frequency w, the condensate is well
described by the Thomas-Fermi profile, yielding pp = p(0)/2.

We find good agreement with the common envelope func-
tion without any further fitting parameter. The noncondensed
contribution, (87), decays as ~1/|k| for wave numbers
1/R. < |K| < 1/&;,, while for even larger momenta, |k| >
1/&,, the expected ~1/|k|* decay is recovered (see inset of
Fig. 5) [30,49,50].

-1, an

C. Correlation functions

In Sec. IT A, we derived the correlation function C(k,k’) =
(67ixd ) within the particle number conserving Bogoliubov
approach, and separated the leading (~|8v|?) and subleading
(~|8%|*) contributions from the leading shot-noise signal
in the terms CV(k,k’) and C?(k,k'), respectively. These
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contributions, given by Egs. (14a) and (14b), are plotted in
Fig. 6 for wave numbers k' = k and —K for various interaction
strengths g. The variance of the particle number 7i(K) is
given by the sum of the singular shot-noise term and the
diagonal correlations C (k,K), so the diagonal part C (k,K) is not
necessarily positive. However, the off-diagonal part C(k, — k)
develops a more pronounced anticorrelation dip, due to the
depletion of the condensate by quasiparticle excitations.

The nonconnected part (7ix)(7ix) of the correlator (fiksik )
does not distinguish between diagonal and off-diagonal corre-
lations, and follows readily from Fig. 4. Although this large
signal is subtracted in the correlation function, Eq. (13), it
still provides a large background in an experiment and may
therefore be hard to separate it from the more interesting part
of the signal (see Fig. 7). Similar to (s ), the product (fix) (7ix)
exhibits a sharp peak with typical width |kK'| ~ |k| ~ 1/R,,
originating from the single mode condensate, also shown in
Fig. 4. The expectation values (7ix) being invariant under
rotations, (fix)(Ax) is clearly also independent of the relative
directions of k and K’, and is “cylindrically” symmetrical.

The leading contribution C", shown in the top panels
of Fig. 6, accounts for correlations between the single
mode condensate and the noncondensed fraction of the gas.
Consequently, similar to @o(k), CV is constrained to small
wave numbers, and decreases rapidly for |k| > 1/R.. The
function C" exhibits an anticorrelation dip in the off-
diagonal k' ~ —k for wave numbers |k| ~ 1/R.. This dip
dominates the small momentum behavior of C(k,k’), and
gets more pronounced for increasing interaction strength.
The negative correlation observed originates from particle
number preserving processes, where the interaction g creates
quasiparticle pairs from the condensate. The coherent transfer
of these particle pairs between the single mode condensate
and the noncondensed fraction of gas is responsible for the
anticorrelation dip in CV (see also Sec. ITI D) [52].

Notice that this anticorrelation also appears in the standard
grand canonical Bogoliubov approach: there the factors ¢y(k)
and ¢o(K') in the first four terms of Eq. (14a) emerge as the
coherence factors of the condensate, and ¢ and ¢ correspond
to removing or adding a particle to the condensate. Therefore,
these terms can be associated with particle number conserving
processes, captured to a certain degree already by the usual
(nonconserving) Bogoliubov approach.

Finally, the contribution C®, shown in the bottom panels
of Fig. 6, describes correlations within the noncondensed
(more precisely, non-single-mode condensed) cloud, but also
incorporates contributions arising within the particle number
conserving Bogoliubov approach, generated by the term
—|go(K)|> 8N in the expression of ny, Eq. (11). These latter
contributions give rise to a central peak of width ~1/R,,
and yield a small correction to the leading-order correlations
between the single mode condensate and the noncondensed
particles, contained in C (', Correlations within the noncon-
densed fraction, captured by the other terms in C®, result in a
slowly decaying positive correlation tail both in the diagonal,
k' = Kk, and in the off diagonal, k" = —k. This positive corre-
lation is qualitatively similar to the simple Bogoliubov result,
valid for weakly interacting homogeneous condensates [32].
Albeit their contribution is small compared to the amplitude
of the central peaks in C", quantum fluctuations dominate the
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FIG. 6. Different contributions to dimensionless diagonal and off-diagonal correlation functions C(k,k)/ I3 and C(k, — k)/ I3, plotted as a
function of dimensionless wave number |K| [ for fixed N = 1962 and for two different interaction strengths § = 1 and 4. Here Iy = /li/(m )
is the oscillator length, and the interaction values correspond to (§N) = 138 and 608, respectively. The condensate-quasiparticle contribution
C® gives a positive peak in diagonal correlations, but gets negative in the off diagonal, expressing that quantum fluctuations deplete the
condensate. As in a homogeneous system, the quasiparticle-quasiparticle correlation C® is positive both in the diagonal and in the off diagonal.
However, this contribution is much smaller than CV for wave numbers of the order of 1/R,. The amplitude of the correlations C" and C®
increases with increasing interaction strength, as the hybridization of the condensate with virtual excitations gets more pronounced.

correlation function for wave numbers |k| > 1/R,., showing
that the fluctuating part of the ground state consists of pairs
of quasiparticles, as visualized in Fig. 1. The amplitude of
this correlation tail is sensitive to interactions, and is further
enhanced by increasing interaction strength g.
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FIG. 7. Different contributions to dimensionless off-diagonal cor-
relation function C(k, — k)/ 12, plotted as a function of dimensionless
wave number |K|/y for particle number N = 1962 and interaction
strength ¢ = 4, using the logarithmic scale on the vertical axis.
Here Iy = i/(mw) is the oscillator length, and the interaction
corresponds to (§N) = 608. The background signal (k) (A )/}
shows a steep decrease due to the disappearance of the conden-
sate wave function, followed by a slower decay as an effect of
noncondensed particles. The condensate-quasiparticle contribution
C" is constrained to the regime of the single mode condensate,
and converges to zero rapidly for |k| > 1/R.. The quasiparticle-
quasiparticle correlation C® gives a slowly decaying tail, dominating
the correlation function for |k| > 1/R,.

To gain further insight into the structure of C(k,K’), we
have plotted in Fig. 8 the correlation functions CV(k,k’) and
CP(k,K’), as functions of k while keeping k' fixed. For [k'| of
the order of 1/R,, opposite to the positive peak at k = K/, an
anticorrelation dip arises around the wave number k = —K’ in
the condensate-quasiparticle contribution C", in accordance
with the results plotted in Fig. 6. This structure, reflecting
correlations between the quasiparticles and the condensate,
disappears for wave numbers |k’| > 1/R. (bottom row in
Fig. 8), where positive correlations appear for wave numbers
k opposite to k'.

As shown in the bottom row of Fig. 8, for |k'| > 1/R.
two narrow positive peaks can be observed in C® around
wave numbers k = kK’ and —k’. These positive contributions
originate from pair correlations inside the noncondensed
fraction of the gas, and are related to the slowly decaying
positive tail of the diagonal and off-diagonal correlation
function, plotted in Fig. 6. These pair correlations dominate
the tails of ToF images of the condensate.

For small momenta, |K’| ~ 1/R,, however, the correlation
function C® is dominated by a central peak of typical width
~1/R,, originating from subleading, fourth-order corrections
in the fluctuations 8.

D. Simple model for correlations

The structure of the correlation function C(k,k"), discussed
above, provides detailed information on the ground state of the
system. The slowly decaying positive tail around k = —k'’ for
k| > 1/R, is a sign of excitations created in pairs k and —Kk,
characteristic of the familiar two-mode squeezed structure of
the Bogoliubov wave function. On the other hand, the negative
off-diagonal correlations found for |k| < 1/R, show that these
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FIG. 8. Dimensionless correlation functions CV(k,k’)//; and C®(k,k’)/ I3 plotted as a function of dimensionless wave number k Iy, for
fixed values of k'. Here Iy = /fi/(m o) is the oscillator length, and we have used ¢ ~! = 100 and § = 4, corresponding to N = 1962 particles
and (§N) = 608. First row: k' [y = (0.16,0). The condensate-quasiparticle correlation C" is positive if k and k’ point to the same direction,
and gives negative contribution in the k' &~ —k regime. The positive correlation C® is concentrated to small k/, wave numbers, due to
subleading corrections to condensate-quasiparticle correlations contained in C". Second row: k' [y = (2,0). The dominant contribution here is
the quasiparticle-quasiparticle correlation C®, giving negative values for small wave numbers, and narrow positive peaks around k = k' and

—K/, expressing correlations in the noncondensed fraction of the gas.

pairs of excitations are created coherently from the single mode
condensate by quantum fluctuations.

To illustrate the latter point, let us consider the correlations
present in two different simple model states, both showing a
pair structure of excitations. We first consider a pure state
with coherently created excitations, then we calculate the
correlations for a mixed state as well, where this coherence
is lost. We show that a p-wave-like structure of the correlation
function only emerges in the first case, for coherent quantum
fluctuations.

Let us first take the following pure state, with excitations
created in pairs:

|A) = [(by)* — g b6 110).

Here ISS denotes a bosonic creation operator, corresponding to
the condensate with the cylindrically symmetric wave function
@o(r) = @y(r). Similarly, 131 represent bosonic fluctuations
(8y), orthogonal to ¢q. By orthogonality they must have a
p-wave structure in the simplest case: ¢4(r) = gop(r)eii“’,
with (r,¢) denoting polar coordinates. Indeed, we verified
numerically that the excitations with p-wave structure, s =
(n,m = %1), give rise to the dominant contribution to C.
For a small admixture of the ¢, states, g < 1, the state
|A) can be used as a simple model capturing the +k pair
structure of the Bogoliubov ground state, with fixed particle
number 2. Let us now calculate the correlations induced by

|4), Catkk) = (AIYTR)Y (K (k)Y (K)|A), and inspect
the different contributions ordered according to the power of
8-

Using cylindrical coordinates k <> (k,0), we can express
the Fourier transforms of the wave functions ¢; 1 as

@s(K) = (k) =27 /dr r s (r)Jo(kr),

p+(K) = —i g, (k) = —i2m / drr ¢,(r)Ji(kr)e*,

with Jo and J; denoting Bessel functions. By using these
relations, it is easy to see that the ~g0 contribution to
C 4(k,K’) will be cylindrically symmetric. However, the terms
proportional to g will give a contribution

~ 8 ¢s(K)gs (KN, (k) (k') cos(® — 6). (18)

This term has the same p-wave symmetry as the condensate-
quasiparticle correlation function CV, and corresponds to
positive correlations for k = k', but results in an anticorrelation
dip fork = —k'.

The terms proportional to g? can be divided into a
cylindrically symmetric contribution, and an additional term:

~ g2 0, (k) @, (k') cos[2(0 — ). (19)
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As expected from the pair structure built into |A), the d-
wave symmetry of this contribution is consistent with the
large-wave-number behavior of the quasiparticle-quasiparticle
correlation function C®, resulting in positive correlation for
k = +Kk’. At the tails of the ToF image, however, all higher
harmonics contribute to the density profile. Repeating the
preceding analysis with ¢L(r) = @,,(r)e*"¢ for arbitrary m
shows that the term proportional to g? depends on the angles 6
and 6’ as cos[2m(6 — 0”)], still leading to positive correlations
for & — 6’ ~ 7. To contrast this even structure of C® to the
odd p-wave symmetry of CV, we refer to it as a “d-wave”
structure—in spite of the presence of higher harmonics.

In order to show that the contribution given by Eq. (18) can
indeed be identified as a sign of coherent quantum fluctuations,
let us now consider a mixed state, exhibiting a pair structure
similar to |A), described by the density matrix

p = |B)(B| + g*|C)(C],

with |B) = (b})?|0) and |C) = b!.b" |0). The calculation of
the correlation function Tr(p ¥ (k)T (K)¥ (K)¥ (k') shows
that the first-order contribution Eq. (18) disappears, while the
quasiparticle-quasiparticle term, given by Eq. (19), persists.
Thus the relative phase between the two terms in |A), i.e.,
the coherence of the interaction-induced quasiparticle pairs, is
crucial for the anticorrelations observed here and in Ref. [31].

IV. CONCLUSION

We have studied the momentum distribution and the
density correlation function of a two-dimensional, harmon-
ically trapped interacting Bose gas. Concentrating on the
interplay of quantum fluctuations, confinement, and particle
number conservation, we performed the calculations at zero
temperature, using a particle number preserving Bogoliubov
approach.

To characterize the system, we have first calculated the mo-
mentum distribution function for various interaction strengths
g, which is dominated by a central peak originating from the
single mode condensate. The amplitude of the non-single-
mode condensed fraction of the gas is clearly overwhelmed
by this central peak. However, this latter contribution is much
more extended in Fourier space, giving a slowly decaying
tail. Therefore, it can possibly be disentangled from the single
mode condensate peak experimentally.

By studying the correlation function C(k,K’) = (8767 ),
we showed that the anticorrelations between opposite wave
numbers k and —k, experimentally observed for one-
dimensional quasicondensates [31], also appear for higher,
d = 2-dimensional systems. Moreover, by separating C (k,K’)
into two parts, we identified two distinct contributions to the
correlation function, exhibiting different symmetries.

The first contribution, C(V, describing correlations between
the single mode condensate and the noncondensed fraction
of the gas, is responsible for the development of the anti-
correlation dip around k' = —k. This dip seems to originate
from particle number preserving processes, coherently moving
particle pairs between the single mode condensate and the non-
condensed cloud. For our d = 2-dimensional system at 7 = 0
temperature, the spatial extension of the condensate, R., takes
over the role of thermal wave length [, determining the region
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of anticorrelations in a one-dimensional quasicondensate [31],
thus the momentum space extension of the anticorrelation dip
issetby 1/R,.

In addition to the anticorrelations between nearly opposite
wave numbers, k &~ —K’, mentioned above, C(V also contains
forward correlation for particles of similar momenta, k ~ Kk'.
The momentum space correlations between the single mode
condensate and the noncondensed fraction of the gas, CV,
thus exhibit a characteristic p-wave structure, and dominate
the full correlation function C(k,k’) in the region of small
wave numbers |k|, K| ~ 1/R,.

The other part of the correlation function, C®, stems from
correlations within the noncondensed fraction of the gas. It
decays slowly as ~1/|k|> with a positive tail around the
off-diagonal kK’ ~ —k, similarly to the Bogoliubov result for
homogeneous systems. This contribution exhibits a “d-wave”-
like symmetry with positive correlations both in the k' =~ k
and —k regimes, and dominates the full correlation function
in the region of large wave numbers, |k|,|K’| > 1/R,, where
short-distance correlations at scales A << R, are probed.

The anticorrelations observed seem to rely on several
important ingredients: First, they reflect the dominant p-wave
character of the quantum fluctuations, as supported by a careful
analysis of the interaction-induced quantum fluctuations [53].
Second, they evidence the coherent nature of these quantum
fluctuations. Finally, they appear to be related to processes,
where particles move between the single mode part of the
condensate and the fluctuating part, 61. Indeed, all important
features discussed in the previous paragraphs can be captured
by a simple toy model incorporating these three ingredients
(see Sec. IMID). The contributions CV and C® reveal
important information about the structure of the interacting
superfluid state. The even symmetry of C® reflects that
long-wavelength excitations are created in pairs £k from the
single mode condensate, while the p-wave structure of CV
evidences the coherence of the quantum fluctuations.

In actual experiments, one measures the full correlator
(fgAyx) instead of the connected part C(k,K'), yielding a
large, cylindrically symmetric background signal (7ik)(fix').
This results in a background ~N'/? times larger than the
anticorrelation dip in the connected part around 7/R,.. How-
ever, C') exhibits a different, p-wave symmetry, making its
experimental detection possible.

On the other hand, the positive “d-wave”-like tail of C (k,k")
scales as ~(N g). Being of the same order of magnitude as the
background, it could be experimentally accessible. To observe
these correlations, however, one needs to investigate the tails
of the ToF image with momenta |k| 2 1/R..
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