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The eigenstate thermalization hypothesis provides one picture of thermalization in a quantum system by looking
at individual eigenstates. However, it is also important to consider how local observables reach equilibrium
values dynamically. Quench protocol is one of the settings to study such questions. A recent numerical study
[Bañuls, Cirac, and Hastings, Phys. Rev. Lett. 106, 050405 (2007)] of a nonintegrable quantum Ising model
with longitudinal field under such a quench setting found different behaviors for different initial quantum states.
One particular case called the “weak-thermalization” regime showed apparently persistent oscillations of some
observables. Here we provide an explanation of such oscillations. We note that the corresponding initial state has
low energy density relative to the ground state of the model. We then use perturbation theory near the ground state
and identify the oscillation frequency as essentially a quasiparticle gap. With this quasiparticle picture, we can
then address the long-time behavior of the oscillations. Upon making additional approximations which intuitively
should only make thermalization weaker, we argue that the oscillations nevertheless decay in the long-time limit.
As part of our arguments, we also consider a quench from a BEC to a hard-core boson model in one dimension.
We find that the expectation value of a single-boson creation operator oscillates but decays exponentially in time,
while a pair-boson creation operator has oscillations with a t−3/2 decay in time. We also study dependence of the
decay time on the density of bosons in the low-density regime and use this to estimate decay time for oscillations
in the original spin model.
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I. INTRODUCTION

Pioneered by Boltzmann, statistical mechanics has been
hugely successful in describing our physical world with many
degrees of freedom. The key idea is that for a thermodynam-
ically large system, we only need few parameters to describe
the system and do not need to know details of the microscopic
dynamics. In classical physics, it is known that the chaotic
dynamics in the phase space leads to ergodicity, hence the
validity of statistical mechanics. On the other hand, in quantum
physics, it was not clear how to draw the connection between
quantum mechanics and statistical mechanics. Two decades
ago, Srednicki [1] and Deutch [2] independently proposed a
mechanism to illustrate how statistical mechanics can emerge
in a quantum system. This hypothesis, known as the eigenstate
thermalization hypothesis (ETH), essentially proposes that for
any “thermalizing” Hamiltonian, each eigenstate at a finite
energy density itself is a superposition with random phases
in some local observable’s eigenbasis. Therefore, when one
does any local measurement, the eigenstate itself can already
produce what looks like an ensemble average, without consid-
ering time averages required in classical physics. Many studies
have been published to support this conjecture [3–7] and its
connection to microcanonical and canonical ensembles [8].

While the ETH can provide an explanation or a criterion to
determine if a system will thermalize or not at infinite time,
how the system evolves into such an “equilibrium” or even
thermalizes as a function of time is another important and chal-
lenging question. The increasing interest in nonequilibrium
dynamics of quantum many-body systems is also stimulated
by cold atom experiments [9–14], where one can control
the initial state and the dynamical Hamiltonian and study
real-time dynamics. On the other hand, theoretical studies to

date rely heavily on numerical studies [15–19]. Analytical
results are limited primarily to integrable lattice models
[20–25], in which the equilibrium ensemble is believed to
be described by a generalized Gibbs ensemble, and continuum
field theory near the critical point [26,27]. Models with weak
integrability-breaking interactions have also been studied,
where a “prethermalization” stage was established at the
intermediate time scale before the eventual thermalization
[28–32]. Prethermalized states of Bose gases and Fermi gases
close to Feshbach resonance were considered in Refs. [33,34].
We refer readers to Refs. [35,36] for recent more comprehen-
sive reviews.

Despite the widely held belief that a nonintegrable model
will generally thermalize, a recent numerical study by Bañuls,
Cirac, and Hastings [37] observed some unusual and interest-
ing behaviors. The authors used an infinite-matrix-product-
state (infinite-MPS) technique [38] to study the following
quench problem. Starting from various initial product states,
one measures local observables as a function of time evolving
under a generic nonintegrable quantum spin Hamiltonian,

H = −J

L∑
j=1

σ z
j σ z

j+1 − h

L∑
j=1

σ z
j − g

L∑
j=1

σx
j . (1)

For an initial state where all spins are pointing in the ŷ

direction, |Y+〉, the behavior is consistent with the conven-
tional thermalization wisdom. However, there are some initial
states that display apparently different behaviors. One type of
behavior occurs for initial states with spins pointing close to the
ẑ direction, |Z+〉, where observables show strong oscillations
without damping for the entire time where the numerical
simulation is reliable; since the time-averaged observables
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apparently approach the thermal values, this behavior was
called weak thermalization. A subsequent work [39] using
an improved “hybrid algorithm” also found similar persistent
oscillations starting from a different initial state |X−〉. On the
other hand, another type of behavior occurs for initial states
close to |X+〉, where a local observable σx

j apparently does
not thermalize, also upon time averaging.

In this paper, we provide a simple quasiparticle explanation
for the strong oscillation behavior observed in the weak-
thermalization case in Ref. [37]. We focus on the |Z+〉 initial
state and argue that it is actually close to the ground state
of the above Hamiltonian, and the oscillation frequency can
be essentially understood as the quasiparticle energy above
this ground state. This initial state has a finite energy density
above the ground state and hence has a finite density of such
quasiparticles. However, when the quasiparticle density is
small, the quasiparticles are effectively weakly interacting,
and the oscillations in the observables can persist to long
times. Armed with this quasiparticle description of the origin
of oscillations, we can then argue that the interactions among
the quasiparticles will make the oscillations decay eventually.

The quasiparticle description developed here also leads us
to consider the following quench problem, which is interesting
on its own. We argue that the quench problem starting
from |Z+〉 can be viewed approximately as a quench from
a Bose-Einstein condensate (BEC) state evolving under a
hard-core boson Hamiltonian. The observable of interest can
be viewed as a BEC order parameter, which exhibits the strong
oscillation.

In fact, the above quench setting is essentially close to
a quench from a magnetically ordered state in the quantum
Ising chain [20–23,36], where it has been established that the
magnetization order parameter decays exponentially in time.
The decoherence time of the order parameter was obtained
analytically, and the mechanism for the decoherence can be
understood as a destructive interference from Jordan-Wigner
fermions with all momenta that are produced by the action of
the order parameter field, which is nonlocal in terms of these
fermions.

The BEC quench setting has been studied experimentally
[9] and theoretically [24,40]. The previous studies focused
on the evolution of a BEC state with a fixed number of
particles, which is natural in experiments but also makes the
evolution of the BEC order parameter more challenging to
study. Indeed, to study 〈bj (t)〉 at time t in this setting, one needs
to consider boson correlation 〈b†j (t)bj+�(t)〉 in the limit where
the separation � → ∞ first. More specifically, under hard-core
boson Hamiltonian, the correlation function in the Jordan-
Wigner fermion representation becomes an infinite-length
string operator, which is a formidable calculation without
Wick’s theorem, as is the case for simple BEC states.

We perform essentially the above correlation function
calculation upon using a further trick where we replace the
simple product BEC initial state with a different state in
the same phase but satisfying Wick’s theorem for the Jordan-
Wigner fermions. Under these further choices of the initial
state and the evolution Hamiltonian, we show that the BEC
order parameter 〈bj (t)〉 decays exponentially in time. We also
study how the decay rate depends on the density of particles
in the initial state. From the analogy with the quench in the

quantum Ising model, we conjecture that similar expressions
as in Refs. [22,36] for the decoherence time and the oscillation
frequency will be applicable to our BEC quench setting.
We find that our numerical results are consistent with the
conjectured expressions. In particular, we find that the decay
rate (i.e., inverse decoherence time) vanishes as ρ2 ln( 1

ρ
) at

low densities ρ.
We remark that a recent work [41] suggested a possible

physics that could dramatically alter the conventional “light-
cone” picture of the quench problem. The Hamiltonian Eq. (1)
is integrable for vanishing longitudinal field, h = 0, and
thermalizes readily to the corresponding generalized Gibbs
ensemble. When the transverse field is below critical, |g| < 1,
the propagating quasiparticles can be thought of as individual
domain walls in the ferromagnetic order. However, for nonzero
longitudinal field, |h| > 0, these domain walls are confined,
which leads to a dramatic suppression of the light-cone
propagation and the entanglement entropy growth observed
in Ref. [41]. For small h, the true quasiparticles above the
ground state can be thought of as “mesons”, which are bound
(confined) states of two domain walls. Reference [41] calcu-
lated masses of stable such mesons for small h, and found that
observables show apparently persistent oscillations with fre-
quencies set by these masses. Other authors, Refs. [26,27], also
proposed that oscillation frequencies in quantum quenches
in near-critical one-dimensional (1D) systems are determined
by quasiparticle masses. In this respect, our quasiparticle
explanation of oscillations in the weak-thermalization regime
is close in spirit to Refs. [26,27,41]. The microscopic details
of the true quasiparticles are different in our regime with fairly
large both g and h parameters, but this is a quantitative rather
than qualitative difference with Ref. [41]. Our emphasis in this
paper is more on the generic statement that the low-energy
spectrum can be described in terms of particlelike excitations
(“quasiparticles”), whose properties can be extracted, e.g.,
from ED studies, and that we should always think in terms
of such quasiparticles when the initial state has low energy
density over the ground state. Our main development is the
(approximate) picture of the initial state as a BEC of the
quasiparticles and how this system eventually thermalizes
(the “condensate” decays), which we argue implies that the
physical observables cannot have persistent oscillations at long
times.

The paper is organized as follows: In Sec. II, we compare
our finite-size exact diagonalization (ED) results to the infinite-
MPS results of Ref. [37]. The finite-size ED spectra enable
us to identify the origin of the oscillation frequency, which
we argue is essentially the energy of the quasiparticle. In
Sec. III, we use Schrieffer-Wolff (SW) transformation to
derive an effective Hamiltonian for the quasiparticles, which
looks like a hard-core boson Hamiltonian with additional
correlated hopping and interactions. We further argue that
in the SW-transformed picture, the initial state becomes a
state with a nonzero BEC order parameter with low particle
density, while the observables of interest will have the main
components changing the particle number by 1, which is the
source of the oscillation frequency. Components changing the
particle number by more than 1 appear in higher-order. Based
on this identification, we further simplify the whole problem
as a quench from a BEC state evolving under an integrable
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hard-core boson Hamiltonian with hopping only, which we
study separately in Sec. IV. We consider two different initial
states, both with nonzero BEC order parameter, in Secs. IV A
and IV B. We show that the BEC order parameter decays
exponentially in time. On the other hand, observables that
change the particle number by 2 have power-law decay. The
drastic difference arises because the latter observables have a
local representation in terms of the Jordan-Wigner fermions
while the former have a nonlocal string piece. Section IV C
uses the BEC quench results to make more quantitative
estimates for the original spin problem. We indeed find that
the apparent persistent oscillation is due to the long lifetime as
a result of low quasiparticle density, and we propose that one
needs to simulate to a longer time to see the decay. In Sec. V,
we briefly comment on our study of the “nonthermalizing”
regime of Ref. [37] using similar perturbative analysis and
on its limitations. We conclude in Sec. VI with interesting
outstanding questions raised by our work.

II. FINITE-SIZE EXACT DIAGONALIZATION
COMPARISON AND IDENTIFICATION OF THE

OSCILLATION FREQUENCY

To get some understanding of the observed weak-
thermalization behavior, we first study the same quench
protocol as in Ref. [37] using exact diagonalization (ED).
More specifically, we prepare the initial state as a product
state where all spins are pointing in the ẑ direction, |Z+〉,
and study its evolution under the Hamiltonian Eq. (1) with
parameters J = 1 (taken as the energy unit), h = 0.5, and
g = −1.05. We consider a chain of length L with periodic
boundary conditions, j + L ≡ j . Throughout, we set h̄ = 1.

Figure 1 shows comparisons of some local observables
with the infinite-system results from Ref. [37]. Somewhat
unexpectedly, our finite-size results for system size L = 18
capture the infinite-system results very closely up to time
t ≈ 14, which almost covers the full time window t � 18
displayed in Ref. [37]. By comparing ED results for a range
of sizes between L = 12 and L = 18, we observe that the
time trecurr(L) beyond which the measurements deviate from
the infinite-system results increases with the system size. We
expect that this time is roughly the time for the information
to spread to the whole system, and beyond this time the
“recurrence” phenomenon occurs. For our largest size L = 18,
the recurrence does not happen until trecurr ≈ 14.

As a result of the close similarity between the ED and
infinite-system results, we can understand the oscillation
behavior from our ED spectra. First of all, we observe that
the oscillation frequency is essentially equal to the energy
difference between the ground state and the first excited state.
In our calculation with L = 18, this energy difference is �E =
E1 − E0 ≈ 3.6401. We also note that even in our largest L =
18 system, the initial state actually has |〈ψini|ψ0〉|2 ≈ 42%
weight on the ground state and |〈ψini|ψ1〉|2 ≈ 21% weight on
the first excited state, as shown in Fig. 2. Thus, one may think
that the finite-size results are mainly determined by these large
weights.

On the other hand, in an infinite system, the initial state has a
finite energy density above the ground state. Hence, the expan-
sion of the initial state in terms of the eigenstates of the infinite

FIG. 1. (a)–(c) ED calculations of the evolution of some observ-
ables for several system sizes compared to infinite-MPS results from
Ref. [37] marked as L = ∞ (we are grateful to the authors of Ref. [37]
for sharing their data with us). For smaller L, visible deviations
from the L = ∞ results appear at smaller t , which we associate with
recurrence phenomenon in finite systems. Close agreement of our
ED results with the infinite-MPS results over a large time window
allows us to identify the frequency of the oscillations from finite-size
spectra, which we argue is essentially the quasiparticle energy at zero
momentum.
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FIG. 2. Weights of the initial state |Z+〉 on the eigenstates |E〉
for our largest ED study with L = 18. The figure only shows the
weights on states with momentum quantum number K = 0, since the
Hamiltonian is translationally invariant and the initial state has this
quantum number (also, only states that are invariant under inversion
have nonzero weights). We see that even for our largest size, the
majority of the weight is still on the ground state and the first
excited state, which is expected since 〈Z+ |H |Z+〉 = −1.5L = −27
is close to E1 for this size. Insets: The system size dependence of the
weights on the ground state |E0〉 and the first excited state |E1〉
from L = 12 to L = 18. In the thermodynamic limit, the weights
on these two states should go to zero, since |Z+〉 has finite energy
density above the ground state. Nevertheless, E1 − E0 is defined in
the thermodynamic limit and has a meaning of the quasiparticle gap,
controlling oscillations of the observables as in Fig. 1 over extended
time interval.

system will also be dominated by eigenstates with finite energy
density above the ground state. In particular, the weights
|〈ψini|ψ0〉|2 and |〈ψini|ψ1〉|2 will decay to zero exponentially
in system size. However, Ref. [37] still found oscillations with
apparently the same frequency in the infinite system. A better
picture is that the energy difference �E = E1 − E0 in the
finite-size system can be understood as a quasiparticle energy,
which is defined also in the thermodynamic limit (in fact,
�E is essentially converged to the quoted digits starting from
L = 10). The ground state is the vacuum of the quasiparticles,
while the first excited state has one quasiparticle at momentum
k = 0. Therefore, the oscillation frequency in the finite-size
system can be understood as the creation energy of the k = 0
quasiparticle. Note that close to the ground state, any two states
that differ by adding one such quasiparticle will have energy
difference set by this quasiparticle energy. If the corresponding
matrix element for an observable is large and if the amplitudes
of these states in |ψini〉 are significant, they will contribute to
the observable with the same oscillation frequency. Thus, this
oscillation frequency is more robust than just the energy dif-
ference between the ground and first excited states in the finite
system. We can therefore infer that the quasiparticle excitation
energy is the apparent oscillation frequency of the infinite-
system calculation. (As we will see in Sec. IV, this is strictly
true only in the low quasiparticle density limit, while in general
the frequency will obtain density-dependent corrections.)

We can also make a rough estimate of the quasiparticle
density in the initial state. The average energy density
is 〈Z+ |H |Z+〉/L = −J − h = −1.5. With the quasiparti-
cle energy �E = 3.6401 and ground-state energy density
E0/L ≈ −1.722 (estimated from the L = 18 ED calculations
and essentially converged in L to the quoted digits), we can
bound the quasiparticle density as ρ � 0.061. This clearly
demonstrates that the initial states in the weak-thermalization
regime in Ref. [37] are states close to the low-energy part of
the spectrum. We can say that in this quasiparticle description,
such initial states have a low density of quasiparticles. In this
case, even though the spin model is a generic nonintegrable
model, the specific quench puts the system into a regime
close to integrability in terms of the low-energy quasiparticles,
which we believe is responsible for the observed weak-
thermalization behavior.

In statistical physics, we routinely calculate properties
of many-body systems at low (but finite) temperatures by
approximating the low-energy spectrum as a gas of nonin-
teracting quasiparticles. It is natural to ask if this picture can
be used for studying quantum dynamics of states at low (but
finite) energy density. There is clearly some time scale over
which the simple noninteracting picture gives sensible results,
while here we want to focus on the asymptotic long-time
behavior. A common intuition is that in a generic nonintegrable
case, the residual interactions of the quasiparticles lead to
eventual thermalization in the system, and this approach to
thermalization can be studied by some semiclassical kinetic
theory for weakly interacting quasiparticles. Our goal in the
remainder of the paper is more modest. We want to show
that the oscillations in the above weak-thermalization example
eventually decay, using as much as possible only precise
quantum-mechanical arguments. We will still be making some
approximations but intuitively only in directions that make
thermalization weaker, so our findings of the eventual decay
under these approximations should translate to only stronger
thermalization without the approximations.

III. PERTURBATIVE PICTURE OF THE QUASIPARTICLES
AND TRUNCATED SCHRIEFFER-WOLFF SETUP FOR
THE ENTIRE SPECTRUM AND QUANTUM DYNAMICS

A. Low-energy quasiparticles

To have a more precise formulation of the quasiparticle
picture, we use a perturbative local Schrieffer-Wolff trans-
formation [42,43] near an exactly solvable limit where these
quasiparticles are readily identified. The corresponding SW-
rotated picture can be viewed as an effective Hamiltonian for
the quasiparticles, and we can also study the initial state and
its evolution. We take

H0 = −J

L∑
j=1

σ z
j σ z

j+1 − h

L∑
j=1

σ z
j (2)

as our exactly solvable limit and treat

T = −g

L∑
j=1

σx
j (3)
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as our perturbation. This is not necessarily the best perturbative
starting for our model parameters with sizable g but will suffice
for the qualitative picture.

H0 is diagonal in the σ z basis. Its energy levels are specified
by the number Nflip of the spin-down sites, σ z

j = −1, and the
number Ndw of the domain walls, σ z

j σ z
j+1 = −1. The ground

state has no spin-down sites and no domain walls, which is the
|Z+〉 state, while a state with Nflip,Ndw has energy 2hNflip +
2JNdw above the ground state. Note that Nflip and Ndw are
not completely independent. However, what is important later
is that the number of different energy “sectors” specified by
Nflip,Ndw is bounded by L2 while the total number of states
is growing as 2L. Hence, many of the sectors are necessarily
highly degenerate, particularly in the middle of the spectrum.
In cases where the density of spin flips is small and they are
well separated from each other, we can think of an isolated
spin flip as a quasiparticle with energy 2h + 4J , but there are
also quasiparticles with more structure. Abusing the language
somewhat, we will refer to the different Nflip,Ndw sectors as
having different quasiparticle numbers.

The action of the perturbation term T changes the number
of quasiparticle excitations and also introduces their dynamics.
The mixture of these effects is what makes the analysis very
complicated. To partially simplify the analysis, we find a
unitary transformation eiS order by order to eliminate the
effect of changing the excitation numbers, which gives us
dynamical Hamiltonians that keep the number of quasiparticle
excitations fixed (i.e., act within each sector Nflip,Ndw). The
detailed calculation is presented in Appendix A.

To second order, we obtain the effective Hamiltonian as

H ′ = eiSHe−iS = H0 + Hhop + Hconfig + Hother, (4)

with

Hhop =
(−g2

2h
+ g2

2h + 4J

) ∑
j

P
↑
j−1(σ+

j σ−
j+1 + H.c.)P ↑

j+2

+
(

g2

2h
− g2

2h − 4J

) ∑
j

P
↓
j−1(σ+

j σ−
j+1 + H.c.)P ↓

j+2,

Hconfig = − g2

2h

∑
j

(
P

↑
j−1σ

z
j P

↓
j+1 + P

↓
j−1σ

z
j P

↑
j+1

)

− g2

2h + 4J

∑
j

P
↑
j−1σ

z
j P

↑
j+1

− g2

2h − 4J

∑
j

P
↓
j−1σ

z
j P

↓
j+1,

where P
↑,↓
j ≡ (1 ± σ z

j )/2 are projectors to spin-up and spin-
down states respectively and σ±

j ≡ (σx
j ± iσ

y

j )/2 are raising
and lowering operators respectively. The Hhop terms can
be viewed as correlated hopping for the excitations. As
discussed previously, our initial state |Z+〉 is close to the
ground state, i.e., vacuum of quasiparticles. Therefore, we
expect the quasiparticles are effectively the down spins, and
the Hhop terms move such flipped spins, with additional
dependencies on the neighboring spins. The Hconfig terms
describe additional contributions to the “classical” energy

FIG. 3. The energy difference between the first excited state and
the ground state as a function of g. This gap can also be understood
as quasiparticle excitation energy. The ED result is from system size
L = 17 (the ED gap estimates are essentially already converged for
L � 10). We also show perturbative SW result at order O(g2), Eq. (6).
The exact and perturbative calculations agree well at small g and
deviate more at larger g, but the qualitative picture of the quasiparticle
is robust since the gap does not close over the range of g shown.

of the spin configuration, which can be viewed as some
density-density-type interactions of the quasiparticles. Note
that the quasiparticles also have effective hard-core exclusion
interaction. As detailed in Appendix A, Hother contains only
contributions of order O(g3), including terms that preserve the
excitation numbers and also terms that change the excitation
numbers. We will make an approximation where we drop the
Hother terms (more discussion below) and call the resulting
Heff as “effective Hamiltonian”, which acts separately in each
sector. Thus, by eliminating the leading excitation-number-
changing effect in our original Hamiltonian and dropping
the Hother terms, the dynamics now can be roughly viewed
as hard-core bosons with hopping and interaction in the
dilute limit, where σ z

j = −1(+1) corresponds to the presence
(absence) of bosons.

For excitations that are widely separated spin flips, we need
to consider only the first term in Hhop and the first and second
terms in Hconfig. The single quasiparticle energy at momentum
k is readily evaluated as

εk = 2h+4J−g2

h
+ 2g2

h + 2J
−

(
g2

2h
− g2

2h + 4J

)
2 cos(k).

(5)

The quasiparticle energy at zero momentum, which is relevant
for the oscillations in the quench problem of interest, is

εk=0 = 2h + 4J − 2g2

h
+ 3g2

h + 2J
. (6)

Figure 3 shows the excitation energy as a function of g in
the range between 0 and −1.05. The perturbative calculation
is accurate for small |g| � 0.25 but becomes less accurate
at larger |g|. In particular, this second-order calculation
would give εk=0 ≈ 1.913 at g = −1.05, while the true gap
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�E = 3.6401 is almost two times larger. This quantitative
difference is not surprising given that the assumption g � h,J

is clearly not satisfied in this case (particularly since energy
denominators 2h appear when treating the sector with one
quasiparticle perturbatively in g). However, the true gap
remains large in this range of g, and the quasiparticle picture
developed perturbatively in g remains qualitatively correct (it
can be further improved if needed, but the presented picture is
already sufficient for our discussion).

By examining the low-energy ED spectra for g = −1.05,
we find that the band of states closest to the ground state is well
described by εk = εk=0 + 2Jeff[1 − cos(k)] with Jeff ≈ 0.44.
The effective hopping amplitude again differs quantitatively
from the perturbative estimate in Eq. (5), but our overall picture
of the quasiparticles at low energy is robust.

We finally note that the picture of weakly interacting spin
flips is not accurate here. Two spin flips can lower their
energy by roughly 4J if they are next to each other, i.e.,
there is a significant attractive interaction between them. In
the SW perturbative treatment, the next sector in energy
after the single-spin-flip sector (Nflip = 1,Ndw = 2) has two
flipped spins that are next to each other (Nflip = 2,Ndw = 2)
but otherwise can be anywhere on the chain. The effective
Hamiltonian to second order in g gives energy 4h + 4J +
2g2/(h + 2J ) and no dispersion for these states, while of
course some dispersion will develop at higher order. In fact,
by examining the low-energy ED spectra for g = −1.05, we
find the single-spin-flip band of L states covering energy
window [�E,5.31] above the ground state (�E = 3.6401
is the gap), and then another band of L states covering
energy [5.90,6.84] and separated from the next set of states
starting at ≈2�E = 7.28. The second band can be viewed as
corresponding to a stable bound state of two spin flips, which
is hopping around with an amplitude about two times smaller
than the single spin flip. On the other hand, the states above
2�E can be viewed as corresponding to the two-spin-flip
continuum with well-separated spin flips. We can in principle
view the bound state as another quasiparticle in the system at
low energy and now think about dilute gas of these as well
as single-spin-flip quasiparticles, adding more accuracy to the
description but also much more complexity. However, we will
not use such details below and will proceed with a more crude
picture and language of quasiparticles as if they were only
single-spin flips. This is an OK approximation at low energy
density but can become quantitatively inaccurate at somewhat
higher density.

B. Truncated Schrieffer-Wolff transformation for dynamics

While our original motivation for using the Schrieffer-
Wolff transformations was to understand the low-energy
quasiparticles, the transformation as defined acts on the entire
Hamiltonian and the entire spectrum. We can boldly try to
use the rotated H ′ with the Hother terms omitted and study
the quantum dynamics under this effective Hamiltonian. By
doing so, we are essentially postulating an emergent integral
of motion, namely the quasiparticle number conservation, or
more precisely, preservation of the sector identities. Recent
works Refs. [44,45] conjectured possible emergence of such
integrals of motion in translationally invariant systems as

a (much weaker) analog of many-body localization physics
without underlying disorder. However, this conjecture is far
from being established, and we will not try to prove or disprove
it here. If such an emergence of the new integral of motion were
true, this would likely mean absence of full thermalization in
the present context, as one would then expect “equilibration”
to an appropriate generalized Gibbs ensemble treating the new
integral of motion. Nevertheless, we will see that even in this
case the oscillations in the observables still decay, i.e., the weak
thermalization turns to a more conventional thermalization at
long times. If the conjecture is not true, then our calculations
in the truncated SW scheme can be viewed as providing
sufficient mechanisms for thermalization, while in the full
picture without the new integral of motion the thermalization
is likely to proceed only faster.

Keeping the above remarks in mind, we now describe
calculations in the truncated SW-rotated picture. The time evo-
lution of an observable Ô becomes 〈ψini|eiHt Ôe−iH t |ψini〉 =
〈ψ ′

ini|eiH ′t Ô ′e−iH ′t |ψ ′
ini〉, where Ô ′ = eiSÔe−iS and |ψ ′

ini〉 =
eiS |ψini〉 are the appropriately rotated operator and initial state.

Consider first observables in the rotated picture. For the
observables that we study,

(
σx

j

)′ ≈ σx
j + O(g), (7)(

σ
y

j

)′ ≈ σ
y

j + O(g), (8)

(
σ z

j

)′ ≈ σ z
j − g

h

(
P

↑
j−1σ

x
j P

↓
j+1 + P

↓
j−1σ

x
j P

↑
j+1

)
− g

h+2J
P

↑
j−1σ

x
j P

↑
j+1 − g

h−2J
P

↓
j−1σ

x
j P

↓
j+1 + O(g2).

(9)

Of course, (σx
j )′ has an O(1) component onto the operator σx

j

that changes the quasiparticle number by 1 and hence “detects”
the quasiparticle energy, and similarly for (σy

j )′. On the other
hand, the leading contribution to (σ z

j )′ does not change the
quasiparticle number. However, we can see that in the rotated
picture at order O(g), this observable also contains σx

j , which
detects the quasiparticle energy. The above expressions explain
why the oscillations in 〈σx

j (t)〉 and 〈σy

j (t)〉 in Fig. 1 have
roughly similar amplitudes but are shifted in phase by π/2,
while the oscillation in 〈σ z

j (t)〉 has a smaller amplitude and is
in phase with 〈σx

j (t)〉 [indeed, the dominant term in (σ z
j )′ in

the regime of low quasiparticle density is − g

h+2J
P

↑
j−1σ

x
j P

↑
j+1

and g < 0.] Thus, our quasiparticle picture of the origin of
oscillations can explain even finer details in the numerical
results. Finally, we note that operators (σx

j )′ and (σy

j )
′

at
next order contain contributions that create two spin flips
[see Eqs. (A9) and (A10) for explicit formulas]. Hence, when
discussing observables in the rotated SW picture, we should
also consider operators that change the excitation number
by 2.

Consider now the initial state in the rotated picture. Since iS

is a local operator containing spin-flip terms (see Appendix A
for explicit formulas), we can think of |ψ ′

ini〉 = eiS |ψini〉
roughly as a product state where the spin on each site is rotated
a little away from the ẑ direction. In terms of hard-core bosons
representing the spin flips (quasiparticles), this state of course
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FIG. 4. Properties of the SW-rotated initial state |ψ ′
ini〉 =

eiS |ψini〉, with iS = iS[1] + iS[2] calculated to second order in g

(see Appendix A for details). The figure shows expectation values
of the particle density b

†
j bj ≡ (1 − σ z

j )/2 and BEC order parameter

b
†
j ≡ (σ x

j − iσ
y

j )/2. The particle density ρ ≈ 0.05 is very low and
close to the estimate based on the average energy density in the initial
state and the quasiparticle gap.

has some small density of bosons, since nj = (1 − σ z
j )/2.

More crucially, it is actually a Bose-Einstein condensate
(BEC) state, since the rotated spin state can be written in
the boson language as, approximately,

∏
j (α + βb

†
j )|0〉, where

b
†
j ≡ (σx

j − iσ
y

j )/2 (denoted σ−
j earlier and in Appendix A).

To get a more quantitative characterization of the initial
state in the rotated picture, we calculated |ψ ′

ini〉 = eiS |ψini〉 for
system sizes L = 6 to L = 13, using iS calculated to second
order in g from Appendix A and applying true unitary eiS .
Figure 4 shows measurements of the boson density and also
of the BEC order parameter as a function of inverse system
size 1/L. The values are essentially converged in the first
four nonzero digits. We can see that the density is roughly
ρ ≈ 0.05, consistent with our previous estimate and our picture
of diluteness of quasiparticles. Furthermore, the initial state
indeed has a nonzero BEC order parameter.

To gain some intuition about the truncated SW picture,
we performed numerical calculations in the truncated SW
picture as follows. For more accuracy, we start with the rotated
state |ψ ′

ini〉 = eiS |ψini〉 and observables Ô ′ = eiSÔe−iS using
true unitary eiS with iS = iS[1] + iS[2] calculated to second
order in g. Note that an exact calculation of eiS is possible
on small sizes. However, for the dynamical Hamiltonian, we
use the perturbatively developed H ′ omitting Hother terms. Of
course, if we used exactly rotated H ′ = eiSHe−iS , everything
would be identical to the original calculation with the unrotated
initial state, observables, and Hamiltonian, while the setup
where we use the truncated H ′ allows us to gauge the effect
of the truncation. In principle, the effective Hamiltonian
completely separates the different energy scales of the original
problem. Thus, the “large” energy scales h and J determine
only the spacing between the sectors and would enter only
the frequency of the oscillations, while all the processes inside
each sector—kinetic energy, effect of hard-core exclusion, and

FIG. 5. Comparisons of the dynamics from ED and second-order
SW for two different parameters for system size L = 13. (a) g =
−0.5. The perturbative calculation is still quantitatively accurate at
short time. The difference between ED and SW mostly comes from
the difference between the exact and perturbative quasiparticle energy
gap, resulting in the different oscillation frequencies. (b) g = −1.05.
The quantitative comparison becomes inaccurate at this parameter.
For example, the oscillation frequency in the SW calculation is almost
half of the ED calculation. Nevertheless, the SW calculation still
captures the qualitative behavior observed in the ED calculation.

explicit interactions—are now controlled by one energy scale
O(g2) (here for the sake of simplicity we ignore the difference
between effects of h and J and imagine them as giving one
energy scale).

Figure 5 compares the second-order SW calculation de-
scribed in the previous paragraph with the ED result, for system
size L = 13 and different parameters. We find persistent oscil-
lations on the time scales similar to those in Fig. 1. As shown
in the figure, for g = −0.5, the perturbative description is still
roughly quantitatively accurate. The oscillations are somewhat
more regular, consistent with the expectation that the trunca-
tion reduces decoherence effects. The main difference is due to
the frequency difference, as the perturbative calculation of the
quasiparticle gap has a small error compared to the ED gap.
On the other hand, for g = −1.05, the SW calculation deviates
significantly from the ED calculation, which is not surprising,
since the parameter g is not small anymore. Nevertheless, the
ED result of g = −1.05 is still qualitatively similar to the ED
result of g = −0.5, i.e., both have persistent oscillation with
frequency given by the quasiparticle energy gap. Moreover,
the quasiparticle gap has not closed at g = −1.05 as shown in
Fig. 3. Therefore, we conjecture that the truncated Hamiltonian
obtained from SW transformation is still suitable to describe
the dynamics, however, with the parameters understood as
the renormalized values instead of values calculated from the
perturbative formula directly.

To conclude the above discussion, the strong oscilla-
tion behavior is mainly coming from the measurement of
〈ψ ′

ini|b†j (t)|ψ ′
ini〉 in the boson language. Effectively, this is the

evolution of the BEC order parameter with the dynamical
Hamiltonian of interacting bosons and the initial BEC state
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as we discussed. The fate of the oscillations is not an entirely
trivial problem, as can be seen from the following consid-
erations. In fact, in the extremely simplified case where the
initial state has BEC and the dynamical Hamiltonian is purely
boson hopping H = −J

∑
j (B†

jBj+1 + H.c.) + W
∑

j Nj =∑
k[W − 2J cos(k)]B†

kBk without interaction and without
hard-core constraint, the evolution indeed exhibits undamped
oscillation with frequency ω = W − 2J . Note that here Bj

are canonical (not hard-core) bosons and Nj = B
†
jBj (we

used capital letters to distinguish from hard-core bosons
used in the next section). Furthermore, allowing interactions
among quasiparticles of the type typically done in the
Landau’s Fermi-liquid theory, Hint = 1/(2L)

∑
k,p Vk,pNkNp,

leads only to shifting the oscillation frequency by an amount
(1/L)

∑
p V0,p〈Np〉, where 〈Np〉 is the expectation value in the

initial state, but not to decay of the oscillations at long times.
Only when we allow more general interactions, we expect that
the BEC order parameter will start to damp. In the next section,
we will show that already the hard-core exclusion will lead to
a decrease of the oscillations at long times.

IV. QUENCH OF BEC STATE TO SOLVABLE HARD-CORE
BOSON HAMILTONIAN

As discussed in the previous section, the dynamics of the
quantum spin chain after removing the excitation-changing
part can be viewed as an interacting hard-core boson problem.
Even though we can obtain the quasiparticle description,
the effective problem is still very difficult to analyze due
to its nontrivial interactions. Therefore, we further simplify
the problem by considering more simple initial states and a
solvable effective Hamiltonian.

Specifically, we consider the dynamical Hamiltonian

H = Weff

L∑
j=1

b
†
j bj − Jeff

L∑
j=1

(b†j bj+1 + H.c.), (10)

with the hard-core constraint (b†j )2 = 0. We also consider
periodic boundary conditions bj+L ≡ bj to be closer to the
thermodynamic limit. This Hamiltonian can be viewed as an
approximation to the effective Hamiltonian in Eq. (4) where
we drop Hother and two-site and three-site interaction terms.
Note that the parameter Jeff here is not related to the spin
interactions in the original spin chain but should be viewed
instead as the effective hopping amplitude of the spin flips in
Hhop; this should not cause any confusion since in this section
we will focus on the above hard-core boson model. We will
show that even dropping these interaction terms, the BEC order
parameter will still decay. We would expect that including the
dropped terms would allow more channels for thermalization,
although details of the interactions can certainly have quantita-
tive effects. We will discuss this approximation and the effects
of additional interactions in Sec. IV C.

The advantage of the above simplified Hamiltonian is that it
is exactly solvable. Using Jordan-Wigner (JW) transformation,
which transforms the hard-core bosons to fermions,

bj =
⎛
⎝ j−1∏

j ′=1

eiπnj ′

⎞
⎠cj , (11)

the Hamiltonian can be rewritten in the fermionic representa-
tion as

H = Weff

L∑
j=1

c
†
j cj − Jeff

L−1∑
j=1

(c†j cj+1 + H.c.) (12)

− Jeff(−1)Ntot+1(c†Lc1 + H.c.), (13)

where Ntot ≡ ∑L
j=1 nj is the total particle number. As is

well known, in the fermionic representation, for sectors
with even Ntot we effectively have antiperiodic bound-
ary conditions, while for sectors with odd Ntot we have
periodic boundary conditions. We can then use Fourier
transformation ck = (1/

√
L)

∑
j cj e

−ikj to diagonalize the

Hamiltonian H = ∑
k εkc

†
kck , where k = 2π (m + 1/2)/L

for even-particle-number sectors and k = 2πm/L for odd-
particle-number sectors, with m = 0,1, . . . ,L − 1. The single-
particle dispersion is εk = Weff − 2Jeff cos(k).

The difference in the boundary conditions for the even and
odd sectors is not important when considering the spectrum
and static properties in the thermodynamic limit. However,
when considering the dynamics of observables connecting dif-
ferent number-parity sectors, ignoring the boundary conditions
and the resulting differences in ck used to diagonalize the even
and odd sectors (ultimately related to the string operator when
connecting such sectors) results in an erroneous answer, as
we will explicitly show below. This is also the major obstacle
to obtaining analytical results for 〈ψini|b†j (t)|ψini〉, with any
reasonable initial state |ψini〉. On the other hand, we can obtain
a compact analytical expression for 〈ψini|b†j (t)b†j+1(t)|ψini〉,
which connects sectors with the same number parity. The
reason is that the Heisenberg representation of ck(t) = cke

−iεk t

only makes sense when constructing operators that connect
sectors with the same number parity.

In the next two subsections, we will consider two different
initial states, both with nonzero boson condensation, evolving
under Hamiltonian Eq. (10). For Weff > 2Jeff , the ground state
of this Hamiltonian in the full Fock space is a trivial Mott
insulator. However, this and the value of Weff are actually not
important for the relaxation dynamics: One can readily see
that Weff only adds to the oscillation frequency for processes
connecting sectors with different Ntot and not to any relaxation
dynamics. The latter is determined by the spectra inside each
sector, where Jeff is the only energy scale. Of course, the
properties of the initial state are also important (e.g., which
Ntot are present, the energy distribution, etc.). For illustration,
we will take Weff = 5Jeff to see multiple oscillations before
recurrence time. Given our motivation for this model as a
simplified effective model for quasiparticles in the original
spin problem in the regime of low quasiparticle density,
we would like to consider initial states with low average
particle density. We will first consider higher densities to
better see qualitative behaviors, and afterwards we will return
to more appropriate parameters for the original motivation.
We will consider quantities 〈ψini|b†j (t)|ψini〉 (the matter wave

or the BEC order parameter) and 〈ψini|b†j (t)b†j+1(t)|ψini〉
(pair-boson condensation order parameter). One motivation
for considering both single- and pair-boson operators comes
from the fact that both these generically contribute to the
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observables of interest in the rotated SW picture for the original
spin problem; see discussion after Eq. (9) and Eqs. (A9) and
(A10) in Appendix A. An even stronger motivation comes from
intrinsic interest in the integrable hard-core boson model, as
comparing these quantities will illustrate the importance of
the boundary conditions on the Jordan-Wigner fermions and
ultimately of the string operator when connecting sectors with
different number parity.

A. Initial hard-core boson BEC state as a product state

We first consider our initial state as a hard-core boson
coherent state

|ψini,A〉 =
L∏

j=1

(α + βb
†
j )|0〉, (14)

where |0〉 is the vacuum of the hard-core bosons. The nor-
malization requires |α|2 + |β|2 = 1. The boson density is ρ =
〈ψini,A|b†j bj |ψini,A〉 = |β|2, while the BEC order parameter is

� = 〈ψini,A|b†j |ψini,A〉 = β∗α.
Figure 6 shows ED results for the evolution of the BEC

order parameter,

�(t) ≡ 〈b†j (t)〉 ≡ 〈ψini,A|b†j (t)|ψini,A〉, (15)

for the initial state with average density ρ = 0.25 and system
sizes up to L = 20. From the semilog plot, it is clear that
the initial decay is exponential. At later times, the ED results
again suffer from the finite-size recurrence effect. However,
as the system size increases, we see the exponential decay
over a longer time interval. Therefore, we infer that in
the thermodynamic limit the BEC order parameter decays
exponentially in time even in this integrable system.

We remark that a naive calculation that would ignore the
different boundary conditions for the Jordan-Wigner fermions
in different number-parity sectors would suggest a different
(wrong) result. By translational invariance, the BEC order
parameter is just 〈ψini,A|b†j=1(t)|ψini,A〉, and one could naively
proceed

〈ψini,A|b†j=1(t)|ψini,A〉
= 〈ψini,A|c†j=1(t)|ψini,A〉
!!!wrong!!!= 1√

L

∑
k

〈ψini,A|c†k|ψini,A〉eiεk t e−ik (16)

= 1

L

∑
k

∑
j

〈ψini,A|c†j |ψini,A〉eiεk t eikj e−ik. (17)

Expectation values 〈ψini,A|c†j |ψini,A〉 can be easily evaluated
in the product BEC state. From here, the calculation is not
sensitive to the details of the sum over k, which can be
turned into an integral for large L, and a standard steepest
descent analysis of the last equation would give t−1/2 decay
at large time t . However, this calculation is wrong at the
emphasized step, since there is no well-defined fermionic
quasiparticle creation operator c

†
k acting between sectors with

different parity. Ultimately, this is related to the nonlocal
character of the boson order parameter in terms of the JW

FIG. 6. ED results for �(t) ≡ 〈b†
j (t)〉 for the hard-core boson

model, Eq. (10), and the product BEC state, Eq. (14), with average
boson density ρ = |β|2 = 0.25, for system sizes L = 14,16,18,20.
The parameters of the dynamical Hamiltonian are Jeff = 1 and Weff =
5Jeff . Note that the main panel shows ln |�(t)| vs Jefft , and the results
strongly suggest exponential decay in t until recurrence time: as the
system size increases, the time interval over which the exponential
decay is observed also increases. Inset: linear scale for the observable.
The recurrence times where the smaller-size results peel off from the
largest-size results are roughly in agreement with those in Fig. 7.

fermions, which in the translationally invariant case with
periodic boundary conditions for the bosons yields effectively
different boundary conditions for the JW fermions in the even
and odd sectors. (In the case with open boundary conditions,
the above calculation focusing on the site at the left boundary
would not be representative of the infinite system, while a
valid calculation with a site in the middle of the system would
have to time-evolve with the string operator.) In this case, we
do not have a simple analytical calculation of the observable
even though the model is solvable by JW fermions. A more
involved analytical calculation supporting exponential decay
of �(t) will be presented in the next subsection.

On the other hand, Fig. 7 shows the evolution of

ϒ(t) ≡ 〈b†j (t)b†j+1(t)〉 ≡ 〈ψini,A|b†j (t)b†j+1(t)|ψini,A〉. (18)

We actually have a full analytical calculation of this observable
and a closed-form expression in the thermodynamic limit.
Nevertheless, we still show the finite-size ED results (which we
also checked against the analytical calculations), as a reference
to compare with the results for �(t). We can see that this
pair-boson observable decays with a power-law envelope t−3/2

until the recurrence phenomenon sets in. Again, as we increase
the system size, the recurrence time also increases.

We present the analytical calculation in Appendix B, while
here we only show the final result in the thermodynamic limit,

ϒ(t) = 2(β∗α)2
∫ π

−π

dk

2π

sin2(k)

1 + η2 − 2η cos(k)
e2iεk t , (19)

where η ≡ |α|2 − |β|2. The long-time behavior is controlled
by extrema of εk; these occur at k = 0 and k = π , so we expect
oscillations at two frequencies, 2εk=0/π = 2(W ∓ 2J ). Since
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FIG. 7. ED results for ϒ(t) ≡ 〈b†
j (t)b†

j+1(t)〉 for the same systems
as in Fig. 6 with average density ρ = 0.25. This observable can be also
calculated analytically using Jordan-Wigner transformation (checked
against ED for small L), allowing us to study much larger sizes
and times, as illustrated here for L = 500. Note that the main panel
shows log-log plot, and the long-time behavior in the largest system
clearly has a power-law envelope with decay t−3/2, in agreement
with the analytical calculation in the text. Inset: linear scale for the
observable. By comparing data for L = 14, . . . ,20 and much larger
L = 500, we can also clearly see where the recurrences appear for
the smaller sizes.

in the integrand the factor multiplying e2iεk t vanishes at both
these points, a saddle-point analysis gives power-law envelope
t−3/2. Both these frequencies and the power-law envelope are
indeed observed in the numerical calculations in Fig. 7.

Comparing our numerical results for �(t) and ϒ(t), we can
confidently say that the latter observable decays more slowly,
despite being a composite operator in terms of microscopic
bosons. On the time scales where the behavior is representative
of the thermodynamic limit, the former observable decays
faster than power law and is consistent with exponential decay.
We will confirm this on yet longer time scales in the next
section.

The different behaviors of the above two types of observ-
ables are based on the differences when operators change or
preserve the number parity. In a very general consideration of
a quantum evolution, any observable can be expanded in the
eigenstate basis

〈Ô(t)〉 =
∑
a,a′

x∗
aOa,a′xa′ei(Ea−Ea′ )t , (20)

where xa = 〈a|ψini〉, Oa,a′ = 〈a|Ô|a′〉, and |a〉 is an eigenstate
with energy Ea . When we consider Ô = (1/L)

∑
j b

†
j b

†
j+1 =

(1/L)
∑

k c
†
kc

†
−ke

ik [appropriate for calculating ϒ(t) in trans-
lationally invariant setups], it connects states that differ by
precisely two quasiparticles with opposite momenta. The
energy differences can only be εk + ε−k = 2εk . These are
precisely the frequencies that appear in Eq. (19) (see also
derivation in Appendix B). Note that while the number of
states is exponentially large in system size, the number of
different frequencies that appear here is only linear in system

size, and this is ultimately responsible for the slow power-law
“decoherence” in the observable. On the other hand, when we
consider Ô = (1/L)

∑
j b

†
j , the mismatch between the sectors

with different particle number parity (related to b
†
j not being

locally represented in terms of the JW fermions) results in
a much larger number of different frequencies Ea − Ea′ that
appear with nonzero matrix elements; we believe that this is
responsible for the faster decay than power law—exponential
decay in this case.

To put these results in perspective, the difference in
relaxation dynamics of operators that are nonlocal (contain
string) or local (no string) in terms of the diagonalizing
Jordan-Wigner fermions has been known in the context of
quenches in the quantum Ising chain, starting from Ref. [20]
and very detailed subsequent works Refs. [21–23] (for a recent
review, see Ref. [36]). Direct analogs of our �(t) and ϒ(t)
observables are 〈σx

j (t)〉 and 〈σx
j (t)σx

j+1(t)〉 in the quantum
Ising chain H = ∑

j (−Jσx
j σ x

j+1 − hσ z
j ), which were shown

to have exponential and power-law t−3/2 envelopes respec-
tively. It has been also anticipated that such difference holds for
other models with free-fermion spectrum. To our knowledge,
our work is the first explicit study of the exponential decay of
the order parameter in the case of the BEC to hard-core boson
quench. Our results in the present subsection are numerical,
while analytical results for this quench are not available
because the time-evolved state here does not have Wick’s
theorem for the JW fermions, as emphasized in Ref. [24].
We will present (semi)analytical results on such a quench in
the next section by starting with a different initial state which
is qualitatively in the same BEC phase but does have Wick’s
theorem (and will in fact be able to say more about the product
BEC states as well).

Having found exponential decay of the BEC order parame-
ter for a sizable (but otherwise generic) average boson density
ρ = 0.25 in the initial BEC state, we believe that the same
qualitative behavior will persist for all densities. We will es-
tablish this even more firmly on much larger systems and much
longer times in the next subsection using a somewhat different
realization of the initial BEC state. Here we would like to study
density dependence of the relaxation time moving towards
regime of low density, which is of interest in the original spin
model. Figure 8 shows |�(t)| evolution for varying average
boson density in the initial state. In each case, we normalized
the observable by its initial value in order to get a better
comparison. We can clearly see that the BEC order parameter
decays faster with increasing density. Even though we do not
have an exact functional form for |�(t)|, we still select the
exponential decay regime and fit it with Ae−t/τ , where the in-
verse lifetime τ−1 as a function of density is shown in the inset
and vanishes at low density. A companion Fig. 9 shows the real
part Re[�(t)] for the same systems, where we can see that the
frequency of oscillations also depends on the density, ap-
proaching the k = 0 quasiparticle gap Weff − 2Jeff in the limit
of low density.

The exponential decay of the order parameter was also
obtained in earlier studies of the nonequilibrium dynamics of
the magnetization in the quantum Ising model [20,22,46] (see
also Ref. [36] for a recent review). Despite the differences in
details between the hard-core boson and Ising models, the
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FIG. 8. Evolution of the absolute value of the BEC order
parameter |�(t)| in the same setting as in Fig. 6 but for different
average boson densities ρ in the initial state and showing only
the largest ED size L = 20 (ρ = 0.25 data the same as in Fig. 6).
The measurements are normalized by their initial value in order to
compare the decay rates. We clearly see that the decay rate increases
as the density increases. The exponential decay ends at roughly
Jefft ≈ 5, where the finite-size recurrence effect shows up, indicated
by the broken line (see also Fig. 6). Inset: density dependence of
the inverse lifetime 1/Jeffτ . The circle symbols are obtained from
fitting the exponential decay regime Jefft ∈ [1.5,4.5] to a function
Ae−t/τ , while the solid line is calculated from the conjectured Eq. (23).
The inverse lifetime decreases as density decreases, with a ρ2 ln( 1

ρ
)

dependence at small density.

exponential decoherence can be attributed to the nonlocal
nature of the observable when expressed in terms of the
Jordan-Wigner fermions, which are the noninteracting quasi-

FIG. 9. Evolution of the real part of the BEC order parameter
Re[�(t)] for different average boson densities ρ and showing
only the largest ED size L = 20; the systems are the same as in
Fig. 8. Inset: density dependence of the frequency ω obtained from
fitting the exponential decay regime Jefft ∈ [1.5,4.5] to a function
Ae−t/τ cos(ωt − α), with τ determined from Fig. 8. We see that
the frequency decreases towards Weff − 2Jeff = 3 as the density
decreases to zero. The solid line indicates our conjectured dependence
of the oscillation frequency on density, Eq. (24).

particles in both models. The origin of the decoherence of the
order parameter is the destructive interference coming from
contributions from quasiparticles at all momenta. Reference
[22] obtained analytical formulas for the decay time and
the oscillation frequency in the quantum Ising quench from
the ferromagnetic phase to the paramagnetic phase. These
formulas depend only on the mode occupation numbers of
the JW fermions in the initial state and not any other details.
We conjecture that the same formulas are valid also for our
hard-core boson quench from the BEC state. We propose the
inverse decoherence time (inverse lifetime) as

τ−1 =
∫ π

−π

dk

2π

∣∣∣∣dεk

dk

∣∣∣∣ ln |1 − 2〈nk〉|, (21)

where dεk/dk is the group velocity of the quasiparticle and
〈nk〉 is the mode occupation number in the initial state,
〈nk〉 = 〈ψini|c†kck|ψini〉. For the initial state |ψini〉 = |ψini,A〉,
calculations similar to those in Appendix B give in the
thermodynamic limit

〈nk〉 = ρ2(1 + cos k)

ρ2 + (1 − ρ)2 − (1 − 2ρ) cos k
. (22)

We can therefore obtain explicit density dependence of the
inverse lifetime as

(Jeffτ )−1 = 16

π

ρ2(1 − ρ)2

ρ2 + (1 − ρ)2

ln(1 − ρ) − ln(ρ)

1 − 2ρ
. (23)

Note that this expression is symmetric under particle-hole
transformation sending ρ → 1 − ρ, as is expected from
simple considerations about this quench. Importantly for our
applications to the original spin model, we find that at low
density (Jeffτ )−1 ∼ ρ2 ln( 1

ρ
). The inset in Fig. 8 compares

the inverse lifetime extracted from fits of the time evolution
in our ED systems and the conjectured expression Eq. (23),
denoted by circles and solid line respectively. The fairly good
agreement between the two supports our conjecture.

As for the density dependence of the frequency, based on the
quantum Ising study in Ref. [22], we can also conjecture that
the frequency is given as ω = εk0 , where k0 is the wave vector
such that 1 − 2〈nk0〉 = 0. We can then obtain the frequency as
a function of density as

ω(ρ) = Weff − 2Jeff
1 − 2ρ

ρ2 + (1 − ρ)2
. (24)

The inset of Fig. 9 compares the fitted frequencies from the ED
study (circles) and the above formula (solid line). The close
agreement supports our conjecture.

On the other hand, the power-law decay of the pair-boson
observable ϒ(t) does not depend on the density in the initial
state, nor does the oscillation frequency. This is similar to
results in the quantum Ising quench for operators that do
not change the Ising quantum number [20,22,36] and is
also another noteworthy point of the differences between the
relaxation behaviors of the single- and pair-boson operators.

B. Initial hard-core boson BEC state realized as a topological
superconductor of JW fermions

The initial state used in the previous subsection does not
have any special properties like the Wick’s theorem that we
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could utilize to reach larger system sizes when calculating the
evolution of the BEC order parameter. In this subsection, we
will consider a different initial state which is qualitatively in
the same BEC phase but for which Wick’s theorem is valid,
therefore enabling calculations for much larger system sizes.

Specifically, consider the following hard-core boson Hamil-
tonian:

Hini = −J0

L∑
j=1

(b†j bj+1 + H.c.)

−�0

L∑
j=1

(b†j b
†
j+1 + H.c.) − μ0

L∑
j=1

b
†
j bj , (25)

with periodic boundary conditions, bj+L ≡ bj . This Hamilto-
nian preserves particle number parity, with the corresponding
ground states in the even and odd parity sectors |ψg.s.,even〉 and
|ψg.s.,odd〉. We will argue below that as long as |μ0| < 2|J0|,
these ground states have long-range order in the single-boson
observable, i.e., lim|j−j ′ |→∞〈b†j bj ′ 〉 �= 0. Schematically, we

can indicate this long-range order by writing 〈b†j 〉 �= 0. In
particular, it is actually sensible to consider a superposition of
|ψg.s.,even〉 and |ψg.s.,odd〉 and view it as a BEC of bosons, which
contains states with arbitrary particle numbers. For example,
we can take |ψini〉 = (1/

√
2)(|ψg.s.,even〉 + |ψg.s.,odd〉), which

for J0,�0 > 0 and appropriate choices of the phases of
|ψg.s.,even/odd〉 will have positive amplitudes on all states in
the boson number basis, similarly to the state Eq. (14) with
real and positive parameters α and β. However, as will become
clear, the details of the superposition are not important.

The above Hamiltonian can be also exactly solved by the
Jordan-Wigner transformation Eq. (11), which gives

Hini = −J0

L−1∑
j=1

(c†j cj+1 + H.c.) − �0

L−1∑
j=1

(c†j c
†
j+1 + H.c.)

− J0(−1)Ntot+1(c†Lc1 + H.c.)

−�0(−1)Ntot+1(c†Lc
†
1 + H.c.) − μ0

L∑
j=1

c
†
j cj . (26)

The fermions effectively have antiperiodic boundary condi-
tions in the even number-parity sector and periodic boundary
conditions in the odd number-parity sector. After Fourier
transformation with lattice momenta k = 2π

L
(m + 1

2 ), m =
0,1, . . . ,L − 1 in the even number-parity sector and k = 2π

L
m

in the odd number-parity sector, we further apply Bogoliubov
transformation to diagonalize the above Hamiltonian. The
Bogoliubov quasiparticles are given as γk = u∗

kck + v∗
k c

†
−k ,

with uk = cos(θk/2), vk = sin(θk/2). The parameter θk is
determined by tan(θk) = −2�0 sin(k)

2J0 cos(k)+μ0
. We can readily construct

the vacuum of the Bogoliubov quasiparticles in both parity
subspaces; e.g., in the even-parity sector we have |ψg.s.,even〉 =
|vacγ,even〉 = ∏

k>0 (u∗
k − v∗

k c
†
kc

†
−k)|vacc〉, where |vacc〉 is the

vacuum for the c fermions and k are chosen appropriately for
this number parity.

The dynamics is governed by the hard-core boson hopping
Hamiltonian Eq. (10). We are interested in the time evolution
of the BEC order parameter �(t) and will calculate its real part,

2Re[〈b†j (t)〉] = 〈b†j (t) + bj (t)〉 ≡ 〈�j (t)〉. The site index j can
be arbitrary since the state remains translationally invariant
during the evolution. Again, exactly solving the time evolution
of �j is very difficult due to the mismatch between the JW
fermion boundary conditions in the even and odd sectors. In
order to remedy this obstacle, we adopt the factorization trick
of McCoy et al. [47]. Instead of considering 〈�j (t)〉 directly,
we consider

〈�j (t)�j+�(t)〉 ≈ 〈�j (t)〉〈�j+�(t)〉 (27)

for separations � � vt , where v is some characteristic velocity
for the spreading of quantum correlations. In this limit, we
expect that the above approximation is very accurate based on
reasoning similar to Lieb-Robinson bound [48], although we
have not tried to prove this rigorously.

Since �j�j+� does not mix the even and odd sectors, the
above trick enables us to deal separately with the two sectors.
Furthermore, it is sufficient to consider the even sector only
and calculate the quantity

R(�,t) ≡ 〈ψini,B|�j (t)�j+�(t)|ψini,B〉, (28)

where we choose the initial state as |ψini,B〉 = |ψg.s.,even〉, since
we expect the contribution from |ψg.s.,odd〉 will essentially be
identical in the thermodynamic limit [22].

In the fermionic representation,

R(�,t) = 〈ψini,B|
⎛
⎝j+�−1∏

j ′=j

Bj ′(t)Aj ′+1(t)

⎞
⎠|ψini,B〉, (29)

where we defined Majorana fermions Aj = c
†
j + cj and Bj =

c
†
j − cj . It is easy to perform calculations in the Schrodinger

picture of the time evolution. Thus,

|ψini,B(t)〉 = e−iH t
∏
k>0

(u∗
k − v∗

k c
†
kc

†
−k)eiHte−iH t |vacc〉

=
∏
k>0

(u∗
k − v∗

k c
†
kc

†
−ke

−i2εk t )|vacc〉

=
∏
k>0

[u∗
k − v∗

k (t)c†kc
†
−k]|vacc〉, (30)

where the dynamics can be considered as an evolution of the
coherence factor vk(t) ≡ vke

2iεk t .
Since the above state can be viewed as a BCS ground state

of a Hamiltonian with the corresponding coherence factors
at every instant, Wick’s theorem holds for |ψini,B(t)〉 at every
time t . In order to apply Wick’s theorem, we need to evaluate
the following two-operator correlation functions:

〈AmAn〉 = 1

L

∑
k

[1 − sin θk sin(2εkt)]e
ik(m−n),

〈BmBn〉 = 1

L

∑
k

[−1 − sin θk sin(2εkt)]e
ik(m−n),

〈AmBn〉 = 1

L

∑
k

[cos θk + i sin θk cos(2εkt)]e
ik(m−n),

〈BmAn〉 = 1

L

∑
k

[− cos θk + i sin θk cos(2εkt)]e
ik(m−n).
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For conciseness, we define Toeplitz matrices with elements
[AA]m,n = 〈AmAn〉 when m �= n and [AA]m,n = 0 when m = n;
[BB]m,n = 〈BmBn〉 when m �= n and [BB]m,n = 0 when m = n;
[BA]m,n = 〈BmAn+1〉; and [AB]m,n = 〈Am+1Bn〉. [AA] and [BB]
are antisymmetric matrices while [AB] = −[BA]T . We then
define a 2� × 2� matrix M as a block Toeplitz matrix with
elements(

M2m−1,2n−1 M2m−1,2n

M2m,2n−1 M2m,2n

)
=

(
[BB]m,n [BA]m,n

[AB]m,n [AA]m,n

)
, (31)

where m,n = 1, . . . ,�. Note that the matrix M is antisymmet-
ric. Applying Wick’s theorem to Eq. (29) with j = 1, we then
have R(�,t) = Pf(M), the Pfaffian of the above matrix M .

Before discussing the time evolution, let us consider
properties of the initial state encoded in R(�,t = 0), which
is a specific boson-boson correlation function in the initial
state |ψini,B〉. This correlation function exhibits two different
behaviors depending on the parameters of Hini. At t = 0,
matrices [AA] and [BB] are zero, and by rearranging the
columns and rows of the matrix M , we obtain

R(�,t = 0) = (−1)�(�−1)/2Pf

(
0 [BA]

−[BA]T 0

)
= det[BA],

where matrix [BA] is evaluated at t = 0. Thus, R(�,t = 0)
is equal to the determinant of the Toeplitz matrix [BA]. The
asymptotic behavior at large � is given by Szegö’s theorem
[49],

lim
�→∞

R(�,t = 0) ∼ Ceλ0�, (32)

where C is a constant and λ0 = ∫ π

−π
dk
2π

ln(e−iθk e−ik). When
λ0 �= 0, which occurs for |μ0| > 2|J0|, we have exponential
decay of the correlation function. On the other hand, when
λ0 = 0, which occurs for |μ0| < 2|J0|, the correlation function
approaches a nonzero constant, signaling a long-range order
in the boson BEC order parameter. Note that in terms of the
Jordan-Wigner fermions, conditions |μ0| > 2|J0| and |μ0| <

2|J0| correspond respectively to the trivial and topological
superconductor phase in the one-dimensional spinless super-
conductor [50,51] (i.e., strong-coupling and weak-coupling
superconducting phases in the sense of Read and Green
[52]). Thus, we have analytically proven an earlier numerical
finding in Ref. [53] that the topological phase of JW fermions
corresponds to the single-boson long-range order, while the
trivial phase corresponds to short-range order; both phases
clearly have long-range order in the pair-boson correlator.
We then choose our initial state to be in the regime of the
weak-coupling (topological) phase of the JW fermions, which
hence has nonvanishing long-range order (BEC) in terms of
the original bosons.

After specifying the suitable initial state, we can now
discuss the dynamics. Figure 10 shows R(�,t) calculated for
various separations � in a system with total length L = 400.
We are interested in the regime where t � �/v, where v is
some characteristic velocity for the information spreading.
We unambiguously see that R(�,t) shows an exponential
decay over some time interval that increases with increasing
separation �. This behavior corresponds to the exponential
decay of 〈�j (t)〉 with time, as claimed earlier for the BEC
order.

FIG. 10. Numerical results for R(�,t) obtained using the Pfaffian
method; the system size is L = 400, and we consider separations
� = 25, 50, 75, and 100. The initial state is the ground state of
Eq. (25) with parameters �0 = 0.60 and μ0 = −1.60, corresponding
to particle density ρ = 0.25. The parameters of the dynamical
Hamiltonian are chosen as Jeff = 1 and Weff = 5. We are primarily
interested in the regime t � �/v, where v is some information-
spreading velocity. In this regime, the observable exhibits exponential
decay. The time interval over which we see the exponential decay
increases as the separation � increases.

On the other hand, we can also consider 〈�j (t)�j+1(t)〉,
which is similar to the pair-boson observable we considered
earlier that does not change the particle number parity. In this
case,

〈�j (t)�j+1(t)〉 = [BA]1,1 = 〈B1A2〉

= 1

L

∑
k

[− cos θk + i sin θk cos(2εkt)]e
−ik.

(33)

At long time, this approaches a constant value given by
〈b†j (t)bj+1(t)〉 + c.c. The time-dependent part comes from

〈b†j (t)b†j+1(t)〉 + c.c.; upon using the steepest descent analysis,
we find oscillations at frequencies 2εk=0/π with a power-law
envelope t−3/2, similar to results in the previous subsection
for the product BEC initial state. We expect similar be-
haviors for any fixed � at long times t � �/v: Indeed, we
expect limt→∞〈b†j (t)bj+�(t)〉 = 〈b†j bj+�〉therm. ≡ Ctherm.(�) �=
0, where Ctherm.(�) decays exponentially with �. On the
other hand, we expect limt→∞〈b†j (t)b†j+�(t)〉 = 0, where the
approach to zero has a power-law envelope ∼t−3/2. These
predictions are based on our expectations that at long times
local observables can be described using a generalized Gibbs
ensemble which is diagonal in the particle number, and that
for large t � �/v the physics of b

†
j (t)b†j+�(t) is that of a local

pair-boson creation operator.
We thus see significant care needed when using R(�,t)

to extract the behavior of the BEC order parameter 〈b†j (t)〉
using Eq. (27) which holds only for t � �/v. In Fig. 10 we
chose to show 〈�j (t)�j+�(t)〉 with �j = b

†
j + bj so that the
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regime where the sites j and j + � start to “feel each other”
is manifest by approaching a constant due to 〈b†j (t)bj+�(t)〉 +
c.c. pieces as discussed above [if we only had 〈b†j (t)b†j+�(t)〉 +
c.c. pieces, this time scale would manifest as a crossover from
the exponential to t−3/2 decay and would be more difficult to
detect].

In order to study the density dependence of the decoherence
time of the long-range order and compare with the results in
the previous subsection, it is tempting to tune the parameters
of |ψini,B〉, μ0 and �0, such that the density and the energy
density are equal to those in |ψini,A〉. In fact, when trying
to achieve this, we found that it is possible to make the JW
fermion mode distribution 〈nk〉 identical in the two initial states
in the thermodynamic limit! The mode occupation number in
|ψini,B〉 is given as 〈nk〉 = |vk|2, or

〈nk〉 = 1

2

(
1 − −2J0 cos(k) − μ0√

[2J0 cos(k) + μ0]2 + [2� sin(k)]2

)
. (34)

One can easily verify that if we take

μ0 = −2
√

J 2
0 − �2

0 (35)

and

�0 = J0
2ρ(1 − ρ)

ρ2 + (1 − ρ)2
, (36)

the mode occupation number will become identical to Eq. (22).
Here we assumed ρ < 0.5, while for ρ > 0.5 we need to
take the opposite sign for μ0 in Eq. (35). In retrospect, by
examining the JW fermion pair function in real space for the
topological superconductor with the condition Eq. (35), we
can show that the many-body wave function |ψini,B〉 in the
boson representation exactly coincides with that of the BEC
state Eq. (14) when projected to any sector with fixed particle
number. The relative weights on the different number sectors
do not coincide for |ψini,A〉 and |ψini,B〉, but this is not important
in the thermodynamic limit.

Figure 11 shows R(�,t) with � = 100 and system size
L = 400 for several different densities ρ = 0.05 to ρ = 0.25,
with μ0 and �0 chosen according to Eqs. (35) and (36). We
use the formula Ae−2t/τ cos2(ωt − α) + C to fit our numerical
data hence obtaining the fitted lifetime τ and frequency ω. The
left inset compares the fitted inverse lifetime τ−1 denoted by
circles and the conjectured inverse lifetime based on Eq. (23)
denoted by solid line. The agreement between the two is fairly
good and therefore supports our conjecture. The right inset
compares the fitted frequency (denoted as circles) and the
conjectured frequency (solid line) based on Eq. (24). The
oscillation frequency also agrees with the conjecture quite
well.

We hence see that the new choice of the initial state
|ψini,B〉, equipped with Wick’s theorem, enables us to calculate
the evolution for much larger system size (essentially in
the thermodynamic limit). We therefore further confirm the
exponential decay of the BEC order parameter and provide
strong numerical evidence for our conjecture of the density
dependence of the inverse lifetime and frequency.

FIG. 11. R(�,t) as in Fig. 10 but for different average densities
ρ obtained by tuning μ0 and �0 according to Eqs. (35) and (36)
respectively. We show only the largest separation � = 100; the
full system size is L = 400 and is sufficiently large to reflect the
thermodynamic limit in L. The values are normalized by the initial
value in order to bring out the decay rate, which clearly increases
as the density increases. Insets: inverse relaxation time τ−1 of the
exponential decay and the oscillation frequency ω as a function
of density, obtained from fitting the data in the main panel to
form Ae−2t/τ cos2(ωt − α) + C. The circle symbols denote the fitted
values, while the solid lines denote the conjectured forms Eqs. (23)
and (24) for τ−1 and ω respectively (see text for details).

C. Application to the original spin problem

Returning to the original spin problem, in order to make
more quantitative comparisons, Fig. 12 shows results for the
initial states |ψini,A〉 and |ψini,B〉 evolving under the hard-core
boson Hamiltonian with parameters Jeff = 0.44, Weff = 4.52,
and density ρ = 0.05. These are chosen to be close to the
parameters of the spin-flip quasiparticles of the original spin
problem; cf. Sec. III B. By fitting the exponential decay regime,
we obtain the decoherence time τA ≈ 46.5 and τB ≈ 51.0
respectively, which are close to an estimate from Eq. (23) that
gives τ ≈ 54.7 for these Jeff and ρ. The long lifetime is due to
the low density of the quasiparticles (due to low energy density
in the initial state), and is the primary reason of the apparent
persistent oscillation in the original spin problem. We see that
up to time t = 18 simulated in the original spin problem in
Ref. [37], the amplitude of interest decays to roughly 0.7 of
the initial value. The exponential decay is not easily seen in
this time range, while it becomes more clear when one goes to
longer times. The L = 20 ED results in Fig. 12 again show the
recurrence phenomenon starting from about t ∼ 15–20, while
the Pfaffian calculation results represent the thermodynamic
limit.

We remark that Fig. 1 hardly shows any decay while Fig. 12
shows some gradual decay already for t � 18. There could
be several reasons for this. The decrease from the initial
value in Fig. 1 is actually significant, and it could be that
the first few oscillations happened to experience a stronger
decrease due to some microscopics, which then masked the
more systematic decay expected at long times. In this respect
we remind that the hard-core boson model studied in this

023621-14



QUASIPARTICLE EXPLANATION OF THE WEAK- . . . PHYSICAL REVIEW A 95, 023621 (2017)

FIG. 12. Evolution of Re[�(t)] for the initial state |ψini, A〉 and
system size L = 20 and |Re[�(t)]| calculated from 1

2

√
R(�,t) for

the initial state |ψini, B〉 with separation � = 100 and system size
L = 400, both with density ρ = 0.05. The dynamical Hamiltonian
has Jeff = 0.44 and Weff = 4.52, chosen to reproduce the spin-flip
quasiparticle dispersion and gap Weff − 2Jeff = �E = 3.64 in the
original spin problem. The relaxation times obtained by fitting the
exponential decay regime as in Figs. 9 and 11 are τA ≈ 46.5 and
τB ≈ 51.0 respectively. This means that at time t = 18—the longest
time simulated in the original spin problem—the amplitude will be
roughly 0.7 of the initial value.

section neglected all interactions among the quasiparticles
of the spin model other than their hard-core exclusion; see
Eq. (4) and discussion at the end of Sec. III A (and we
also remind that the BEC is only an approximation to the
initial state of the quasiparticles). While we would expect that
additional interactions generically help the thermalization, we
do not know the actual quantitative effect which can depend
on details and requires more studies. We also mention that
in the truncated Schrieffer-Wolff approach the observables
also obtain components on the pair-boson-type operators and
hence will have additional power-law-decaying contributions
in the hard-core boson model (which should eventually also
decay exponentially once integrability-breaking interactions
are included). All such unaccounted parts could have enough
effect up to t = 18 to make the oscillation appear more
persistent, while they eventually decay at longer times. We
therefore propose that if one can simulate the original spin
problem to somewhat longer time, one will eventually observe
the decay of the oscillations.

In fact, the Supplemental Material of Ref. [37] also showed
a study for parameter g = −1.5, where the observables showed
visible decays, which we believe can be understood as due to
the larger particle density and hence shorter decoherence time.
Our ED calculations give energy density in the |Z+〉 state over
the ground state as (〈Z+ |H |Z+〉 − E0)/L = 0.4581 and the
quasiparticle gap as E1 − E0 = 3.2041, so the quasiparticle
density in the ground state is roughly ρ ≈ 0.143. For this
density, Eq. (21) gives Jeffτ ≈ 3.935. From our ED data, we
can also extract the quasiparticle hopping amplitude Jeff ≈
0.656. This gives us τ ≈ 6, which was already accessible in
the infinite-MPS study in Ref. [37], and our estimates of the

oscillation frequency and decay time are in rough agreement
with this.

We note another lesson learned from the detailed study of
the relaxation of the order parameter in the hard-core boson
model. While our original stipulation was that the oscillation
frequency is set by the quasiparticle gap, we now see that it is
actually a function of the quasiparticle density; see Eq. (24).
We should indeed expect this generically as the quasiparticle
energy is strictly defined only in the limit of vanishing
energy density, while here the initial state has a finite energy
density (e.g., quasiparticle energies can get renormalized by
their residual interactions, etc.). In this respect, the single-
boson observable shows more generic behavior even in the
integrable hard-core boson model, in contrast to the pair-boson
observable whose oscillation frequencies are independent of
the density. In any case, the original spin model at g = −1.05 is
at sufficiently low energy density that the oscillation frequency
is very close to the quasiparticle gap, and we did not worry
about differentiating between these in the previous sections.

While the above discussions are based on the hard-core
boson hopping Hamiltonian, H in Eq. (10), we now briefly
consider effects of adding more generic interactions. To
understand these, we calculated the BEC order parameter
�(t) and the pair-boson correlation function ϒ(t) evolv-
ing under (a) Hnn = H + Wnn

∑
j njnj+1; (b) Hnnn = Hnn +

Wnnn
∑

j njnj+2; and (c) Heff from Eq. (4) upon dropping
Hother. In each case, the initial state is |ψini,A〉.

Figures 13(a)–13(c) show the corresponding �(t) and ϒ(t)
results for system size L = 14 and particle density ρ = 0.05,
which is close to the original spin model. On the other hand,
plots in Fig. 13(d) show �(t) and ϒ(t) for ρ = 0.25 and
system size L = 20; this is far from the original spin model
but allows us to reduce effects due to low particle density
and to focus instead on qualitative effects of interactions. We
find that the additional interaction terms do not change the
qualitative exponential decay behavior of �(t). This is less
clear for low density, plots (a1)–(c1), but in these cases, the
effects of interactions are also quantitatively small, and we
believe the decays are still exponential at long time. On the
other hand, the behavior of the pair-boson correlation function
ϒ(t) changes qualitatively. The power-law decay of ϒ(t) in
the hard-core boson hopping model is a consequence of the
exact solution in terms of the noninteracting JW fermions.
From Fig. 13(d2), it appears that as we turn on the interaction
of the fermions, the power-law decay behavior is destroyed.
The additional interaction in Hnn turns ϒ(t) into a faster decay;
under Hnnn; the behavior of ϒ(t) is not clear and needs more
study. While we would expect exponential decay for generic
interactions, this appears to be also true for Hnn which is still
integrable; we speculate this is because the true excitations are
no longer JW fermions.

Finally, we note that for Heff , the behavior of ϒ(t) is
somewhat special. The reason is that localized bound states of
two spin-flip quasiparticles (i.e., two consecutive spin-downs
in the background of spin-ups) happen to be exact eigenstates
of Heff , since the correlated hopping terms just annihilate
these states. Therefore, these bound states are immobile in
Heff , which can be detected by b

†
j b

†
j+1. As a result, the

pair-boson correlation function oscillates without decay, which
is an artifact of this second-order truncated-SW Hamiltonian.
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FIG. 13. Comparison of the dynamics under the simplified hard-
core boson Hamiltonian H in Eq. (10) and under various Hamiltoni-
ans with different additional interactions. The initial state is |ψini,A〉.
(a)–(c) BEC order parameter (left panels) and pair boson correlation
function (right panels) for density ρ = 0.05 and system size L = 14.
The parameters of Heff are obtained from second-order SW for the
original spin model, and similar parameters are also used in H , Hnn,
Hnnn: Jeff = 0.88, Weff = 3.68, Wnn = −0.47, and Wnnn = 2.35 (in
units of J ). The additional interactions basically introduce a small
amplitude oscillation in �(t). For the pair-boson correlation function,
the decay behavior and the oscillation frequencies are affected more
strongly (see text for details). (d) BEC order parameter �(t) and
pair-boson correlation function ϒ(t) for density ρ = 0.25, system
size L = 20 and parameters Jeff = 1.0, Weff = 1.0, Wnn = −0.5, and
Wnnn = 1.5 (the results for H are identical as in Figs. 6 and 7). The
additional interaction of the JW fermions in Hnn changes the decay
in ϒ(t) to be faster than the previous power law.

However, if we introduce dynamics for these bound states,
for example, considering SW transformation to higher order,
we expect the oscillations to damp. The physics of such
bound states also manifests itself in short-time enhancement of
pair-boson correlations in Hnn and Hnnn, Figs. 13(a2)–13(b2),
although in these cases the hopping terms in the Hamiltonians
do move the bound states, and we expect exponential decays on
long time, similar to Fig. 13(d2). Clearly, one has to consider
short-distance physics details to understand these results in the

pair-boson correlation function quantitatively. Nevertheless,
as far as observables discussed in the original spin model,
since the pair-boson contributions are subdominant to the
single-boson contributions, we expect the exponential decay
behavior is robust under adding interactions to the simplified
hard-core boson hopping Hamiltonian.

V. A QUICK STUDY OF “NONTHERMALIZING”
INITIAL STATE |X+〉

In the same spin model, Ref. [37] also found apparent
“nonthermalizing” behavior for the initial state |X+〉. This case
shows much smaller oscillations than the weak-thermalization
case, but apparently observables approach nonthermal values
at the longest simulation times. While we do not have as clear
picture of this case compared to the weak-thermalization case,
we will briefly discuss how far similar physical reasoning can
take us in the nonthermalizing case.

First of all, the initial state |X+〉 lands close to the top of the
spectrum of the original Hamiltonian, Eq. (1). Equivalently, it
is close to the ground state of the Hamiltonian H̃ = −H ;
this is the language we adopt since we are more used to
think about ground states and low-energy excitations. Here, we
can develop a perturbative treatment starting with J,h � |g|,
where the ground state is guaranteed to be close to |X+〉.
Such a perturbative treatment is, in fact, fairly reasonable for
the parameters of interest J = 1,h = 0.5,g = −1.05: Indeed,
h is smaller than g, while for states with aligned spins the
+Jσ z

j σ z
j+1 terms in H̃ are frustrated. We find that the |X+〉

state has weight |〈Ẽ0|X+〉|2 ≈ 23% on the ground state of H̃

for L = 18, which is smaller than in the weak-thermalization
case but is still a large weight. The average energy density in
the initial state is 〈X+ |H̃ |X+〉/L − Ẽ0/L ≈ 0.28, somewhat
larger than in the weak-thermalization case.

In the perturbative picture, low-energy excitations are
spins oriented in the −x̂ direction (i.e., flipped compared
to the ground state |X+〉), with dispersion at leading order
εk = 2|g| + 2J cos(k). The bottom of the quasiparticle band
now lies at k = π and can be quite close to the ground state,
since εk=π = 2|g| − 2J becomes small for J approaching |g|.
Our ED results indeed show a fairly small gap at k = π ;
the gap is likely smaller than 0.35 in the thermodynamic
limit and has strong even-odd effect on L coinciding with
whether the mesh of k points contains π or not. This gap
is an order of magnitude smaller than the quasiparticle gap
of interest in the weak-thermalization case. Of relevance to
the study of translationally invariant initial states, the gap to
the lowest excitation with momentum k = 0 is larger. This
gap also has a strong even-odd effect on L and is likely
smaller than 1.0, which is almost four times smaller than in
the weak-thermalization case. The lowest k = 0 excitation is
likely a composite of two quasiparticles near the bottom of the
band at momentum π , i.e., it is not simply a single spin flip of
the band εk = 2|g| + 2J cos(k) at k = 0. Finally, the apparent
velocity for the propagation of quantum correlations is two
or more times larger than in the weak-thermalization case, as
judged from the observed much shorter recurrence times in
our finite systems.

All of the above points to a more complex picture in terms of
quasiparticles, which are likely moving faster but are also less
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sharp due to smaller gap and stronger mixing with multiparticle
states. Hence, our intuition is that the system should relax
faster, which is indeed observed in Ref. [37]. However, we
would also naively conclude that the system will approach the
“thermalized” state, contrary to what is observed in Ref. [37]
on the accessible simulation times. It is possible that the ther-
malization does eventually happen, but the combined effects
of the smallness of the gap and frustrating interactions produce
a complex behavior on intermediate time scales. At the same
time, the quantum correlations spread more quickly, which
limits the accessible simulation times before entanglement
increases too much in the infinite-MPS study. A very inter-
esting possibility would be if this system does not thermalize
in the conventional sense because of some emergent integral
of motion, perhaps of the kind discussed in Refs. [44,45] and
in our discussion of the truncated SW picture earlier. Alterna-
tively, it could be that it thermalizes very slowly because of an
approximate integral of motion. Since we are unable to provide
a more controlled understanding of the nonthermalizing
behavior, we leave this as an interesting open problem.

VI. CONCLUSIONS

We studied the origin and eventual fate of strong oscillations
in specific quantum quenches in the nonintegrable spin model,
where the initial state has low energy density relative to the
ground state. By extrapolating our finite-size ED calculations,
we were able to interpret the oscillation frequency as the
quasiparticle creation energy. We further used SW transfor-
mation to derive the effective Hamiltonian to have a better
description of the quasiparticles at finite density. The time
evolution problem can be viewed as a quench from a dilute
BEC state to an interacting hard-core boson Hamiltonian. The
oscillation signal mainly comes from the observables changing
the particle number by 1.

Inspired by the finite-size ED and perturbative SW cal-
culations, we further simplified the problem by considering
two specific BEC initial states and the hard-core boson
Hamiltonian with hopping only. This problem is interesting
on its own even without the context of the spin problem we
discussed. We considered first the initial state as a simple
product state analogous to the boson coherent state but under
hard-core constraint. The other initial state was prepared as
a topological superconductor in the Jordan-Wigner fermionic
representation, which we argued has long-range order in the
bosonic representation and is qualitatively in the same BEC
phase as the first state. Furthermore, Wick’s theorem is valid
for this state, allowing us to obtain results for much larger
systems and longer times via the Pfaffian method.

Incidentally, we discovered that under the condition
Eq. (35), the topological superconductor wave function, when
written in terms of bosons and projected into a sector with
a fixed particle number, has amplitudes independent of the
positions of the particles, thus becoming the initial BEC
state studied in Refs. [24,40]. Since the restriction to fixed
particle number is not important in the thermodynamic limit, in
principle, one can study essentially the same quench problems
but with the advantage of Wick’s theorem. The bosonic
two-point correlation function hence reduces to an evaluation
of a block Toeplitz determinant with 2 × 2 blocks. Such block

Toeplitz determinants are not as well studied, and we have not
been able to obtain an analytical expression in our case (e.g.,
some of the calculation tricks in Ref. [22] were not directly
applicable to our problem). Finding such a compact expression
for the correlation functions remains an interesting outstanding
problem.

Our numerical calculations strongly suggest that the BEC
order parameter 〈b†j (t)〉 decays exponentially with time. Both
the decay rate and the oscillation frequency depend on the
boson density. We believe that the exponential decay originates
from the nonlocal nature of the boson creation operator in
terms of the JW fermions. The nonlocality of the operator
excites quasiparticles at all momenta, whose interferences
produce the exponential decay. Using analogy with quenches
from the ferromagnetic state in the quantum Ising chain
[22,36], we conjectured the inverse lifetime as Eq. (21), and
hence obtained explicit density dependence of the lifetime.
We also conjectured that the oscillation frequency depends on
the density as Eq. (24). On the other hand, the pair-boson
observable 〈b†j (t)b†j+1(t)〉 also has oscillations but with a
t−3/2 power-law decay, and the oscillation frequencies and
power-law decay behavior are independent of the density in
the initial state.

As an open problem for quenches from the BEC state, it
will be interesting to study the validity of our conjectures
for the decoherence time and oscillation frequency in the
specific hard-core boson hopping model. Our calculation of
the different decaying behaviors for single- and pair-boson
observables can in principle be distinguished and verified
in cold atom experiments such as the setting in Ref. [9],
with nonzero hopping and much stronger on-site interaction.
It will also be interesting to add integrability-preserving
and integrability-breaking interactions to the hard-core boson
hopping model and study how these affect the described
behaviors.

Returning to the original spin system exhibiting weak
thermalization, we made several approximations and simpli-
fications when mapping this to the BEC quench problem. In
particular, we implicitly introduced an additional conserved
quantity in our SW treatment by dropping Hother terms
that connect different sectors. Specifically, our truncated-SW
Hamiltonian conserves the sector identity, or equivalently the
total quasiparticle number. An interesting possibility would be
that such successive SW transformations developed to higher
orders converge, implying true emergence of such integrals of
motions in the translationally invariant system, in the spirit of
Refs. [44,45]. One can also view this SW transformation as a
kind of renormalization, which pushes the effect of changing
the excitation numbers to lower energy in the effective Hamil-
tonian, but at the expense of making the original observables
more complex. However, at present we do not know how to
address this interesting possibility in thermodynamically large
systems.

Fairly conservatively, we would expect that the dropped
terms in the Hamiltonian would lead to improved thermal-
ization, in the sense that the system is more generic and
likely to thermalize at long times. Since even without those
dropped terms and with the simplified initial state structure
we showed that the oscillation signal still decays, we expect
in the full problem the oscillations will decay in the long
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time limit. Nevertheless, the decay becomes slower as we
decrease the quasiparticle density and can be particularly
slow at small density. Therefore, we boldly conclude that the
oscillation will decay eventually in the weak thermalization
regime, and the apparently persistent oscillation is due to
its slow decay rate as a result of the low density of the
quasiparticles.

We would also like to mention a puzzling problem regarding
the |X−〉 initial state studied in Ref. [39], which also shows
the persistent oscillation behavior up to time t = 20. This state
is also on the lower end of the spectrum, but with three times
higher energy density than the |Z+〉 state. Our naive estimation
using the hard-core boson hopping model would give us a
much shorter decoherence time disagreeing with the infinite-
MPS simulation. We suspect that to get a more quantitative
agreement, we need to incorporate further details about the
quasiparticle interactions, such as those discussed at the end
of Sec. III A. We will leave this for the future work.
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APPENDIX A: LOCAL SCHRIEFFER-WOLF
TRANSFORMATION

We consider H0, Eq. (2), as our basic solvable Hamiltonian
and treat T , Eq. (3), as our perturbation. The latter can be
decomposed as

T = T1,2 + T−1,−2 + T1,0 + T−1,0 + T1,−2 + T−1,2, (A1)

with

T1,2 = −g
∑

j

P
↑
j−1σ

−
j P

↑
j+1,

T−1,−2 = −g
∑

j

P
↑
j−1σ

+
j P

↑
j+1,

T1,0 = −g
∑

j

(P ↑
j−1σ

−
j P

↓
j+1 + P

↓
j−1σ

−
j P

↑
j+1),

T−1,0 = −g
∑

j

(P ↑
j−1σ

+
j P

↓
j+1 + P

↓
j−1σ

+
j P

↑
j+1),

T1,−2 = −g
∑

j

P
↓
j−1σ

−
j P

↓
j+1,

T−1,2 = −g
∑

j

P
↓
j−1σ

+
j P

↓
j+1.

Each Tm,n satisfies [H0,Tm,n] = 2(mh + nJ )Tm,n and works
like a generalized ladder operator on the energy levels of H0.
Furthermore, T−m,−n = T

†
m,n.

We develop a perturbative local Schieffer-Wolff approach
following Ref. [42]. Consider a unitary transformation eiS with
the generator

iS = iS[1] + iS[2] + · · · , (A2)

where iS[k] is of order O(gk). We can expand the rotated
Hamiltonian as

H ′ ≡ eiSHe−iS

= H0 + T + [iS[1],H0] + [iS[1],T ]

+ [iS2,H0] + 1
2 [iS[1],[iS[1],H0]] + O(g3).

The generators iS[k] are chosen order by order so as to
eliminate the excitation-number-changing part of the previous
order. Specifically, we choose iS[1] such that

T + [iS[1],H0] = 0, (A3)

with the solution

iS[1] = T1,2 − T−1,−2

2h + 4J
+ T1,0 − T−1,0

2h
+ T1,−2 − T−1,2

2h − 4J
. (A4)

To this order,

H ′ = H0 + 1
2 [iS[1],T ] + [iS[2],H0] + O(g3), (A5)

where the second term contains both excitation-number-
preserving terms (i.e., sector-diagonal terms) and excitation-
number-changing terms (i.e., sector-off-diagonal terms), now
in second order. To eliminate the excitation-number-changing
-terms to this order, we choose iS[2] such that(

1
2 [iS[1],T ]

)
sector-off-diag + [iS[2],H0] = 0, (A6)

giving us

H ′ = H0 + (
1
2 [iS[1],T ]

)
sector-diag + O(g3). (A7)

This is the Hamiltonian quoted in the main text, Eq. (4), with
Hother containing terms of order O(g3).

While we do not need explicit iS[2] to determine the
effective Hamiltonian to this order, we do use it when rotating
the operators and the initial state in Sec. III B in calculations
leading to Fig. 4. Hence we quote the solution to Eq. (A6):

iS[2] =
(

1

4h
− 1

8J − 4h

)
[T1,0,T−1,2] − H.c.

4J

+
(

1

8J − 4h
+ 1

4h

)
[T1,−2,T1,0] − H.c.

4J − 4h

+
(

1

4h
− 1

8J + 4h

)
[T1,0,T1,2] − H.c.

4J + 4h

+
(

1

4h
+ 1

8J + 4h

)
[T−1,−2,T1,0] − H.c.

4J

+
(

1

8J − 4h
− 1

8J + 4h

)
[T−1,2,T1,2] − H.c.

8J

+
(

1

8J + 4h
+ 1

8J − 4h

)
[T−1,−2,T−1,2] − H.c.

4h
.

(A8)
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While in principle we can continue to obtain higher-order
effective Hamiltonians, the form of the previous order will
not be changed. Note that in the main text, for the purpose
of demonstrating the SW picture, we used the perturbatively
truncated H ′, while we rotated the operators and the initial
state using exp(iS[1] + iS[2]) (i.e., without further expansion
of the exponential). This was actually easier to implement
and also guarantees that the operators and initial state are
rotated by a unitary and will agree with perturbative treatment
to this order (when studying dynamics, this also assumes
appropriately small elapsed time). We did not use exact unitary

rotation of the Hamiltonian since then the rotated problem
would be unitarily equivalent to the original problem, with no
new information. We expect that using truncated Hamiltonian,
which in addition conserves excitation number, should make it
only more difficult to thermalize, and we indeed do not observe
any faster thermalization.

For completeness, we also present below the effective
observables to first order, even though we did not explicitly
use them in the main text. To obtain the observables in
the rotated picture, we use the formula Ô ′ = eiSÔe−iS =
Ô + [iS[1],Ô] + O(g2). With Ô = σx

j , σ
y

j and, σ z
j , we have

(
σx

j

)′ ≈ σx
j + g

2h

(
σ z

j−2σ
y

j−1σ
y

j + σ
y

j σ
y

j+1σ
z
j+2 + 2P

↑
j−1σ

z
j P

↓
j+1 + 2P

↓
j−1σ

z
j P

↑
j+1

)
− g

4J − 2h

(
P

↓
j−2σ

y

j−1σ
y

j +σ
y

j σ
y

j+1P
↓
j+2 + 2P

↓
j−1σ

z
j p

↓
j+1

)+ g

4J + 2h

(
P

↑
j−2σ

y

j−1σ
y

j + σ
y

j σ
y

j+1P
↑
j+2 − 2P

↑
j−1σ

z
j P

↑
j+1

)
(A9)

(
σ

y

j

)′ ≈ σ
y

j − g

2h

(
σ z

j−2σ
y

j−1σ
x
j +σx

j σ
y

j+1σ
z
j+2

)+ g

4J − 2h

(
P

↓
j−2σ

y

j−1σ
x
j +σx

j σ
y

j+1P
↓
j+2

)− g

4J + 2h

(
P

↑
j−2σ

y

j−1σ
x
j + σ

y

j+1P
↑
j+2

)
,

(A10)

and (σ z
j )′ as in Eq. (9).

APPENDIX B: CALCULATION OF 〈b†
j (t)b†

j+1(t)〉, Eq. (19)

In this Appendix, we present details of the calculation of
ϒ(t) ≡ 〈b†j (t)b†j+1(t)〉 for the initial product BEC state. We
first obtain a closed-form expression for the observable in a
finite system of length L and then derive the thermodynamic
limit Eq. (19). Since the Jordan-Wigner fermions have different
boundary conditions in the even- and odd-number-parity
sectors, when calculating the time evolution we split

ϒ(t) = ϒeven(t) + ϒodd(t), (B1)

ϒeven(odd)(t) ≡ 〈Peven(odd)b
†
j (t)b†j+1(t)Peven(odd)〉, (B2)

where Peven(odd) is the projector to the even-(odd-)number-
parity sector.

We can use translational invariance to consider instead
〈∑j b

†
j (t)b†j+1(t)〉/L. Keeping in mind implicit surrounding

sector projectors, we can express

1

L

∑
j

b
†
j (t)b†j+1(t)

= 1

L

∑
k

c
†
kc

†
−ke

ikei2εk t (B3)

= 1

L2

∑
k

eikei2εk t
∑
j,j ′

c
†
j c

†
j ′e

ik(j−j ′) (B4)

= 2

L2

∑
k

sin(k)ei2εk t
∑
j<j ′

sin[k(j ′ − j )]c†j c
†
j ′ , (B5)

where momenta k should be taken appropriately for each
number-parity sector. We also used ε−k = εk and kept only
the surviving total even part in k in the last line.

Restoring the sector projectors, we now need to evaluate
〈Peven(odd)c

†
j c

†
j ′Peven(odd)〉 in the initial product BEC state

Eq. (14). We can express the projectors as Peven(odd) = (1 ±
eiπNtot )/2. Writing the fermionic operators in terms of the
bosonic operators gives c

†
j c

†
j ′ = b

†
j (

∏j ′−1
s=j+1 eiπns )b†j ′ , where

we assumed j < j ′. We can easily evaluate expectation values
in the product BEC state and obtain

〈Peven(odd)c
†
j c

†
j ′Peven(odd)〉= (β∗α)2 ηj ′−j−1 ± ηL−(j ′−j+1)

2
,

where we defined η ≡ 〈eiπns 〉 = |α|2 − |β|2.
When calculating the expectation value of Eq. (B5), the

summation over j < j ′ actually contains only a function
of j ′ − j . For each separation � = j ′ − j , there are L − �

identical terms to be summed. Therefore, we now need to
calculate

L−1∑
�=1

(L − �) sin(k�)(η�−1 ± ηL−�−1)

= ±
L−1∑
s=1

s sin(ks)(ηL−s−1 ± ηs−1)

=
L−1∑
s=1

Im[seiks(±ηL−s−1 + ηs−1)], (B6)

where in the second line we changed the summation variable to
s ≡ L − � and also used that kL = 2πm + π or kL = 2πm,
m ∈ Z, in the even- or odd-parity sectors respectively (upper
and lower signs respectively).

The summation can be done exactly using the formula

L−1∑
s=1

sas = a
∂

∂a

L−1∑
s=1

as = a(1 − aL)

(1 − a)2
− LaL

1 − a
, (B7)
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applying it with a = eikη−1 and a = eikη for the first and
second parts respectively. Putting everything together, we find

ϒeven(odd)(t) = (β∗α)2 1

L2

∑
k

sin(k)ei2εk t Im

[
eik(1 ± ηL)

(η − eik)2

+ L

η − eik
+ eik(1 ± ηL)

(1 − eikη)2
± LηL−1

1 − eikη

]
,

where we again used eikL = ∓ in the even (odd) sectors
respectively. The finite-site result can be easily summed
numerically at this point for any L, which is how we obtained
the corresponding data in the main text. We can also easily
take the thermodynamic limit, remembering that |η| < 1.
In particular, we see that in the thermodynamic limit, the
contributions from the even- and odd-number-parity sectors
are the same, and we obtain Eq. (19) in the main text.
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