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We present a theoretical study based upon quantum Monte Carlo methods of the Bose polaron in one-
dimensional systems with contact interactions. In this instance of the problem of a single impurity immersed
in a quantum bath, the medium is a Lieb-Liniger gas of bosons ranging from the weakly interacting to the
Tonks-Girardeau regime, whereas the impurity is coupled to the bath via a different contact potential, producing
both repulsive and attractive interactions. Both the case of a mobile impurity, having the same mass as the particles
in the medium, and the case of a static impurity with infinite mass are considered. We make use of numerical
techniques that allow us to calculate the ground-state energy of the impurity, its effective mass, and the contact
parameter between the impurity and the bath. These quantities are investigated as a function of the strength of
interactions between the impurity and the bath and within the bath. In particular, we find that the effective mass
rapidly increases to very large values when the impurity gets strongly coupled to an otherwise weakly repulsive
bath. This heavy impurity hardly moves within the medium, thereby realizing the “self-localization” regime of
the Landau-Pekar polaron. Furthermore, we compare our results with predictions of perturbation theory valid
for weak interactions and with exact solutions available when the bosons in the medium behave as impenetrable
particles.
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I. INTRODUCTION

In recent years the problem of an impurity coupled to
a quantum bath has received great attention in the field of
ultracold atoms, both theoretically and experimentally. In
particular, the fermionic version of this problem, i.e., when the
bath is a spin-polarized Fermi sea, is already a well-studied
topic with different interesting perspectives addressing the
attractive and repulsive branch as well as low dimensions [1].
On the contrary, for the bosonic counterpart corresponding
to an impurity immersed in a Bose condensed medium, only
very recently have there been experimental studies focusing
on the excitation energy and spectral response of the polaron
quasiparticle [2,3]. Previous experiments investigated mainly
collisional and dissipation processes involving the bath [4–6].
On the theoretical side, the Bose-polaron problem has been
addressed in a series of studies utilizing different tools such as
the T matrix [7] and perturbation [8] approaches, variational
wave-function [9,10], and quantum Monte Carlo (QMC)
methods [11,12].

Low dimensions, in particular, one-dimensional (1D) con-
figurations, enrich the Bose-polaron problem with some pe-
culiar features that are worth investigating: first, the enhanced
role of quantum fluctuations capable of destroying the off-
diagonal long-range order responsible for Bose-Einstein con-
densation even at zero temperature and, second, the possibility
of achieving strongly correlated regimes for the quantum bath,
where the bosons approach the so-called Tonks-Girardeau
(TG) limit of fermionlike impenetrable particles [13–16].
The use of confinement-induced resonances of the s-wave
scattering amplitude represents a powerful tool for these
1D systems, allowing for wide tunability of the interactions
both within the bath and between the bath and the impurity
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[5,16–18]. For example, in Ref. [5] a 1D mixture of K
impurities in a gas of Rb atoms was realized and different
values of the impurity-bath interaction, obtained by varying
the magnetic field, were probed. Similarly, in Ref. [17], two
hyperfine states of Cs atoms have been used to realize arrays
of 1D tubes in the TG regime with approximately one impurity
per tube at variable coupling between the impurity and the bath.
The gas parameter in the bath can also be tuned by changing
the density or the effective mass of the atoms by means of a
lattice potential [14,15].

In this work we investigate theoretically the Bose-polaron
problem when the quantum bath is modeled by a Lieb-
Liniger gas with contact interactions [19] and the impurity
is coupled to the bath via a different δ-like potential that
can be both attractive and repulsive. Different regimes of
the surrounding medium are considered and analyzed as a
function of the impurity-boson coupling strength: (i) the bath
is weakly interacting and well described by the mean-field
theory, (ii) interactions in the bath are relatively strong and
beyond-mean-field effects are important, and (iii) the bath is in
the TG regime and some analytical results are available thanks
to the Bose-Fermi mapping [20,21]. We characterize the Bose
polaron by calculating its binding energy, effective mass, and
contact parameter. Furthermore, we consider both the case of
a mobile impurity having the same mass as the particles in the
medium and the case of a static impurity, corresponding to the
limit of a much larger impurity-to-boson mass ratio.

The results show that the polaron energy reaches a constant
value for large repulsive impurity-boson interactions, whereas
in the opposite limit of large attraction the impurity gets
deeply bound to the bath. Unless the bosons are impenetrable
particles, this binding energy is found to be much higher than
that of the dimer state, the solution to the two-body problem
in vacuum. The tendency of bosons attracted by the impurity
to form large clusters involving many particles is also evident
from the density profile of the medium around the impurity.

2469-9926/2017/95(2)/023619(9) 023619-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.023619


L. PARISI AND S. GIORGINI PHYSICAL REVIEW A 95, 023619 (2017)

The size of these clusters, as well as their binding energy,
increases with decreasing interaction strength within the bath,
indicating an instability of the weakly interacting Lieb-Liniger
gas towards collapse around an attractive impurity.

The effective mass of the polaron moving in a weakly
interacting medium exhibits a sharp increase as a function of
the coupling, both on the repulsive and on the attractive side of
the impurity-bath interaction. Already at a moderate coupling
strength the impurity becomes very heavy, thus realizing the
so-called “self-localization” regime predicted by Landau and
Pekar for polarons in crystals [22]. This picture was also
proposed for Bose polarons in three dimensions on the basis
of a Fröhlich-type model [23–26], which, however, does not
capture the relevant physics at strong coupling [8,11]. Upon
approaching the TG limit, instead, the effective mass increases
sizably only for large values of the coupling on the repulsive
side and saturates at twice the bare mass on the attractive side.

It is worth pointing out that the results mentioned above
are directly relevant for experiments on few impurities in a
quantum bath where the binding energy can be measured using
spectroscopic techniques [2,3,27–30] and the effective mass
from the study of collective modes in harmonic traps [5,31], as
well as from radio-frequency measurements at finite impurity
concentration [27,30].

The paper is organized as follows: in Sec. II we introduce
the Hamiltonian of the system and we review or derive some
analytical results that are obtained using perturbation theory
in the limit of weak interactions or the Bose-Fermi mapping in
the TG limit. In Sec. III we briefly provide some details about
the QMC techniques used to address this specific problem and
about the physical observables calculated in the simulations.
Section IV contains a detailed discussion of the results and
a comparison with the analytical predictions available for
specific regimes of parameters. Finally, in Sec. V we draw
our conclusions and we outline possible future prospects of
this work.

II. GENERAL THEORY

We consider the Hamiltonian

H = − h̄2

2mB

N∑
i=1

∂2

∂x2
i

+
∑
i<j

gδ(xi − xj )

− h̄2

2mI

∂2

∂x2
α

+
N∑

i=1

g̃δ(xi − xα), (1)

describing a 1D system of N identical bosons with mass mB

interacting via a repulsive contact potential of strength g > 0.
A single impurity of mass mI is coupled to the particles
in the bath via another contact potential characterized by
strength g̃. The coordinates of the bosons and the impurity are
denoted, respectively, xi (i = 1, . . . ,N) and xα . We introduce
the dimensionless parameters

γ = gmB

h̄2n
, η = 2g̃

h̄2n

mBmI

mB + mI

, (2)

where n = N/L is the density of the bath in the 1D box of size
L. The first parameter gives the strength of interactions within
the bath, which can range from the weakly correlated mean-

field regime (γ � 1) to the strongly correlated TG regime
(γ � 1), where bosons are impenetrable and behave similarly
to a gas of spinless fermions. The parameter η is instead
related to the coupling between the impurity and the bath and,
contrary to γ , can be either positive or negative depending on
the sign of g̃. Note that for equal masses (mB = mI ) and for
equal coupling strengths (g̃ = g) the equality γ = η holds.

The above Hamiltonian, (1), of the clean bath without the
impurity was solved exactly by Lieb and Liniger [19] for a
system in the thermodynamic limit and with periodic boundary
conditions. The ground-state energy is found as a function of
the parameter γ in the form

E0 = N
h̄2n2π2

2mB

ε(γ ), (3)

where the dimensionless energy per particle ε(γ ) is obtained
by solving a pair of coupled integral equations [19]. The scale

of energy in Eq. (3) is chosen as εF = h̄2k2
F

2mB
, with kF = πn,

corresponding to the Fermi energy of a gas of spinless fermions
with the same mass and density. Some limits of ε(γ ) can be
derived analytically: if γ � 1, one finds ε � γ

π2 (1 − 4
3π

√
γ );

in the opposite limit, γ � 1, one has instead ε � 1
3 (1 − 4

γ
).

As mentioned, the former result holds in the weak-coupling
regime and includes the Bogoliubov term and the first beyond-
mean-field correction, whereas in the latter, the leading term
corresponds to the energy of the equivalent noninteracting
Fermi gas.

The binding energy of the impurity is defined as the energy
difference in the ground state of the system with versus without
the impurity. The former can be written as

Ẽ0 = h̄2n2π2

2mB

[Nε(γ ) + μ(γ,η)], (4)

allowing one to express the energy difference Ẽ0 − E0 in terms
of the dimensionless function μ(γ,η), which yields the polaron
energy in units of the scale εF .

In the limit of small γ and small η one can determine the
energy and the effective mass of the polaron by using the
perturbation approach based on the Bogolubov approximation
as outlined in Ref. [11]. By introducing the mass ratio w = mB

mI

of the bosonic to the impurity mass, the result for the polaron
energy reads

μ(γ,η) � η(1 + w)

π2

(
1 − η√

8γ

1 + w

π

×
∫ ∞

0

dx√
x + 2

1√
x2 + 2x + wx

)
, (5)

and for the effective mass one finds

m∗
I

mI

� 1 + η2

γ 3/2

w(1 + w)2

√
2π

×
∫ ∞

0

dx√
x + 2

x

(
√

x2 + 2x + wx)3
. (6)

The first term in Eq. (5) is the mean-field contribution
proportional to g̃, whereas next-to-leading-order corrections
to both μ and the effective mass are proportional to g̃2 and
are independent of the sign of the impurity-boson interaction.
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We also note that in the limit γ → 0, for a fixed value
of η, both these corrections diverge, signaling an instability
of the medium surrounding the impurity when boson-boson
interactions are suppressed. The situation is different in the
three-dimensional (3D) case where, in the same limit, only the
effective mass exhibits a divergent behavior [11].

We consider explicitly two particular values of the mass
ratio w: the case of equal masses (w = 1) and the case of a
static impurity of infinite mass (w = 0). For the former case,
Eqs. (5) and (6) give

μ(γ,η) � 2η

π2

(
1 − η

π
√

γ

)
, (7)

m∗

m
� 1 + 2

3π

η2

γ 3/2
, (8)

where we have set mB = mI = m. The binding energy of a
static impurity, instead, is found to be

μ(γ,η) � η

π2

(
1 − η

4
√

γ

)
. (9)

These two cases are of special interest because an exact
solution is available when the bath is in the TG limit (γ = ∞).
The binding energy and the effective mass of the equal-mass
case (w = 1) were calculated by McGuire [20,21], with the
result

μ = 2

π

[
η

2π
+ arctan

η

2π
− η2

4π2

(
π

2
− arctan

η

2π

)]
(10)

and the two results

m∗

m
= 2

π

(
arctan 2π

η

)2

arctan 2π
η

− 2π/η

1+ 4π2

η2

, (11)

m∗

m
=

2
(
1 − 1

π
arctan 2π

|η|
)2

1 − 1
π

(
arctan 2π

|η| − 2π/|η|
1+ 4π2

η2

) (12)

holding, respectively, for positive and negative values of
the coupling constant g̃. Two limits of Eqs. (10)–(12) are
worth discussing: (i) If η → +∞, one finds μ � 1, yielding
a polaron energy equal to the chemical potential of the
surrounding Fermi gas, whereas the effective mass diverges as
m∗
m

� 3η

2π2 ; and (ii) if η → −∞, then μ � − η2

2π2 and m∗
m

� 2,
corresponding to the binding energy and the mass of a dimer
in vacuum.

In the case of a TG gas with a static impurity (w = 0)
one proceeds by considering the impurity in the center of a
large box of size L with impenetrable walls and by calculating
the phase shift of each single-particle state generated by the
impurity contact potential of strength g̃. The ground-state
energy difference Ẽ0 − E0 is readily calculated, yielding the
result

μ = 1

π

[(
1 + η2

4π2

)
arctan

η

2π
+ η

2π
− η|η|

8π

]

− [1 − θ (η)]
η2

4π2
. (13)

The term involving the Heaviside function θ (x), where θ (x) =
1 if x > 0 and 0 otherwise, accounts for the binding energy of
the dimer when g̃ < 0. Also in this case we can easily extract
the following limiting behaviors: (i) if η → +∞, then μ � 1

2 ;

and (ii) if η → −∞, one finds the result μ � − η2

4π2 − 1
2 . Note

that the energy of the mobile impurity, (10), in the limit of
infinite repulsion is twice the corresponding energy of the
static impurity, (13), even though the effective mass, (11),
diverges in the same limit. This is due to the kinetic energy
contribution of the mobile impurity within the region of space
delimited by the two nearest-neighbor particles of the bath
acting as impenetrable barriers.

Another asymptotically exact result for a static impurity
(w = 0) is obtained when interactions within the bath are
weak (γ � 1) and there is a strong impurity-boson repulsion
(η → +∞). In this case, the polaron energy coincides with
the excitation energy of a dark soliton [32],

μ = 8

3π2

√
γ . (14)

This excited state of the gas is indeed stationary and is
characterized by a 0 in the density profile.

An important quantity describing the interaction between
the impurity and the bath is the contact C, defined as the value
of the boson density at the impurity position normalized by
the bulk density: C = n(xα )

n
. By using the Hellmann-Feynman

theorem [33] one can relate the value of C to the derivative
of the equation of state with respect to the impurity-boson
coupling constant,

C = dẼ0

ndg̃
= π2mI

mB + mI

d

dη
μ(γ,η). (15)

In the case of equal masses (w = 1) the contact parameter
can be derived analytically in the weak-coupling limit, where
Eq. (7) yields C = 1 − 2η

π
√

γ
, and in the TG limit, where from

Eq. (10) one finds

C = 1 − η

4
+ η

2π
arctan

η

2π
. (16)

From the above result we see that C � 4π2

3η2 when η is large and

positive and C � |η|
2 in the opposite limit of large and negative

values of η.

III. NUMERICAL METHOD

The calculations are performed using QMC numerical
techniques. A thorough description of these methods can be
found elsewhere [34]. Here we provide a detailed explanation
of the choice of the wave function used as a trial many-body
state in the variational Monte Carlo and for importance
sampling in the diffusion Monte Carlo scheme. A similar
scheme was used in the recent study of an impurity immersed
in a 3D Bose-Einstein condensate [11].

We consider a system of N identical particles and one
impurity contained in a 1D box of size L with periodic
boundary conditions. The trial wave function is comprised
of two terms: the first takes into account correlations among
the particles in the bath; and the second, correlations between
these particles and the impurity. Both pair correlation functions
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satisfy boundary conditions when the two particles meet to
enforce the contact interactions present in the Hamiltonian,
(1). The trial wave function is written as

ψT (X) =
∏
i<j

fB(xi − xj )
N∏

i=1

fI (xi − xα), (17)

where the multidimensional vector X = (x1, . . . ,xN ,xα) de-
notes the coordinates of both the N particles in the bath and
the impurity. The boson-boson correlation factor is chosen as
the solution of the two-body problem,

fB(x) = cos (k|x| + ϕB(k)), (18)

if |x| < XB and fB(x) = 1 otherwise. The value of k is fixed
by the condition kXB + ϕB(k) = 0, ensuring that both fB

and its first derivative are continuous at the matching point
XB . The phase shift results from the Bethe-Peierls contact
condition imposed by the interatomic potential and is given
by ϕB(k) = − arctan gmB

2kh̄2 . For the impurity-boson correlation
term one should distinguish between the case of repulsive
(g̃ > 0) and that of attractive (g̃ < 0) interactions. The former
case can be dealt with in a way similar to the boson-boson
interaction and one is led to write

fI (x) = cos (k|x| + ϕI (k)) (19)

when |x| < XI , while fI (x) = 1 if |x| > XI . Here k is chosen
such that kXI + ϕI (k) = 0 in terms of the matching point XI

and the phase shift is given by ϕI (k) = − arctan g̃mBmI

(mB+mI )kh̄2 . In
the case of attractive interactions a two-body bound state exists
between the impurity and a particle in the bath and we choose
the correlation term as a linear combination of the solutions
corresponding to a negative two-body energy,

fI (x) = 1
2 (e−k(|x|−XI ) + ek(|x|−XI )), (20)

when |x| < XI and fI (x) = 1 otherwise. The value of k

depends on the matching point XI and is determined through
the contact condition imposed by the δ potential of strength
g̃: kXI − tanh−1 |g̃|mBmI

(mB+mI )kh̄2 = 0. The two matching points
XB and XI , entering, respectively, the boson-boson and the
impurity-boson correlation term, are variational parameters
optimized by minimizing the expectation value of the Hamil-
tonian on the many-body state ψT . We find that XB = L/2
for all values of the boson-boson interaction. On the contrary,
the matching point XI depends only weakly on the value of
η but decreases strongly with increasing γ . In particular, for
γ = 0.02, the optimal value is given by XI � L/2, while for
a TG gas we find XI of the order of the interparticle distance.

We note that the contact boundary conditions encoded in
Eqs. (18)–(20) for the two-body correlation factors allow us
to correctly simulate the δ-function interactions of the Hamil-
tonian, (1). This procedure of replacing contact interatomic
potentials with properly chosen boundary conditions when
two particles meet was used in a series of numerical studies in
one dimension [35–37] and, more recently, also for 3D QMC
simulations [12,38,39].

Calculations are carried out by separately computing the
ground-state energy of the system with N bosons and one
impurity, E0(N,1), and of the clean system with N bosons only,
E0(N ). The polaron energy is determined as the difference

μ = E0(N,1)−E0(N)
εF

, in units of the Fermi energy. The effective
mass is calculated by following the evolution in imaginary time
of the impurity �xα(τ ) = xα(τ ) − xα(0), that is, τ = it/h̄, and
by extracting the diffusion constant

m

m∗ = lim
τ→∞

〈|�xα(τ )|2〉
2Dτ

, (21)

where D = h̄2

2m
is the diffusion constant of a free particle [40].

The total atom numbers N range from N = 10 to N = 200 in
order to control finite-size effects and extrapolate the results
to the thermodynamic limit.

The density profiles n(x) of the bosons in the vicinity
of the impurity are calculated using a standard extrapolation
technique [41], which relies on both diffusion and variational
estimates of the physical observable. Finally, the contact
parameter C is extracted directly from the value of n(x) at
the position of the impurity.

IV. RESULTS

We first discuss the results on the binding energy for the
mobile (w = 1) and the static (w = 0) impurity. In Fig. 1
we show the energy of the mobile impurity as a function of
the coupling strength η, ranging from large negative to large
positive values, when the interaction parameter γ in the bath
is kept fixed. For the latter we consider values varying from
the weakly coupled regime, γ � 1, to the TG regime where
γ = ∞. The corresponding results for the static impurity are
presented in Fig. 2. Note that for η < 0 we subtract from the
binding energy μ the contribution from the two-body bound
state given by μd = −η2 1+w

4π2 .
The exact polaron energies corresponding to the TG regime

and given by Eqs. (10) and (13) are shown as solid lines in
Fig. 1 and Fig. 2, respectively for w = 1 and for w = 0. As an
important benchmark test we find that the values of μ obtained
from our QMC simulations with γ = ∞ perfectly reproduce
these results. In the regime of small values of |η|, our results
also recover the expansions from perturbation theory given by
Eqs. (7) and (9). In particular, both for w = 1 and for w = 0,
we find that the range of values of |η| where the perturbation
expansion agrees well with the calculated polaron energy
becomes larger as γ increases. In fact we note that, when
γ is large, from Eq. (5) one finds μ � η(1+w)

π2 . Remarkably,
this result agrees with the expansion of Eqs. (10) and (13),
respectively, for the mobile and static impurity, up to values of
the impurity-boson coupling constant of the order of |η| � 1.
For smaller values of γ , typically γ < 1, the applicability
of perturbation theory is instead limited to the region where
|η| � √

γ .
If η is large and positive the energy of both the mobile and

the static impurity tends to saturate to a value that becomes
smaller with decreasing γ [see Figs. 1(b) and 2(b)]. In the TG
regime (γ = ∞) this asymptotic energy coincides with the
energy εF of adding an extra particle to the bath in the mobile
case and with εF /2 in the static case. As discussed in Sec. II,
this energy difference arises from the kinetic energy contribu-
tion of the mobile impurity. A similar difference persists also
for smaller values of γ : for example, at γ = 0.02 and η = 10,
we find μ = 0.059(1) and μ = 0.041(1), respectively, for the
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FIG. 1. Binding energy (in units of the scale εF ) of the mobile impurity with mass ratio w = 1 as a function of the impurity-boson interaction
parameter η and for different values of the coupling strength γ within the bath. (a) Negative and (b) positive values of g̃; in (a) we subtracted
from μ the contribution μd = − η2

2π2 from the dimer bound state. The γ = ∞ curve corresponds to the exact result of McGuire [Eq. (10)] in
the TG limit. Dotted lines refer instead to the result of perturbation theory given in Eq. (7).

w = 1 and w = 0 case. We note that, in the latter limit of large
η and small γ , the energy of the static impurity is expected
to coincide with the excitation energy, (14), of a dark soliton
as determined using the mean-field Gross-Pitaevskii equation.
Indeed, in Fig. 2(b), good agreement between the two energies
is found for γ = 0.02 and also for γ = 0.2.

In the opposite regime of large and negative values of η, the
energy difference μ − μd tends, when γ = ∞, respectively,
to −1 and to −1/2 in the mobile and in the static case. Here,
the impurity forms a two-body bound state with one of the
particles of the medium, which is then missing from the Fermi
sea of the TG gas. Note that, similarly to the case of η > 0, the
binding energy μ of the mobile impurity is larger by a factor of
2 compared to the energy of the static one. For smaller values
of γ our results indicate that μ − μd is always negative and
grows unbounded as η → −∞ [see Figs. 1(a) and 2(a)]. This

behavior arises because, for attractive interactions between the
impurity and the bath and for not too strong repulsion within
the bath, many particles of the medium tend to cluster around
the impurity, producing a large negative binding energy for the
polaron.

An interesting question concerns the value of the polaron
energy when η is fixed and the interaction strength within
the bath gets weaker and weaker (γ → 0). At the level of
perturbation theory [see Eq. (5)] the answer to this question
is that μ becomes large and negative irrespective of the sign
of η. This result differs from the corresponding situation in
three dimensions, where perturbation theory predicts that,
when interactions within the bath vanish, the polaron energy
reduces to the mean-field value, proportional to the interspecies
coupling constant [11]. For positive values of η, a proper
answer to the question, going beyond the result of perturbation

FIG. 2. Binding energy (in units of the scale εF ) of the static impurity with mass ratio w = 0 as a function of the impurity-boson interaction
parameter η and for different values of the coupling strength γ within the bath. (a) Negative and (b) positive values of g̃; in (a) we subtracted
from μ the contribution μd = − η2

4π2 from the dimer bound state. The γ = ∞ curve corresponds to the exact result of Eq. (13) in the TG limit.
Dotted lines refer to the result of perturbation theory given in Eq. (9), and dashed lines to the dark-soliton excitation energy, (14).
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FIG. 3. Inverse binding energy (in units of the scale εF ) of the
mobile impurity with w = 1 as a function of the parameter γ and
for the fixed value η = −1 of the impurity-boson coupling constant.
The line is a linear fit to the data and the shaded region shows the
statistical uncertainty of the fit. The dashed line is the prediction from
perturbation theory given in Eq. (7).

theory, is provided by Figs. 1(b) and 2(b): when γ � η the
polaron energy decreases to 0 and for the static impurity
the behavior of μ is correctly described by the dark-soliton
excitation energy given in Eq. (14).

In the case of η < 0, Figs. 1(a) and 2(a) show that the
binding energy of the impurity grows large and negative as γ

decreases for a fixed value of η. However, in this limit, one
can expect that either (i) μ → −∞, indicating the instability
of the noninteracting bath in the presence of the impurity, or
(ii) μ saturates to a finite energy, indicating that even a tiny
repulsion in the bath is enough to stabilize the polaron. We
note that the value of μ(γ,η) refers to the polaron energy in
the thermodynamic limit and that the γ → 0 limit is intended
to be taken after the N → ∞ one. Of course, in the opposite
case of a strictly noninteracting bath with a finite number of
particles, the polaron energy would trivially diverge when the
number N increases. We address the question for the mobile
impurity with mass ratio w = 1, when the interaction between
the impurity and the bath is attractive and kept fixed at the value
η = −1. The results of the inverse energy 1/μ are shown in
Fig. 3 as a function of decreasing values of γ . We find that 1/μ

decreases in absolute value as γ decreases, even though the
result, (7), of perturbation theory fails completely in describing
the trend of the calculated binding energies. A simple linear
fit to the data extrapolates to a value compatible with 1/μ = 0
when γ = 0, given that error bars are significantly large. Our
findings are thus compatible with the above case (i), showing
an instability of the weakly repulsive bath towards a collapse
around the impurity. A similar behavior is expected for the
static impurity with w = 0. The latter result is in contrast with

FIG. 4. Inverse effective mass of the mobile impurity with mass
ratio w = 1 as a function of the impurity-boson interaction parameter
η and for different values of the coupling strength γ within the bath.
Values corresponding to both η positive and η negative are shown.
The γ = ∞ curve corresponds to the exact results of McGuire for
Eqs. (11) and (12) in the TG limit. Dotted lines refer to the result of
perturbation theory given in Eq. (8).

the binding energy of a static impurity in three dimensions and
resonantly interacting with the medium, which was found to
approach a finite value in the limit of a vanishing repulsion
within the bath [12].

In Fig. 4 we show the results of the polaron effective mass in
the case of the mobile impurity with mass ratio w = 1. We find
that, for a given value of γ , the inverse effective mass decreases
as |η| increases for both repulsive and attractive interactions.
We also note that, in the TG limit of γ = ∞, we recover the
exact results obtained by McGuire and given in Eqs. (11) and
(12). Furthermore, the comparison with the prediction, (6), of
perturbation theory shows that, similarly to the case of the
energy μ, the range of values of |η| where agreement is found
gets larger as γ increases.

On the attractive side of impurity-bath interactions, the
exact TG-gas result in Eq. (12) yields m∗ → 2m in the limit
of η large and negative. For the strongly interacting medium
with γ = 4 we find in the same limit that the effective mass
seems to saturate to m∗ � 4m. One should stress here that for
large attractions the calculation of the effective mass requires
increasingly longer simulation times resulting in larger error
bars. For smaller values of γ , both on the attractive and on
the repulsive side, the value of m∗/m becomes very large for
|η| � 10 if γ = 0.2 and already for |η| � 1 if γ = 0.02. It is
noteworthy that this rapid increase in the effective mass as a
function of the impurity-bath coupling does not occur in the 3D
counterpart of the Bose polaron problem, where, in the limit
of resonant interaction between the impurity and the bath, one
finds m∗/m � 2 (see Ref. [11]).
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FIG. 5. Normalized density profile n(x)
n

of the bath as a function
of the distance from the repulsive mobile impurity with mass
ratio w = 1. Distances are in units of the inverse 1D density 1/n.
Different curves correspond to different values of the parameter η

characterizing the strength of impurity-bath repulsive interactions.
Values of the coupling constant within the bath: (a) γ = ∞, (b)
γ = 2, and (c) γ = 0.02.

An increase in the effective mass as a function of the
impurity-bath coupling has been reported in the experiment
in Ref. [5] for both attractive and repulsive interactions. In this
experiment a cloud of K impurities immersed in a 1D bath
of Rb atoms is suddenly released after compression with an
optical potential and the rate of increase of its axial size is
measured for different fixed values of the interaction strength
between the impurities and the bath. The connection with the
effective mass of the impurities is provided by interpreting the
normalized width of the cloud with

√
mI/m∗

I . The coupling
constant of the bath was γ � 1 and values of η as large as
|η| � 10 were produced, resulting in a maximum measured
decrease in the normalized width by a factor of roughly 0.6.

In Fig. 5 and Fig. 6 we show the density profiles of the bath
as a function of the distance from the mobile impurity with
mass ratio w = 1 and for different values of both the impurity-
boson and the boson-boson coupling constant. Figure 5 refers
to repulsive interactions between the impurity and the bath,
whereas Fig. 6 refers to attractive interactions. With increasing
values of η in the case of repulsive interactions, the density of
bosons in the close vicinity of the impurity decreases until a
hole, completely empty of particles, is created for very large
η. The size of the hole strongly depends on the interaction
parameter within the bath: it is of the order of the interparticle
distance for the largest value (γ = ∞) and it extends to up
to ∼10 interparticle distances for the smallest one (γ = 0.02)
[see Figs. 5(a)–5(c)]. In particular, in the latter case, the density
of the gas reaches its bulk value at distances xn ∼ 100, not

FIG. 6. Normalized density profile n(x)
n

of the bath as a function
of the distance from the attractive mobile impurity with mass
ratio w = 1. Distances are in units of the inverse 1D density 1/n.
Different curves correspond to different values of the parameter |η|
characterizing the strength of impurity-bath attractive interactions.
Values of the coupling constant within the bath: (a) γ = ∞, (b)
γ = 2, and (c) γ = 0.02.

shown in the figure. We also note that, for γ = ∞ and for
the largest value of η, Friedel-type oscillations, typical of the
fermionic nature of the TG gas, are visible in the density
profile.

The results in Fig. 6, instead, feature a peak of the boson
density around the position of the impurity, which becomes
higher as the strength of the attraction increases. Also, in
this case the size of the peak gets larger as γ decreases. For
the largest γ [see Fig. 6(a)] the size of the peak is smaller
than the interparticle distance and at large values of |η| only
one particle of the bath is, on average, close to the impurity,
forming a bound dimer with energy μd . Indeed, as mentioned
in the discussion of Fig. 1(a), the energy of a polaron in
a TG gas tends to μd when η is large and negative. On
the contrary, as the value of γ decreases, the density peak
becomes wider and involves more and more particles of the
bath [Figs. 6(b) and 6(c)]. As a consequence, the binding
energy of the impurity increases in absolute value, and one
is approaching the situation of an unstable weakly interacting
gas as shown in Fig. 3.

Finally, in Fig. 7, we show the results for the contact
parameter C defined in Eq. (15). As explained in the previous
section, the value of C is determined from the boson density
n(x) at the impurity position normalized by the bulk density n.
We note that we reproduce the exact result of Eq. (16) in the
TG regime. Furthermore, compared to the γ = ∞ case, we see
that for smaller values of γ the contact parameter drops more
rapidly with increasing positive η and diverges more rapidly
with increasing negative η.
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FIG. 7. Contact parameter C [see Eq. (15)] of a mobile impurity
with mass ratio w = 1 as a function of the impurity-boson interaction
parameter η and for different values of the coupling strength γ within
the bath. Values corresponding to both η positive and η negative are
shown. The solid line corresponds to the exact result, (16), holding
in the TG limit. Dotted lines refer to the perturbative result holding
for small values of η.

Qualitatively similar results for the density profiles and the
contact parameter are obtained in the case of the static impurity
with mass ratio w = 0.

V. CONCLUSIONS

Using QMC numerical methods we investigated the prop-
erties of a Bose polaron in one dimension as a function of
the coupling strength between both the impurity and the bath
and within the bath. For a given impurity-bath interaction
strength we find that the repulsive polaron can never exceed
the energy reached when the bath is in the TG regime. On
the contrary, the binding energy of the attractive polaron
always lies below the energy of a dimer in vacuum and
becomes increasingly large as the repulsion within the medium
is reduced, thereby signaling an instability of the weakly
interacting gas towards collapse around the impurity position.
Furthermore, in the regime of a weakly repulsive medium,
the polaron effective mass is found to increase sharply with
the strength of the impurity-bath coupling. Such a heavy
impurity, practically immobile within the medium, realizes the
long-sought-after regime of “self-localization” of the strongly
coupled Landau-Pekar polaron.

Interesting future prospects for this work include the study
of a finite concentration of impurities in a 1D quantum
bath. This topic naturally leads to the issue of interaction
between impurities, phase separation in a two-component
gas, and the properties of magnetic excitations in a miscible
mixture.
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