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The Sagnac interferometry has widely been used to measure rotation frequency. Beyond the conventional
single-particle scheme, we propose a multiparticle scheme via Bose condensed atoms. In our scheme, an ensemble
of entangled two-state Bose atoms are moved in a ring via a state-dependent rotating potential, and then the
atoms are recombined for interference via Ramsey pulses. The phase accumulation time is determined by the
state-dependent rotating potential. The ultimate rotation sensitivity can be improved to the Heisenberg limit
if the initial internal degrees of freedom are entangled. By implementing parity measurement, the ultimate
measurement precision can be saturated, and the achieved measurement precisions approach the Heisenberg
limit. Our results provide a promising way to exploit many-body quantum entanglement in precision rotation
sensing.
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I. INTRODUCTION

Various advantages of quantum metrology [1–7] have been
demonstrated by neutral atoms [8–10], trapped ions [11],
and photons [12], etc. Generally speaking, the measurement
precision �χ via N -independent particles is imposed by the
standard quantum limit (SQL): �χ ∝ 1/

√
N [13]. However,

by utilizing multiparticle entanglement and squeezing, the
SQL can be surpassed [13–19]. The Greenberger-Horne-
Zeilinger (GHZ) state [20] and the NOON state [21] can
improve the minimum uncertainty to the so-called Heisenberg
limit [13,16,17]: �χ ∝ 1/N . It has also been demonstrated
that the achievable precision can beat the SQL or even
approach the Heisenberg limit by using spin squeezed states
[1,2,4,5], twin Fock states [3], and spin cat states [22].
Up to now, quantum metrology has extensively been used
in high-precision sensing of rotations [23–25], accelera-
tions [26], magnetic fields [4,5], gravitational fields [27,28],
etc.

Rotation sensing is essential in both fundamental sciences
and practical technologies from determining the Earth’s
rotation frequency to building gyroscopes for navigation [29].
The Sagnac effect describes the phase-shift accumulation
between two counterpropagating waves around a closed path
in a rotating frame [30]. Based upon the Sagnac effect,
Sagnac interferometers for measuring rotation frequency
have been realized via ring lasers [31], atoms [32–35], and
trapped ions [36]. Recently, a Sagnac interferometry with
a single-atom clock [37] have been proposed via combing
the techniques of state-dependent manipulations and Ramsey
pulses.

Beyond the single-particle scheme, it is interesting to
investigate how to exploit many-body quantum entanglement
in a precision measurement of rotation frequency. On one hand,
due to their robust quantum coherence and high controllability,
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several entangled states of ultracold atoms (in particular
Bose condensed atoms) have been generated in experiments
[1,2,4,5]. On the other hand, ring traps and state-dependent
manipulation of Bose condensed atoms [38–43] have been
demonstrated. Combing these techniques, it is possible to
realize the Sagnac interferometer with multiparticle entangled
states of Bose condensed atoms. Unlike other conventional
interferometers, the external and internal degrees of freedom
couple with each other during the phase accumulation in our
Sagnac interferometry. Thus, the measurement precision of
rotation frequency is affected sensitively by both the estimated
angular frequency itself and the induced angular frequency. To
achieve the best sensitivity, it is important to optimally control
the angular frequency.

This article is organized as follows. In Sec. II, we intro-
duce the single-particle Sagnac interferometry scheme and
present our multiparticle Sagnac interferometry scheme with
entangled Bose condensed atoms. In Sec. III, we calculate
the ultimate rotation measurement precision and find the
measurement precision may reach the Heisenberg limit. The
uncertainty of the estimated angular frequency ωs depends
on the induced angular frequency ωp as well as the rotation
frequency ωs to be measured. We also derive an analytic quan-
tum Cramer-Rao bound (QCRB) for some specific choices
of ωp and ωs . In Sec. IV, we further investigate the rotation
frequency estimation via parity measurement. We find that
parity measurement is an optimal and realizable way to obtain
the Heisenberg-limited precision. Meanwhile, we also derive
an analytic formula for the uncertainty of rotation frequency
via parity measurement. In Sec. V, we mainly discuss the
experimental possibility of our scheme, including the effects of
imperfect state preparation. In Sec. VI, we briefly summarize
and outlook our scheme.

II. SAGNAC INTERFEROMETRY VIA
STATE-DEPENDENT MANIPULATION

In this section, as the basis of our multiparticle scheme, we
first introduce the scheme of a Sagnac interferometer with
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a single particle [37]. Then, we describe our multiparticle
Sagnac interferometry scheme with Bose condensed atoms
by using the input maximally entangled state.

A. Single-particle scheme

The Sagnac interferometer with a single particle combines
the state-dependent potentials moving around a ring with a
sequence of Ramsey pulses [37]. The interferometry involves
two atomic internal states |↑〉 and |↓〉. For a one-dimensional
model, the atom is assumed to be tightly confined within a
ring with fixed radius r , and the motional degrees of freedom
are restricted to the azimuthal angle θ . Initially, the atom is
prepared in an internal state 1√

2
(|↑〉 + |↓〉) by a π/2 pulse at

the location θ = 0. The two components are guided in opposite
directions along the circular paths due to the state-dependent
rotating potentials. When the two components recombine,
they will acquire a relative phase, which can be extracted
by applying a second π/2 pulse and measuring the final
population difference.

The spin-dependent manipulation with a single two-level
atom is characterized by the Hamiltonian,

Ĥsingle(t) = Ĥ↑(t)|↑〉〈↑| + Ĥ↓(t)|↓〉〈↓|. (1)

In the inertial frame, the explicit expressions for Ĥ↑(t) and
Ĥ↓(t) are

Ĥσ (t) = h̄ωâ†â + i

√
mh̄ω

2
r(â† − â)[ωs + ησωp(t)]

= Ĥ0 + Ĥ I
σ (t), (2)

where σ = ↑,↓ and ω is the trapping frequency of the
harmonic potential along the radial direction. â† and â are
the creation and annihilation operators acting on the external
state of the atom. The symbols η↑ = +1 and η↓ = −1
account for the opposite rotational directions for the two spin
components.

When the Hamiltonian (1) is time dependent, it does not
commute with itself at different times, i.e., [Ĥ (t),Ĥ (t ′)] 	=
0. Thus, one cannot evaluate the evolution operator by mere
integration. To solve this problem, one can use the Magnus
expansion [44]. Suppose that the evolution operator of the
system can be expressed as

Ûσ (t) = Û0(t)Û I
σ (t), (3)

with

Û0(t) = exp

(
−i

Ĥ0

h̄
t

)
. (4)

Substitute Eqs. (3) and (4) into the Schrödinger equation, and
one can find out that the operator Û I

σ (t) satisfies

∂Û I
σ (t)

∂t
=

[
Û

†
0 (t)

−iĤ I
σ

h̄
Û0(t)

]
Û I

σ (t)

= ξσ (t)(e−iωt â − eiωt â†), (5)

with

ξσ (t) =
√

mω

2h̄
r[ωs + ησωp(t)]. (6)

Applying the Magnus expansion, one can obtain

Û I
σ (T ) = exp(α∗

σ â − ασ â†) exp(iφσ ), (7)

where

ασ =
∫ T

0
ξσ (t)eiωtdt, (8)

and

φσ =
∫ T

0

∫ t1

0
ξσ (t1)ξσ (t2) sin[ω(t1 − t2)]dt2dt1. (9)

Here, T is the total evolution time, and T is determined by
the choice of ωp(t) satisfying

∫ T

0 ωp(t)dt = π . Therefore, the
final form of the evolution operator reads

Ûσ = exp(−iωtâ†â) exp(α∗
σ â − ασ â†) exp(iφσ ). (10)

The above expressions are general results for time-dependent
parameter ωp(t) and are valid for fixed parameter ωp as well.

B. Multiparticle scheme

Inspired by the above single-particle scheme, we propose to
implement multiparticle entangled states for Sagnac interfer-
ometry. We aim to investigate how to utilize the multiparticle
entangled states to improve the measurement precision of
the Sagnac interferometry. In our scheme, by using Bose
condensed atoms, the multiparticle Sagnac interferometry
also consists of state-dependent potentials and a sequence of
Ramsey pulses. The two atomic hyperfine states (|mF = 1〉 ≡
|↑〉 and |mF = −1〉 ≡ |↓〉) label the two evolution paths.
Each atom may occupy one of the two hyperfine states and
can be regarded as a spin- 1

2 particle with σ̂z|↑〉 = +|↑〉 and
σ̂z|↓〉 = −|↓〉. Initially, all atoms locate at θ = 0, and their
external states are prepared in the ground-state |0〉 of the
harmonic potential along the radial direction.

The multiatom Sagnac interferometry includes the follow-
ing steps. First, a desired multiparticle state is prepared as
the input state. For our input state, only the spin degrees
of freedom are entangled, whereas the external degrees of
freedom are identical in |0〉. Then, the spin-dependent trapping
potentials for |↑〉 and |↓〉 rotate along opposite directions with
angular frequencies +ωp(t) and −ωp(t), respectively. During
the free evolution, an ωs-dependent phase-shift φ(ωs) between
two counterpropagating modes is accumulated. Finally, the
two modes encounter on the other side, and a π/2 pulse is
applied for recombination. The unknown angular frequency
ωs is extracted by measuring the population information of
the spin states. The schematic of our multiparticle Sagnac
interferometry is shown in Fig. 1. s

The biggest difference between multiparticle and single-
particle schemes is embodied in the input states. The input
entangled states can improve the rotation sensitivity. Here, we
consider the maximally entangled state (the GHZ state) as the
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FIG. 1. Schematic of the multiatom Sagnac interferometry. Initially, the system is prepared in the internal GHZ state between two hyperfine
levels (|mF = 1〉 and |mF = −1〉). Then, a state-dependent evolution is applied for accumulating a relative phase dependent on the rotation
angular frequency ωs . Finally, after a π/2 pulse for the two hyperfine states, the parity measurement is used to extract the relative phase, and
the rotation angular frequency ωs is derived from the relative phase.

input state. The input GHZ state is written as

|〉GHZ
in = 1√

2

[
N⊗

k=1

(|↑〉|0〉)k +
N⊗

k=1

(|↓〉|0〉)k
]
, (11)

where the internal states of each particle are maximally
entangled. By using the nonlinear effects due to atom-atom
interaction, the GHZ state can be prepared via dynamical
evolution [45,46] or ground-state preparation [46–48]. The
preparation of the GHZ state will be discussed in Sec. VI.

After input state preparation, the system will undergo a
dynamical evolution to accumulate a phase shift between the
two spin components. The two different spin components
rotate in opposite directions with angular velocity ωp(t) around
the ring trapping potentials, which can be described by the
Hamiltonian,

Ĥ (t) =
N∑

k=1

Ĥk(t),Ĥk(t) = Ĥ↑(t)|↑〉〈↑| + Ĥ↓(t)|↓〉〈↓|.

(12)

where Ĥk is the single-atom Hamiltonian for the kth parti-
cle. Since the single-atom Hamiltonians for different atoms
and different components commute with each other, i.e.,
[Ĥl(t),Ĥk(t)] = 0(l 	= k) and [Ĥ↑(t),Ĥ↓(t)] = 0, the evolu-
tion operator for total evolution time T can be formally written
as

Û (T ) =
N∏

k=1

Ûk(T ), Ûk(T ) = Û↑(T )|↑〉〈↑| + Û↓(T )|↓〉〈↓|,
(13)

with Û (T ) and Ûk(T ) being the evolution operators of the
system and the individual atom, respectively. Also, T is the

total evolution time, and T is determined by the choice of
ωp(t) satisfying

∫ T

0 ωp(t)dt = π .
Similar to the single-particle scheme, the multiparticle

state-dependent evolution operator (13) can be derived by
following the procedures of Eqs. (3)–(10). The evolution
operator characterizes the dynamics of the counterrotation for
the two spin components. It indicates that the effect of the
rotation is equivalent to the displacement operator, the phase
accumulation with eigenfrequency, and the state-dependent
phase shift. By applying the evolution operator (13) on
the initial state, the output state after the free evolution
becomes

|(ωs)〉out = Û (T )|〉in

= 1√
2

[
N⊗

k=1

[Û↑(T )|↑〉|0〉]k+
N⊗

k=1

[Û↓(T )|↓〉|0〉]k
]
.

(14)

Here, the information of the parameter ωs is imprinted in the
output state of the system |(ωs)〉out. Finally, we can acquire
the value of ωs from measuring the output state |(ωs)〉out and
estimate the uncertainty of the parameter �ωs .

At first, we vary both ωs and ωp in a wide range
continuously and calculate the corresponding output states.
Interestingly, we found that the external part of the output
state is sensitively affected by the choice of ωs and ωp. For
the kth particle, the different choices of ωs and ωp lead to
different fidelities between the evolved external state |ψex〉k
and its initial ground-state F0 = |k〈ψex|0〉k|2. The fidelity F0

can characterize the probability of the atoms staying in the
initial ground state of the external potential. In Fig. 2(d), we
plot the phase diagram of the fidelity F0 with ωs,ωp ∈ [0,ω].
For most ωs’s, the dark regions (F0  1) alternate with the
bright regions (F0 ≈ 1) as ωp increases from 0 to ω. F0
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FIG. 2. The phase diagram of fidelity between its evolved external
state and the initial ground-state F0 = |k〈ψex|0〉k|2. The distributions
of fidelity Fn = |k〈ψex|n〉k|2 for (a) ωs = 0.1ω, ωp = 0.5ω, (b)
ωs = 0.1ω, ωp = 0.55ω, and (c) ωs = 0.1ω, ωp = 0.6ω are shown.
Here |0〉 is the external ground state of the potential well, and |n〉
is the nth excited state (n � 1). The numerical results are obtained
with ω = 1.

oscillates rapidly when ωp is relatively small, and a large bright
area appears in the center of ωp = 0.5ω. In the brightest line
where F0 = 1 (e.g., ωp = 0.5ω), the external state of every
atom stays in the ground state all the time, and the system’s
external state can be assumed to be unchanged during the
Sagnac phase accumulation. In general, it is beneficial to keep
the external state unchanged during the interferometry and
exploit the entanglement among the internal states of the atoms
to perform high-precision measurement.

Obviously, the largest bright area is in the vicin-
ity of ωp/ω = 0.5. We fix ωs = 0.1ω and choose ωp =
0.5ω,0.55ω,0.6ω to illustrate the distribution of fidelities
projecting on |n〉, where |0〉 is the external ground state and |n〉
is the nth external excited state (n � 1), see Figs. 2(a)–2(c).
For ωp = 0.5ω, the external state stays in |0〉. Whereas for
ωp = 0.55ω and ωp = 0.6ω, F0 decreases, and the evolved
external state has some components of other excited states
|n〉. It is shown that one can specifically choose ωp = 0.5ω

to measure the rotation frequency ωs since the fidelity F0 is
very close to 1 in the vicinity of ωp = 0.5ω. This can tolerate
a small deviation of ωp/ω around 0.5 if some unavoidable
errors exist.

Based on the phase diagram of Fig. 2(d), one can carefully
vary ωp according to ωs to ensure that F0 � 1. Under this
situation, the external state can be truncated only at the ground
state. In the following, we will show that this situation is
advantageous for the high-precision Sagnac interferometry
and the Heisenberg-limited measurement can be achieved. In
addition, by using this truncation, some analytic results can be
derived, see Secs. IV and V.

III. ULTIMATE ANGULAR FREQUENCY
MEASUREMENT PRECISION

In the framework of the quantum metrology, for a
parameter-dependent output state, the uncertainty of the
estimated parameter is limited by the QCRB,

�ωs � �ωQ
s ≡ 1√

νFQ(ωs)
, (15)

where ν is the times of independent experiments and the
uncertainty is defined as �ωs = √〈ω2

s 〉 − 〈ωs〉2. FQ(ωs) is
the so-called quantum Fisher information (QFI), which can
be expressed as a function of the output state |(ωs)〉out and
its derivative with respect to the parameter ωs , i.e.,

FQ(ωs) = 4[〈 ′(ωs)| ′(ωs)〉 − |〈 ′(ωs)|(ωs)〉out|2],

(16)

with | ′(ωs)〉 = d|(ωs)〉out/dωs . The QFI determines the ul-
timate value of a parameter uncertainty for a given parameter-
dependent output state. The larger QFI FQ(ωs) corresponds to
a smaller parameter uncertainty �ωs .

In turns of our protocol, we first choose some specific values
of ωs and ωp which satisfies F0 ≈ 1 according to Fig. 2(d).
In this case, the external state can be truncated only at the
ground-state |0〉. Thereafter, the explicit expressions of �ωQ

s

and the QFI FQ(ωs) could be evaluated. The output state can
be calculated as

|(ωs)〉out ≈ 1√
2

N⊗
k=1

[e−(|α↑|2/2)eiφ↑ |0〉|↑〉]k

+ 1√
2

N⊗
k=1

[e−(|α↓|2/2)eiφ↓ |0〉|↓〉]k

= 1√
2

[
CN

↑
N⊗

k=1

|↑〉k|0〉k + CN
↓

N⊗
k=1

|↓〉k|0〉k
]
.

(17)

Here, the coefficients C↑ and C↓, respectively, are

C↑ = e(mr2/2h̄ω)(ωs+ωp)2X ei(mr2/2h̄ω)(ωs+ωp)2Y , (18)

and

C↓ = e(mr2/2h̄ω)(ωs−ωp)2X ei(mr2/2h̄ω)(ωs−ωp)2Y , (19)

with

X = 1 − cos

(
πω

ωp

)
, Y = πω

ωp

− sin

(
πω

ωp

)
. (20)

Then, its derivative with respect to ωs is as follows:

| ′(ωs)〉 = d|(ωs)〉out

dωs

= 1√
2

[
NCN−1

↑ C ′
↑

N⊗
k=1

|↑〉k|0〉k

+NCN−1
↓ C ′

↓
N⊗

k=1

|↓〉k|0〉k
]
. (21)
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Thus, we could calculate the QFI through Eq. (16), and its
final expression can be written as

FQ(ωs) = m2N2A2

h̄2ω2ω2
pπ2

(
2ω2

pX + 2πωωpY − π2ω2
)

×{2DN
− (ωp − ωs)

2 + 2DN
+ (ωp + ωs)

2

− [DN
− (ωs − ωp) + DN

+ (ωs + ωp)]2}. (22)

In which A = πr2 is the area of the enclosed ring and

D+ = exp

[
−mr2(ωs + ωp)2X

h̄ω

]
,

D− = exp

[
−mr2(ωs − ωp)2X

h̄ω

]
. (23)

According to Eq. (22), specifically when ωp = ω/2L [L =
1,2,3, . . ., which correspond to the brightest vertical lines
in Fig. 2(d)], X = 0, and Y = πω/ωp, the expression of
Eq. (22) can be simplified. Surprisingly, the QFI is exactly
proportional to the square of the total particle number, i.e.,

FQ(ωs) = 4N2m2A2

h̄2 =
(

2NmA

h̄

)2

. (24)

Therefore, the ultimate measurement precision with the GHZ
state can be derived

�ωGHZ
s ∝ 1√

FQ(ωs)
= h̄

2mA

1

N
. (25)

The uncertainty �ωGHZ
s is inversely proportional to the total

atomic number N with a prefactor h̄/2mA. The prefactor is
the same as the one with single-atom Sagnac interferometry
[37]. When inputting an atomic spin coherent state (SCS)
|〉SCS

in = ⊗N
k=1 [ 1√

2
(|↑〉 + |↓〉)|0〉]

k
(N -independent atoms in

the same state), the ultimate measurement precision of ωs is
just bounded by the SQL, i.e., �ωSCS

s = h̄/(2mA
√

N ). It is
shown that, compared with the single-particle scheme, the
measurement precision of ωs in Sagnac interferometry can be
improved to the Heisenberg limit by using the input GHZ state.

Furthermore, to verify the above analytic results, we follow
the standard procedure and calculate the QFI numerically. For
ωs = 0.1ω and ωp = 0.5ω, the numerical calculation agrees
with the analytic result perfectly. It confirms the validity of the
truncation at the external ground state under this situation. On
the other hand, we choose other parameters that do not meet the
condition of F0 ≈ 1. For ωs = 0.1ω, ωp = 0.55ω and ωs =
0.1ω, ωp = 0.6ω, the QFIs also exhibit quadratic dependence
on the total particle number. The quadratic dependence is
insensitive to the choices of ωs and ωp. In order to show
the relation clearly, we give the log-log scaling of FQ(ωs) with
respect to N under the above three sets of ωs and ωp, see Fig. 3.
The slopes of the three lines are all nearly 2, which confirm
that FQ(ωs) ∝ N2.

IV. PARITY MEASUREMENT

The ultimate measurement precision obtained via QFI is
a theoretical bound which is independent of the choices of
observable measurements. In realistic scenarios, one would
also be interested in how to approach the QCRB via certain

FIG. 3. The log-log scaling of QFI versus the total particle
number N under different choices of ωs and ωp . The slopes of the
lines are approximately equal to 2, which indicate FQ(ωs) ∝ N 2. To
perform the numerical calculation, here we set ω = 1, h̄ = 1, m = 1,
and r = 1.

achievable measurements. For the maximally entangled state,
parity measurement is assumed to be one of the effective
candidates to saturate the QCRB and attain the Heisenberg
limit [49–53].

In our scheme, we also try to evaluate the rotation measure-
ment precision via parity measurement. The parity operator
for |↓〉 can be expressed as P̂ = exp [iπ (

∑N
k=1 |↓〉k〈↓|k)] =

exp [iπ (N
2 − ∑N

k=1 σ̂ (k)
z )]. In Sec. II, we have presented the

dynamical evolution and the output state (14). Before the
parity measurement, a π/2 pulse is implemented to rotate the
output state for recombination, i.e, |〉f = exp(−i π

2 R̂)|〉out,

where R̂ = 1
2

∑N
k=1 σ̂ (k)

y with σ̂ (k)
y = 1

2i
(|↓〉k〈↑|k − |↑〉k〈↓|k).

The average of the parity measurement for |↓〉 is written as
〈P̂ 〉 =f 〈|P̂ |〉f , and the corresponding variance is given by
(�P̂ )2 = 〈P̂ 2〉 − 〈P̂ 〉2. Finally, from the results of the parity
measurement, the corresponding uncertainty of parameter ωs

can be estimated. The standard deviation �ωs can be evaluated
with the error propagation formula,

�ωs = �P̂

|∂〈P̂ 〉/∂ωs |
. (26)

Still, we first apply the approximation that the external state
is restricted in the ground state for the specified range of ωs
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and ωp according to Fig. 2(d). Following the above procedure with the approximation, the final state after an additional π/2
pulse would be as follows:

|〉f = exp

(
−i

π

2
R̂

)
Û |〉in

≈ 1√
2

N⊗
k=1

[( |↑〉 + |↓〉
2

) ⊗
exp

(
−|α↑|2

2

)
exp(iφ↑)|0〉

]
k

+ 1√
2

N⊗
k=1

[( |↓〉 − |↑〉
2

) ⊗
exp

(
−|α↓|2

2

)
exp(iφ↓)|0〉

]
k

. (27)

Applying the parity measurement P̂ on the final state, the expectation value of the parity measurement can be obtained

〈P̂ 〉 = f 〈|P̂ |〉f =
(−1)N cos

(
2Nωsmr2ωp

h̄ω
Y

)
e(Nmr2/h̄ω)(ω2

p+ω2
s )X

, (28)

〈P̂ 2〉 = f 〈|P̂ 2|〉f = e−(Nmr2/h̄ω)(ωp−ωs )2X + e−(Nmr2/h̄ω)(ωp+ωs )2X

2
. (29)

Meanwhile, the variance of the parity measurement for the final state can also be given by

(�P̂ )2 = e−(Nmr2/h̄ω)(ωp−ωs )2X + e−(Nmr2/h̄ω)(ωp+ωs )2X

2
− cos2

( 2Nωsmr2ωp

h̄ω
Y

)
e(2Nmr2/h̄ω)(ω2

p+ω2
s )X

. (30)

Eventually, we can obtain the standard deviation of ωs ,

�ωs = �P̂

|∂〈P̂ 〉/∂ωs |

=
e(Nmr2/h̄ω)(ω2

p+ω2
s )X

√
e−(Nmr2/h̄ω)(ωp−ωs )2X + e−(Nmr2/h̄ω)(ωp+ωs )2X − 2e−(2Nmr2/h̄ω)(ω2

p+ω2
s )X cos2

(
2Nmr2ωpωs

h̄ω
Y

)
2
√

2Nmr2

h̄ω

∣∣∣ωsX cos
(

2Nmr2ωpωs

h̄ω
Y

)
+ ωpY sin

(
2Nmr2ωpωs

h̄ω
Y

)∣∣∣ . (31)

Here, specifically when ωp = ω/2L [L = 1,2,3, . . ., which
correspond to the brightest vertical lines in Fig. 2(d)], X =
0, Y = πω/ωp, Eqs. (28)–(31) could be simplified further to

〈P̂ 〉 = (−1)N cos

(
2NmAωs

h̄

)
, (32)

〈P̂ 2〉 = 1, (33)

(�P̂ )2 = sin

(
2NmAωs

h̄

)
, (34)

and

�ωs = h̄

2mA

1

N
. (35)

From Eq. (35), it is clearly shown that the deviation of ωs is
exactly consistent with the ultimate bound Eq. (25) predicted
with the QFI.

Meanwhile, we check the above analytic results by numer-
ical calculation. The numerical results via parity measurement
for N = 5 are presented in Figs. 4(a) and 4(b). For ωp = 0.5ω,
the expectation values of parity oscillate sinusoidally from −1
to 1 with respect to ωs . The deviation �ωs is a horizontal line
versus ωs , which is independent of ωs . This result perfectly
agrees with the analytic Eq. (35). On the other hand, we
also evaluate �ωs via parity measurement with ωp = 0.55ω

and ωp = 0.6ω. The contrast of 〈P̂ 〉 drops rapidly as ωp/ω

becomes far away from 0.5. The period of the sinusoidal
oscillation also changes. These result in the reduction of the
measurement precision.

Based on our numerical calculation, we confirm that the
best standard deviation of ωs can be achieved under the choice
of ωp = 0.5ω.

Finally, we fix ωp = 0.5ω and evaluate the log-log scaling
of �ωs versus the total particle number N , see Fig. 4(c).
Compared with the input coherent spin state (which is
equivalent to the single-particle scheme), the dependence of
the deviation �ωs on N based upon our scheme is quadratic
rather than linear. Thus, by implementing the input GHZ
state for Sagnac interferometry, the parity measurement is
an optimal way to saturate the ultimate precision bound and
can be used to perform high-precision rotation sensing at the
Heisenberg limit.

V. EXPERIMENTAL POSSIBILITY

We have shown how many-body entanglement of the
GHZ state enhances the rotation sensitivity. The GHZ state
can be prepared by various methods [47,54,55]. For Bose
condensed atoms, the GHZ state can be created by dynamical
nonlinear evolution [45,46] or adiabatic ground-state prepara-
tion [46,47]. By driving internal state Raman transitions via
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FIG. 4. Numerical results of the parity measurement. (a) The
expectation value of the parity is a sinusoidal function with respect to
ωs . (b) The dependence of the measurement precision on ωs itself. For
(a) and (b), (A) ωp = 0.5ω, (B) ωp = 0.55ω, and (C) ωp = 0.6ω, and
the total particle number N = 5. (c) For case (A), the log-log scaling
of QFI versus N with the input GHZ state and spin coherent state are
shown, respectively. Here, we set ω = 1, h̄ = 1, m = 1, and r = 1.

laser pulses [54] or classical fields [55], an N -GHZ state
can also be generated effectively in spin-1 Bose-Einstein
condensates. In addition, the spin-dependent control is another
important element in our scheme, which may be realized by
adiabatic dressed potentials. State-dependent control of atomic
transport in the toroidal trap has been proposed [41]. The
rf dressed potential and the coherent control atomic motion
have been demonstrated in experiments [38–40,42,43]. These
techniques could be applied to perform the state-dependent
control of atomic transport on the ring-shaped traps [56]. On
the other hand, our Sagnac interferometry scheme could be
applied to other many-body systems, such as trapped ions
[11]. A protocol for using trapped ions to measure rotations
via repeated round-trip Sagnac interferometry was proposed
recently [36]. By using the GHZ state [57], the rotation
sensitivity can also be improved.

Finally, we focus on the generation of a GHZ state via
ground-state preparation in Bose-Josephson systems. The two-
mode Bose-Josephson Hamiltonian reads [1,2,4,46]

HBJ = �Ĵγ + δĴz + Ec

2
Ĵ 2

z , (36)

where � is the Josephson coupling strength, δ is the
asymmetry between the two modes, and Ec corresponds
to the atom-atom interaction. Ĵγ = cos γ Ĵx + sin γ Ĵy with
Ĵx,y,z = 1

2

∑N
k=1 σ (k)

x,y,z as the collective spin operators and
γ as an adjustable angle. In this system, the atom-atom
interaction can be tuned via some of the techniques, such

FIG. 5. The influences of nonadiabatic ground-state preparation
for the input state. Here, β characterizes the adiabaticity of the
sweeping. We set ω = 1, h̄ = 1, m = 1, r = 1, and ωp/ω = 0.5 for
numerical calculation. The total atomic number is chosen as N = 5.

as Feshbach resonance [1,10]. By using the adiabatic ground-
state preparation in symmetric Bose-Josephson systems (δ =
0) with negative nonlinearity (Ec < 0), the GHZ state can be
generated [47]. Ideally, one can choose Ec as a negative value,
prepare the system HBJ = �0Ĵx + Ec

2 Ĵ 2
z in the strong-coupling

regime (�0/|Ec| � 1), and then linearly decrease � to zero
[�(t)/|Ec| = �0/|Ec| − βt with β = (�0/|Ec|)T −1

s and Ts as
the dimensionless total sweeping time]. If the sweeping is slow
enough, β  1, the system state will evolve along the instant
ground state of the Hamiltonian HBJ(t) = �(t)Ĵx + Ec

2 Ĵ 2
z .

Thus, when �(t) = 0, the system evolves into a GHZ state
where the negative Ec ensures the appearance of the dynamical
bifurcation [22,47,48].

However, in realistic experiments, the initial state may not
be in the ground state, and the sweeping may be nonadiabatic.
These may cause the imperfect preparation of the input GHZ
state. We consider that the initial state is prepared in a spin
coherent state |SCS〉 = ⊗N

k=1 [ 1√
2
(|↑〉 + |↓〉)]

k
, which is more

feasible in experiments. Then, we vary the Josephson coupling
strength from �0 to zero according to �(t)/|Ec| = �0/|Ec| −
βt . The system state will evolve under the Hamiltonian
HBJ(t) = �(t)Ĵx + Ec

2 Ĵ 2
z . The sweeping rate β characterizes

the adiabaticity. Here, we obtain the evolved states during
the sweeping with different β’s numerically. Based on the
evolved states, we calculate the corresponding QFI under the
ideal selection of ωp, see Fig. 5.

Since the initial spin coherent state is not the eigenstate
of the Hamiltonian, the QFI oscillates during the sweeping.
However, the amplitude of the oscillation is relatively small.
When β tends to be adiabatic (e.g., β = 0.05), the QFI of the
prepared state can approach the Heisenberg limit. When the
sweeping becomes faster (β increases), the QFI of the prepared
state gradually drops. However, for a modest sweeping rate
(e.g., β = 0.25), the QFI of the prepared state is still close
to the Heisenberg limit. It is shown that, under the modest
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nonadiabatic of sweeping, the ground-state preparation is still
effective and the prepared input state may still achieve a high-
precision measurement of ωs near the Heisenberg limit.

VI. SUMMARY AND DISCUSSION

To summarize, we have presented a multiatom Sagnac
interferometer scheme with a maximally entangled state,
which can attain the Heisenberg limit. During the Sagnac phase
accumulation, the internal and external states of the system
are coupled with each other. The uncertainty of the estimated
angular frequency ωs is sensitively influenced by the choice of
the induced angular frequency ωp. By optimally selecting ωp,
the external state would stay in its initial ground state during
the phase accumulation, and the ultimate angular frequency
measurement precision can reach the Heisenberg limit. Fur-
thermore, we analyzed the angular frequency estimation via
the parity measurement. We found that the parity measurement
may attain the Heisenberg limit imposed by the quantum Fisher

information. Finally, we discuss the experimental possibility
and the influences of imperfect preparation of the maximally
entangled state. Our scheme can also be extended to other
kinds of many-body entangled states, such as spin squeezed
states [15], spin cat states [22], or the twin Fock state [51].
This may open up a way to perform a high-precision rotation
measurement with many-body quantum entanglement beyond
the standard single-particle Sagnac effect.
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