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Statics and dynamics of a self-bound matter-wave quantum ball
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We study the statics and dynamics of a stable, mobile, three-dimensional matter-wave spherical quantum
ball created in the presence of an attractive two-body and a very small repulsive three-body interaction. The
quantum ball can propagate with a constant velocity in any direction in free space and its stability under a
small perturbation is established numerically and variationally. In frontal head-on and angular collisions at large
velocities two quantum balls behave like quantum solitons. Such collision is found to be quasielastic and the
quantum balls emerge after collision without any change of direction of motion and velocity and with practically
no deformation in shape. When reflected by a hard impenetrable plane, the quantum ball bounces off like a wave
obeying the law of reflection without any change of shape or speed. However, in a collision at small velocities two
quantum balls coalesce to form a larger ball which we call a quantum-ball breather. We point out the similarity
and difference between the collision of two quantum and classical balls. The present study is based on an analytic
variational approximation and a full numerical solution of the mean-field Gross-Pitaevskii equation using the
parameters of 7Li atoms.

DOI: 10.1103/PhysRevA.95.023606

I. INTRODUCTION

After the experimental observation of Bose-Einstein con-
densate (BEC) [1,2], there have been many experimental
studies to investigate different quantum phenomena in a
laboratory previously not accessible for study in a controlled
environment, such as, quantum phase transition [3], quantum
collapse of matter wave under attraction [4], four-wave mixing
of matter waves [5], formation of vortex lattice [6], interference
of matter waves [7], Josephson tunneling [8], Anderson
localization [9], etc. The generation and the dynamics of self-
bound large quantum waves have drawn much attention lately.
There have been some studies of self-bound matter waves
or solitons in one-dimensional (1D) [10] or two-dimensional
(2D) [11] space dimensions. A (self-bound) bright soliton
travels at a constant velocity in one dimension, due to a
cancellation of nonlinear attraction and defocusing forces
[12,13]. The collision between two analytic 1D bright solitons
is always elastic [12] with the solitons emerging after collision
without a change of velocity and shape. The 1D soliton has
been observed in nonlinear optics [12] and in Bose-Einstein
condensates [10]. However, a two- or three-dimensional (3D)
soliton cannot be realized for two-body contact attraction
alone due to collapse [12]. The 1D BEC solitons studied
experimentally [10] are really quasisolitons behaving like real
solitons at large velocities. At low velocities a deformation of
their shapes is expected upon collision.

There have been a few proposals for creating a self-bound
3D matter-wave state which we term a quantum ball. Some of
these proposals involve an engineering of the atomic scattering
length using the Feshbach resonance technique to generate
dynamically stabilized solitons in two and three dimensions
[14]. Others consider extra interactions usually neglected
in dilute BEC of alkali-metal atoms to create a stationary
localized state. In the presence of an additional nonlocal
dipolar interaction a 2D BEC soliton can be generated [11].
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It has been suggested by Maucher et al. [15] that in the case
of Rydberg atoms, off-resonant dressing to Rydberg nD states
can provide a nonlocal long-range attraction which can form
a quantum ball. The collapse instability can be stopped in this
case by a repulsive contact interaction.

In this paper we demonstrate that a very small repulsive
three-body interaction in the presence of an attractive two-
body contact interaction can generate a stable quantum ball.
The collapse is stopped in this case by the repulsive three-
body interaction. Although, some theoretical suggestions for
generating a quantum ball, in the presence of a repulsive core
in the two-body atomic interaction, seem viable [15,16], so far
there has not been success in their experimental realization.
Nevertheless, there are questions about the dynamics of a
quantum ball which are very intriguing. The study of the
dynamics of a quantum elementary particle like an electron to
determine simultaneously its position and velocity is doomed
to failure due to the Heisenberg uncertainty relation. On the
other hand, for a quantum ball the uncertainty relation is not
of concern due to its large mass and it can be traced like a
classical object by its position and velocity at each instant. As
the quantum ball is self bound it can move like a classical ball
obeying Newton’s first law of motion. However, very little is
known about the interaction dynamics of two quantum balls
and that of a quantum ball with other objects and we address
these questions in this paper.

We consider the mean-field Gross-Pitaevskii (GP) equation
with the inclusion of a three-body interaction for the study of
statics and dynamics of a quantum ball. The quantum balls
are bound by an attractive two-body contact interaction in
the presence of a repulsive three-body contact interaction.
We use the realistic parameters of 7Li atoms, in this study,
with a negative scattering length corresponding to two-body
attraction [2]. The effect of atom loss due to three-body
recombination is included in the study of dynamics. The
three-body loss rate is not accurately known for this system
[17] for the parameter domain used in this study. We have
chosen three-body loss rates that ensure our system does
not decay significantly during our dynamical simulations.
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It is expected that the dynamics of quantum balls will be
independent of the details of the mechanism responsible for
self-binding and we do not believe that the results obtained
here are so peculiar as to have no general validity. In fact, a
preliminary study revealed similar dynamics for quantum balls
made of dipolar atoms [18]. A stationary quantum ball can be
formed for the two-body attraction above a critical value in
the 3D GP equation for any finite three-body repulsion. The
statical properties of the quantum ball are studied using a
variational analysis and a numerical solution of the 3D GP
equation. The variational and numerical results are found
to be in good agreement with each other. The stability of
the quantum ball is established numerically under a small
perturbation introduced by changing the three-body interaction
by a small amount, while the quantum ball is found to execute
sustained breathing oscillation.

A quantum ball can move freely without deformation along
any direction with a constant velocity. We study the frontal
and angular collisions between two quantum balls. Only the
collision between two integrable 1D solitons is truly elastic
[12]. As the dimensionality of the soliton is increased such
collision is expected to become inelastic with loss of energy in
two and three dimensions. In the present numerical simulation
of frontal collision between two quantum balls, at sufficiently
large velocities the collision is found to be quasielastic when
the two quantum balls emerge after collision with practically
no deformation and without any change of velocities. Unlike
classical balls, obeying the Newton’s laws, there is no change
in the directions of motion of the quantum balls after collision.
However, upon impact with a rigid impenetrable plane the
quantum ball bounces like a classical elastic ball obeying
the usual laws of reflection. At small velocities the collision
between two quantum balls is inelastic and the quantum
balls form a single bound entity in an excited state executing
breathing oscillation, which we call a quantum-ball breather.

We present the 3D GP equation used in this study in
Sec. II and a variational analysis of the same for an analytic
understanding of the formation of the quantum ball. In Sec. III
we present the numerical results for stationary profiles of
a quantum ball. We present numerical tests of stability of
a quantum ball under a small perturbation. The quasielastic
nature of collision of two quantum balls at large velocities and
the formation of a quantum-ball breather at small velocities are
demonstrated by real-time simulation. We end with a summary
of our findings in Sec. IV.

II. MEAN-FIELD MODEL

We consider a quantum ball in the presence of a three-body
interaction and the mean-field model appropriate for this study.
The mean-field GP equation for N atoms of mass m is [2]

ih̄
∂φ(r,t)

∂t
=

[
− h̄2

2m
∇2 − 4πh̄2|a|N

m
|φ|2

+ h̄N2K3

2
|φ|4

]
φ(r,t), (1)

where a is the scattering length, and K3 is the three-body
interaction term. The negative scattering length a represents

two-body attraction and the positive K3 to three-body
repulsion.

For an analytic understanding of the formation of a quantum
ball convenient variational approximation of Eq. (1) can be
obtained with the following Gaussian ansatz for the time-
independent stationary wave function [19],

φ(r) = π−3/4

w3/2
exp

[
− r2

2w2

]
, (2)

where r2 = x2 + y2 + z2, and w is the width. The energy
density corresponding to Eq. (1) is given by

E(r) = h̄2|∇φ(r)|2
2m

− 2πN |a|h̄2|φ(r)|4
m

+ h̄N2K3|φ(r)|6
6

.

(3)

Consequently, the total energy per atom E ≡ ∫
E(r)dr

becomes

E = h̄2

m

3

4w2
− 4πN |a|h̄2

m

π−3/2

4
√

2w3
+ h̄N2K3

2

π−3

9
√

3w6
. (4)

The width w of a stationary quantum ball with negative energy
corresponds to a global minimum of energy E:

1

w3
− 4πN |a|

(2π )3/2w4
+ mN2K3

2h̄

4π−3

9
√

3w7
= 0. (5)

Without the quintic term (K3 = 0) the quantum ball of width
w = 4πN |a|/(2π )3/2 is tantamount to an unstable Towne’s
soliton [20]. For stability a nonzero quintic term (K3 > 0) is
necessary.

III. NUMERICAL RESULTS

In the numerical calculation, we use the parameters of 7Li
atoms, e.g., a ≈ −27.4a0 [2,21] and m = 7 amu, where a0 is
the Bohr radius. Unlike the 1D case, the 3D GP Eq. (1) does
not have analytic solution and different numerical methods,
such as split-step Crank-Nicolson [22] and Fourier spectral
[23] methods, are used for its solution. We solve the 3D
GP Eq. (1) numerically by the split-step Crank-Nicolson
method using both real- and imaginary-time propagation
in Cartesian coordinates using a space step of 0.025 μm
and a time step of 0.00002 ms in all calculations [22].
All imaginary-time simulations were performed in a box of
size 240 × 240 × 240 unless otherwise stated. Imaginary-time
simulation is employed to get the lowest-energy bound state
of a quantum ball, while the real-time simulation is to be
used to study the dynamics using the initial profile obtained
in the imaginary-time propagation [22]. There are different C

and FORTRAN programs for solving the GP equation [22,24]
and one should use the appropriate one. In the imaginary-time
propagation the initial state was taken as in Eq. (1) and the
width w set equal to the variational solution obtained by
solving Eq. (5). The convergence will be quick if the guess
for the width w is close to the final width.

The variational width of a stationary quantum ball can be
obtained from a solution of Eq. (5). If a minimum of energy
(4) exists, it can be either a global minimum with negative
energy corresponding to a stable state or a local minimum of
positive energy corresponding to a metastable state. The energy
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(a)

(c)

(b)

FIG. 1. (a) The variational energy E versus w in μm for different
N from Eq. (5) for a = −27.4a0 and K3 = 10−37 m6/s. Variational
(b) N − K3 and (c) N − a/a0 phase plots for a = −27.4a0 and K3 =
10−37 m6/s, respectively, illustrating the regions of formation of a
stable and metastable quantum ball obtained from Eq. (5).

E → ∞ at w = 0 even for a very small nonzero K3, and E = 0
as w → ∞. Hence collapse is not allowed in the presence of
a very small three-body repulsion. For certain values of the
parameters there is a negative energy region between these two
limiting values where the global minimum corresponding to a
stable stationary state is located. For other sets of parameters,
the energy changes monotonically between the above two
limiting values without ever becoming negative or may have
a local minimum with positive energy corresponding to a
metastable state. This is illustrated in Fig. 1(a) for 7Li atoms
by a plot of E versus w for different N from Eq. (4) for
a = −27.4a0 and K3 = 10−37 m6/s. For N = 100 there is
no minimum of E and there cannot be a quantum ball. For
N = 500 there is a minimum at positive energy corresponding
to a metastable state. Finally, for N = 1000 and 10 000
there are minima at negative energies corresponding to stable
states. The parameter domains for the formation of stable and
metastable states are shown in N − K3 and N − |a|/a0 phase
plots for a = −27.4a0 and K3 = 10−37 m6/s, respectively, in
Figs. 1(b) and 1(c). An interesting scaling relation N ∼ √

K3

is noted in Fig. 1(b). Although there is a lower limit on the
number of atoms N for the formation of a stable quantum ball,
viz. Figs. 1(b) and 1(c), there is no upper limit on N . In the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000

r r
m

s 
( μ

m
)

N

(a)

K3=10-38 m6/s

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000

r r
m

s 
( μ

m
)

N

(a)

K3=10-38 m6/s
5X10-38 m6/s

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000

r r
m

s 
( μ

m
)

N

(a)

K3=10-38 m6/s
5X10-38 m6/s
3X10-37 m6/s

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000

r r
m

s 
( μ

m
)

N

(a)

K3=10-38 m6/s

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000

r r
m

s 
( μ

m
)

N

(a)

K3=10-38 m6/s
5X10-38 m6/s

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000

r r
m

s 
( μ

m
)

N

(a)

K3=10-38 m6/s
5X10-38 m6/s
3X10-37 m6/s

10-31

10-30

10-29

10-28

 0  1000  2000  3000  4000  5000
|E

| (
J)

N

(b)

K3=10-38 m6/s

10-31

10-30

10-29

10-28

 0  1000  2000  3000  4000  5000
|E

| (
J)

N

(b)

K3=10-38 m6/s
5X10-38 m6/s

10-31

10-30

10-29

10-28

 0  1000  2000  3000  4000  5000
|E

| (
J)

N

(b)

K3=10-38 m6/s
5X10-38 m6/s
3X10-37 m6/s

10-31

10-30

10-29

10-28

 0  1000  2000  3000  4000  5000
|E

| (
J)

N

(b)

K3=10-38 m6/s

10-31

10-30

10-29

10-28

 0  1000  2000  3000  4000  5000
|E

| (
J)

N

(b)

K3=10-38 m6/s
5X10-38 m6/s

10-31

10-30

10-29

10-28

 0  1000  2000  3000  4000  5000
|E

| (
J)

N

(b)

K3=10-38 m6/s
5X10-38 m6/s
3X10-37 m6/s

1014

1015

1016

1017

 0  1000  2000  3000  4000  5000

n
(0

,0
,0

) 
(a

to
m

s/
cc

)

N

(c)

K3=10-38 m6/s

1014

1015

1016

1017

 0  1000  2000  3000  4000  5000

n
(0

,0
,0

) 
(a

to
m

s/
cc

)

N

(c)

K3=10-38 m6/s
5X10-38 m6/s

1014

1015

1016

1017

 0  1000  2000  3000  4000  5000

n
(0

,0
,0

) 
(a

to
m

s/
cc

)

N

(c)

K3=10-38 m6/s
5X10-38 m6/s
3X10-37 m6/s

1014

1015

1016

1017

 0  1000  2000  3000  4000  5000

n
(0

,0
,0

) 
(a

to
m

s/
cc

)

N

(c)

1014

1015

1016

1017

 0  1000  2000  3000  4000  5000

n
(0

,0
,0

) 
(a

to
m

s/
cc

)

N

(c)

1014

1015

1016

1017

 0  1000  2000  3000  4000  5000

n
(0

,0
,0

) 
(a

to
m

s/
cc

)

N

(c)

FIG. 2. Variational (line) and numerical (points) (a) rms
radius rrms, (b) energy |E|, and (c) peak atom density n(0,0,0) ≡
N |φ(0,0,0)|2 versus the number of 7Li atoms N in a quantum
ball for three different three-body interactions K3 = 10−38 m6/s,
= 5 × 10−38 m6/s, = 3 × 10−37 m6/s.

following we will only be concerned with the global minimum
with negative energy corresponding to a stable stationary state.

Next we compare in Fig. 2(a) the numerical and variational
root-mean-square (rms) radius rrms of a 7Li quantum ball
versus number of atoms N for three different values of
the three-body term: K3 = 10−38 m6/s, = 5 × 10−38 m6/s,
= 3 × 10−37 m6/s. The variational result for the rms radius is
given by rrms = √

3/2w, where w is the equilibrium variational
width. For small N , the quantum balls are well localized
with small size and the agreement between numerical and
variational results is better. In Fig. 2(b) we show the numerical
and variational energies |E| of a quantum ball versus N for
different K3. The energy of a bound quantum ball is negative
in all cases and its absolute value is plotted. In Fig. 2(c) the
numerical and variational peak atom density n ≡ N |φ(0,0,0)|2
of the quantum ball versus N is illustrated for different K3.
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FIG. 3. Numerical (chain of symbols) and variational (line)
reduced 1D density ρ1D(x) of a 7Li quantum ball for different N

and K3.

To study the density distribution of a 7Li quantum ball we
calculate the reduced 1D density defined by

ρ1D(x) =
∫

dzdy|φ(r)|2. (6)

In Fig. 3 we plot this reduced 1D density as obtained from
variational and numerical calculations for different N and K3.
For a fixed three-body term K3, the quantum ball is more
compact with the decrease of number of atoms N . For a fixed
number of atoms N , the quantum ball is more compact for
a small three-body term K3. The agreement between the two
densities is better for the compact quantum balls of smaller
size as in Fig. 2.

We performed numerical tests of stability of the 7Li
quantum balls under a small perturbation (details not re-
ported here). We considered a quantum-ball wave function
as calculated by imaginary-time propagation and performed
real-time propagation with the imaginary-time wave function
under a small perturbation introduced at t = 0 upon changing
the scattering length by less than 1%. After this sudden
perturbation the quantum ball starts a breathing oscillation.
The continued oscillation of the quantum ball over a long
interval of time establishes its stability.

To study the dynamics of the quantum balls, we need to
set these in motion. This can be achieved by multiplying the
imaginary-time wave function by a phase exp(±ipx/h̄) with
p/h̄ ≡ mv/h̄, where p and v are momentum and velocity,
and real-time simulation is then performed using these wave
functions for the study of moving quantum balls with velocity
v. However, to achieve the desired velocity numerically an
accurate wave function calculated over a large space domain
and small space and time steps are needed; otherwise the
numerically generated velocity is always less than the expected
velocity v, except when v is very small. This is illustrated in
Fig. 4 where we plot the displacement versus time for the
moving quantum ball, along the x axis, of N = 1500 and
K3 = 3 × 10−37 m6/s after multiplying its wave function by
exp(i20x), so that p/h̄ ≡ mv/h̄ = 20 μm−1 = 20 × 106 m−1

leading to v = 18.16 cm/s. The numerically generated dy-
namics was obtained with space steps δx = 0.1 μm, 0.05 μm,
and 0.025 μm and illustrated in Fig. 4. The ideal theoretical
result for δx → 0 is also shown. The result for δx = 0.025 μm
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FIG. 4. The displacement versus time for the quantum ball of
N = 1500 and K3 = 3 × 10−37 m6/s moving with velocity v =
18.16 cm/s calculated with different space steps δx.

is satisfactory and this value of space step has been used in all
calculations.

In the following we study the collision dynamics of quan-
tum balls, where we use a three-body term K3 with dissipation
corresponding to a loss of atoms from the quantum ball due
to molecule formation. To test the solitonic nature of the
present quantum balls, we study the frontal head-on collision
of two quantum balls at large velocity including a three-
body term with absorption: K3 = 3 × 10−37(1 − i) m6/s. The
imaginary-time profiles of the quantum balls shown in Fig. 3
with N = 1500 and K3 = 3 × 10−37 m6/s each are used
as the initial wave functions in the real-time simulation of
collision, with two identical quantum balls placed at x =
±2.5 μm at t = 0. To set the quantum balls in motion along
the x axis in opposite directions the respective imaginary-
time wave functions are multiplied by exp(±i20x) and
real-time simulation is then performed using these wave
functions for the study of dynamics. The corresponding
velocity is v = 18.16 cm/s. To illustrate the dynamics, we
plot the isodensity contour of the colliding quantum balls in
Fig. 5 at different times obtained by real-time simulation over
a box of size 480 × 240 × 240. The initial profiles of the balls
are shown in Fig. 5(a). The balls come close to each other in
Fig. 5(b), coalesce to form a single entity in Figs. 5(c) and 5(d),
form two separate balls in Fig. 5(e), and are well separated in
Fig. 5(f) with identical profiles as in Fig. 5(a). During collision,
in Figs. 5(c) and 5(d) the identity of the two separate balls give
rise to a larger object which eventually breaks up into two
quantum balls. Considering the three-dimensional nature of
collision, the distortion in the profile of the quantum balls after
collision is found to be negligible, recalling that their identities
were lost during collision. It is useful to contrast the collision
shown in Fig. 5 with the corresponding elastic frontal collision
of two classical balls. In the quantum collision the identity of
the balls is lost during interaction and a quantum ball cannot
be followed during collision like a classical ball. Apart from
that, the position and velocity of the quantum balls before and
after collision are identical with those of the classical balls in
this process.

Besides the frontal collision considered in Fig. 5 we also
consider two types of nonfrontal collisions including a three-
body term with absorption. First, we consider the collision
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FIG. 5. Collision dynamics of two 7Li quantum balls, with N =
1500,K3 = 3 × 10−37(1 − i) m6/s each, placed at x = ±2.5 μm at
t = 0 ms and set into motion in opposite directions along the x

axis with velocity 18.16 cm/s, so as to collide at x = 0, illustrated
by isodensity contours at times (a) t = 0, (b) = 0.0057 ms, (c) =
0.0114 ms, (d) = 0.017 ms, (e) = 0.0228 ms, (f) = 0.0285 ms. The
density on the contour is 1010 atoms/cm3 and unit of length is μm.
The directions of motion of the quantum balls are shown by arrows.

between two quantum balls moving along the x axis but on
laterally displaced tracks. At t = 0 two balls of N = 1500 and
K3 = 3 × 10−37(1 − i) m6/s each are placed at x = ±2.5 μm,
y = 0,z = ∓0.9 μm, respectively, and set into motion along
the x axis in opposite directions by multiplying the respective
imaginary-time wave functions by exp(±i20x) and performing
real-time simulation in a box of size 480 × 240 × 360 with
these wave functions for the study of dynamics. The collision
is illustrated in Figs. 6(a)–6(f) through successive snapshots
of isodensity contours of the system before, during, and after
collision. In this case in Figs. 6(a) and 6(b) the balls approach
along the x axis, in Figs. 6(c) and 6(d) they interact by losing
identity, and in Figs. 6(e) and 6(f) they eventually come out
of the interaction region undeformed while moving along the
x axis maintaining their original trajectories and conserving
their velocities. This collision has no classical analog. In the
elastic collision of two classical balls in this case, the balls will
be deflected from their original trajectories conserving energy
and momentum.

Another type of collision of interest is the angular collision
of two quantum balls which we now study. For this purpose, at
t = 0 two balls of N = 1500 and K3 = 3 × 10−37(1 − i) m6/s
each are placed at x = ±2.5 μm, y = 0,z = 0.9 μm, respec-
tively, and set into motion towards the origin x = y = z = 0
with equal velocities by multiplying the respective imaginary-
time wave functions by exp(±i20x + i5.8z) to set the quantum

FIG. 6. Collision dynamics of two 7Li quantum balls, with N =
1500,K3 = 3 × 10−37(1 − i) m6/s each, placed at x = ±2.5 μm,
z = ∓0.9 μm at t = 0, and set into motion in opposite directions
along the x axis with velocity 18.16 cm/s, so as to collide at x = 0,
illustrated by isodensity contours at times (a) t = 0, (b) = 0.0057
ms, (c) = 0.0114 ms, (d) = 0.017 ms, (e) = 0.0228 ms, (f) = 0.0285
ms. The density on the contour is 1010 atoms/cm3 and unit of length
is μm. The directions of motion of the quantum balls are shown by
arrows.

balls in motion with a velocity of 18.9 cm/s and performing
real-time simulation in a box of size 480 × 240 × 360 with
these wave functions for the study of dynamics. Again the
isodensity profiles of the quantum balls before, during, and
after collision are shown in Figs. 7(a) and 7(b), 7(c) and
7(d), and 7(e) and 7(f), respectively. In this case the balls
again come out after collision undeformed maintaining their
original trajectories and conserving their velocities. If we
contrast this collision with the corresponding elastic collision
of two classical balls, the position and velocity of the quantum
balls before and after collision are identical with those of the
classical balls in this process. However, again the quantum
balls lose their identity during the collision.

The elastic interaction of a quantum ball with external
objects is also of interest. For this purpose we consider its
interaction with a rigid elastic plane upon perpendicular and
angular impacts including a three-body term with absorption.
To study the vertical impact with a rigid elastic plane we place a
quantum ball of N = 1500 and K3 = 3 × 10−37(1 − i) m6/s at
x = −0.5, and Qy = z = 0 at t = 0 and set it in motion along
the x axis with a velocity of 18.18 cm/s by multiplying the
imaginary-time wave function by exp(−i20x) and performing
real-time simulation with this wave function in a box of size
240 × 240 × 240. The reflection of the ball from the wall is
achieved by just imposing reflecting boundary condition at the
surface in the Crank-Nicolson algorithm [22]. The interaction
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FIG. 7. Collision dynamics of two 7Li quantum balls, with N =
1500,K3 = 3 × 10−37(1 − i) m6/s each, placed at x = ±2.5 μm,
z = 0.9 μm at t = 0, and set into motion towards origin (x = z = 0)
with velocity 18.9 cm/s, illustrated by isodensity contours at times
(a) t = 0, (b) = 0.0057 ms, (c) = 0.0114 ms, (d) = 0.017 ms, (e) =
0.0228 ms, (f) = 0.0285 ms. The density on the contour is
1010 atoms/cm3 and unit of length is μm. The directions of motion
of the quantum balls are shown by arrows.

dynamics in this case is illustrated by successive snapshots of
isodensity contour before, during, and after interaction with
the rigid plane in Figs. 8(a)–8(f). The quantum ball moves
without any deformation in Figs. 8(a) and 8(b), gets deformed
in proximation of the rigid plane in Figs. 8(c) and 8(d), and
bounces off without any deformation and without any change
of speed and with the direction of motion reversed in Figs. 8(e)
and 8(f). The dynamics of the quantum ball is the same as that
of an elastic classical ball except near the rigid plane when the
quantum ball gets deformed.

The interaction of a quantum ball upon angular impact
with a rigid plane is studied next. A quantum ball of
N = 1500 and K3 = 3 × 10−37(1 − i) m6/s is placed at x =
y = 0,z = 1 μm and set into motion towards x = −3 μm,
y = z = 0 by multiplying the imaginary-time wave function
by exp(−i20x + 5.8iz) to set the quantum ball in motion
with an initial speed of 18.9 cm/s and performing real-time
simulation with this wave function in a box of dimension
240 × 240 × 320. The reflection of the ball from the wall is
achieved by imposing reflecting boundary condition at the
surface in the Crank-Nicolson algorithm [22]. The uniform
motion of the quantum ball without deformation before and
after the collision are shown in Figs. 9(a) and 9(b) and 9(e)
and 9(f), respectively, while its deformation in the proximity
of the rigid plane is shown in Figs. 9(c) and 9(d). The
quantum ball bounces like an elastic classical ball with the

FIG. 8. Bouncing off a rigid wall at x = −0.5 μm of a 7Li
quantum ball, with N = 1500,K3 = 3 × 10−37(1 − i) m6/s, placed
at origin at t = 0 and moving along the x axis with the velocity
of 18.18 cm/s, illustrated by isodensity contours at times (a) t = 0,
(b) = 0.0057 ms, (c) = 0.0114 ms, (d) = 0.017 ms, (e) = 0.0228 ms,
(f) = 0.0285 ms. The density on the contour is 1010 atoms/cc and unit
of length is μm. The directions of motion of the quantum ball are
shown by arrows.

same speed obeying the classical law of reflection. The results
presented so far demonstrate beyond doubt that for large
velocities the quantum ball interacts elastically with another
quantum ball or an external rigid plane with the conservation
of kinetic energy. However, the collision is inelastic at small
velocities and large deformation of the quantum ball is possible
with the nonconservation of kinetic energy. We performed
simulation at small velocities (about one-tenth of the velocities
considered so far) for the interaction with a rigid plane. We
find that the quantum ball bounces off the surface at such low
incident velocities but with some deformation in shape and
nonconservation of kinetic energy resulting in a reduction in
the final velocity.

FIG. 9. Bouncing off a rigid wall at x = −3 μm of a 7Li
quantum ball, with N = 1500,K3 = 3 × 10−37(1 − i) m6/s, placed
at x = 0,z = 1 μm at t = 0, and set into motion towards x = −3 μm,
z = 0 with velocity 18.9 cm/s, illustrated by dimensionless isodensity
contours at times (a) t = 0, (b) = 0.00669 ms, (c) = 0.0134 ms, (d) =
0.020 ms, (e) = 0.0267 ms, and (f) = 0.0334 ms. The density on the
contour is 1010 atoms/cm3. The directions of motion of the quantum
ball are shown by arrows.
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FIG. 10. (a) The 1D density ρ1D(x,t) and (b) its contour plot
during the collision of two 7Li quantum balls, with N = 1500
and K3 = 3 × 10−37(1 − 0.05i) m6/s each, initially placed at x =
±3.2 μm at t = 0 and set into motion towards each other with a
velocity 0.45 cm/s, upon real-time propagation.

To study the inelastic collision dynamics we consider
two quantum balls each with N = 1500 and a three-body
term with dissipation, K3 = 3 × 10−37(1 − 0.05i) m6/s, place
them at x = ±3.2 μm, y = z = 0 and set them in motion in
opposite directions along the x axis with a small velocity: v =
0.45 cm/s. In this case we have used a smaller dissipative term
to avoid a large loss of atoms over long-time collision dynamics
for a small velocity. The dynamics is started by multiplying the
respective imaginary-time wave functions by exp(±i0.5x) and
performing real-time simulation for the study of dynamics. The
imaginary and real-time simulations were performed in boxes
of size 256 × 256 × 256 and 512 × 256 × 256, respectively.
The dynamics is illustrated by a plot of the time evolution
of 1D density ρ1D(x,t) in Fig. 10(a) and the corresponding
two-dimensional contour plot is shown in Fig. 10(b). The
two quantum balls come close to each other at x = 0 and
coalesce to form a quantum-ball breather and never separate
again. The combined bound system remains at rest at x = 0
continuing small breathing oscillation because of a small
amount of liberated kinetic energy which creates the quantum-
ball breather. Hence at sufficiently small incident velocities
the collision of two quantum balls leads to the formation of
a quantum-ball breather and at large velocities one has the
quasielastic collision of two quantum balls.

IV. SUMMARY

We demonstrated the creation of a stable, stationary BEC
quantum ball (a self-bound BEC) under attractive two-body
and repulsive three-body contact interactions employing a
variational and full numerical solution of the 3D GP equation.

The statical properties of the quantum ball are studied by
the variational approximation and a numerical imaginary-time
solution of the 3D GP equation. The dynamical properties are
studied by a real-time solution of the GP equation including an
absorptive three-body term. The quantum ball can move with a
constant velocity without deformation. At large velocities, the
collision between the two quantum balls is quasielastic with
no visible deformation of the final quantum balls. We studied
head-on and angular collisions of two quantum balls. In all
cases, unlike classical balls, the balls come out of the collision
region without deformation maintaining their velocities and
directions of motion unchanged. In elastic collision of two
classical balls one can have a change in the direction of their
motion subject to energy and momentum conservation. At
small velocities, the collision between two quantum balls is
inelastic with the formation of a quantum-ball breather after
collision.

As collapse is not allowed, even in the presence of a
very small three-body repulsion, the present suggestion of
realizing a trapless BEC quantum ball seems to be attractive
from an experimental point of view. The size of a trapped
dipolar BEC is determined by the harmonic oscillator lengths
of the trap, whereas the size of the present quantum ball is
determined by the two-body and three-body interactions. One
should start with a tapped dipolar BEC for N < Ncrit where no
droplet can be formed, viz. Fig. 1(c). Now using the Feshbach
resonance technique, one should make the scattering length
more attractive to enter the stable domain from the unstable
domain in Fig. 1(c). If the harmonic trap is weak then the initial
size of the trapped BEC should be large, and by increasing the
two-body attraction the size of the quantum ball could be
made much smaller: The sudden change in size will identify
the trapless quantum ball. In the present study we employed
three-body repulsion to stop the collapse and create a stable
quantum ball. There are other mechanisms to create such a ball
[15,16]. However, the present results on dynamics of nonspinor
quantum balls should be valid in general independent of the
binding mechanism.
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