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We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions.
In this method, the four-body interactions arising in models with 2 + 1 dimensions and higher are obtained
stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields
stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals,
and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic
gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we
present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic
matter in 2 + 1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing
the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the
ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean,
controlled way.
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I. INTRODUCTION

Gauge theories play a very significant role in modern
physics. They are responsible, through their special local
symmetry—local gauge invariance—of mediating the inter-
actions between matter particles—either elementary particles
in the standard model of particle physics (electromagnetic,
strong, or weak interactions), or composite particles at lower
energy scales (in electrodynamics, or some effective, emergent
gauge theories). Beside their important role in physics, gauge
theories manifest a variety of nontrivial physical phenomena
and a rich phase diagram. Many of them, especially in the
cases of non-Abelian symmetries, are still lacking a complete,
analytical understanding and are at the frontier of modern
physical research. Open questions include the mechanism of
quark confinement, or the mass gap in Yang-Mills theories
[1–3], as well as the phase structure of QCD (quantum
chromodynamics) [4,5] and especially the search for its exotic
phases, as color superconductivity.

Over the years, many approaches have been proposed and
applied to the theoretical study of gauge theories. A very
prominent and successful one is lattice gauge theory [1,6,7],
which has allowed us to prove some basic concepts as well as
to calculate numerically, using Monte Carlo methods, parts of
the hadronic spectrum [8,9]. However, Monte Carlo methods
in a Euclidean space time cannot approach several problems,
as, for example, those which involve fermionic matter with a
finite chemical potential (giving rise to the computationally
hard sign problem [10]). Another desirable feature is real time
evolution in Minkowski space time, which is absent when time
is imaginary.

Recently, two alternative approaches to revealing the
mysteries of lattice gauge theories have been proposed by
the quantum information and quantum optics communities.
The first suggests using tensor network states [11,12] to
study the ground states, time evolution, and phase structure
of lattice gauge theories, with both numerical and ana-
lytical methods [13–30]. The second exploits the diverse
variety of optical, atomic, and solid-state devices, which are

nowadays controllable in experiment, as quantum simula-
tors [31,32] of lattice gauge theories [33,34], i.e., specially
tailored quantum systems which mimic the behavior of
the quantum theories of interest, serving as playgrounds
for the study of otherwise inaccessible physics. The key
issue in quantum simulation of lattice gauge theories is the
need to enforce local gauge symmetry on the simulating
systems—a symmetry which these systems do not exhibit
explicitly, but is the most important ingredient of the simulated
models.

There are two main approaches for quantum simulation.
One is analog, where the degrees of freedom and the dynamics
of the desired gauge theory are fully or approximately
mapped to the simulating system by imposing some external
constraints. Another is digital simulation, where the simulating
system is evolved stroboscopically by applying a precise
sequence of short quantum operations that approximates, to
a given precision, the dynamics of the simulated system [35].

Many quantum simulators have been recently proposed,
based, for example, on ultracold atoms in optical lattices,
trapped ions, or superconducting qubits. These proposals have
addressed lattice gauge theories of different levels of com-
plexity, Abelian or non-Abelian, with or without dynamical
matter [36–59]. A quantum simulation of the lattice Schwinger
model (electrodynamics in 1 + 1d) has even been realized
experimentally, using trapped ions [60].

Still, the experimental realization of quantum simulators
for lattice gauge theories is very challenging in general.
First, many proposals require the use of sophisticated ex-
perimental techniques, e.g., Feshbach resonances or single
addressability in some ultracold atoms proposals. Second,
lattice gauge theories in 2 + 1 dimensions and more, involve
four-body interactions (the plaquette magnetic interactions)
whose implementation is nontrivial. In previous proposals,
these are obtained by using perturbation theory and effective
Hamiltonian terms, which make them very weak. For example,
if one wishes to obtain these interaction terms out of already
gauge invariant building blocks, fourth-order processes are
needed [45], whose experimental realization is of course very
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difficult. This sets a major bottleneck for pushing experiments
beyond the simple (1 + 1)d case.

Digital quantum simulation may be a way of overcoming
this bottleneck. Some previous methods for digital quantum
simulators of lattice gauge theories using cold atoms (in
particular Rydberg atoms) have recently been proposed: One
[61] dealt with a simulation of a U(1) pure gauge theory with
two possible electric-field values; another dealt [39] with a
quantum simulation of U(1) andZN gauge magnets, with static
charges; and Ref. [44] proposed to simulate an SU(2) quantum
magnet. Here we provide a general digital construction of
lattice gauge theories, including dynamical matter, for any
reasonable gauge group.

In a recent work [62] we introduced the scheme and its
implementation with cold atoms, considering the particular
example of a Z2 lattice gauge theory. In this work we expand,
elaborate, and generalize the discussion. After reviewing some
basic ingredients of lattice gauge theories, we will formulate
a general digital construction of a lattice gauge theory. As in
previous proposals this is based on a lattice system which
includes, in addition to the gauge and matter degrees of
freedom, some auxiliary particles that mediate the required
interactions and eventually give rise to a dynamics which is
equivalent to that of the desired gauge theory. In particular, we
are interested in constructing a stroboscopic evolution from
small time steps. We will show how to build individual time
steps that respect local gauge invariance, so that any error due
to the digitization will not break the symmetry of the system.
Moreover we will show how all the required three- and four-
body interactions, including the gauge-matter coupling, can
be obtained by concatenating simpler two-body interactions
between the physical ingredients and the ancillary degrees
of freedom. In our general construction, valid for any gauge
group G which is either compact or finite, this task is greatly
simplified by the use of a mathematical quantum-mechanical
object called stator. We show here how stators, introduced and
described in [63,64], prove to be a very powerful and useful
tool in the context of digital lattice gauge theories.

Then, we shall turn to a detailed construction of a particular
example: simulating a Z3 lattice gauge theory in 2 + 1
dimensions using ultracold atoms in optical lattices, trapped
in a layered structure which allows the ancillary atoms to
move and interact with the “physical” ones [65]. We anticipate
that there are strong qualitative differences between the Z3

implementation and the Z2 case discussed in [62], as the
latter benefits from several simplifications that are no longer
available for any N � 2. Therefore, the Z3 case takes a
considerable step forward with respect to [62] and constitutes
an interesting example containing further ingredients that can
be readily extended to higher values of N . Readers interested
only in the particular Z3 realization scheme may skip the
general framework and jump to Sec. III.

Throughout this paper, a summation convention is assumed
for double indices. An exception is in the case of irreducible
representation indices, whose summation takes place only if it
is explicitly written.

II. DIGITIZATION SCHEME

First we shall describe how to construct the dynamics of
lattice gauge theories in a digital way, for a generic compact

or finite symmetry group, regardless of their experimental
feasibility.

A. Mathematical preliminaries

1. Lattice gauge theories: Physical ingredients

Let G be some group, which may be either a compact
Lie or a finite (discrete) group. G has, in general, several
irreducible representations j . We define a Hilbert space based
on the group G, with elements spanned by a basis of the
form |jm〉, where j is the representation and m identifies state
within the same representation. To explain this, let us introduce
a unitary operator θg—the quantum operator responsible for
transforming states with respect to the group element g ∈ G.
Such an operator is block diagonal in the representation, i.e.,
group transformations leave the representation invariant. Thus,
states should be labeled with respect to the representation.
Within a given representation, on the other hand, the states
will be mixed by the transformation, and thus we need another
quantum number to quantify that. The transformation θg is
unitary, and thus it will be described by the unitary matrices
D

j
mn(g), corresponding to the representation j and the group

element g:

θg|jm〉 = Dj
nm(g)|jn〉. (1)

These are the generalized Wigner matrices [66],

Dj
mn(g) = 〈jm|θg|jn〉. (2)

To understand better the states |jm〉, consider, for example,
G = SU(2). Then j labels the total angular momentum of a
state and m its z component; thus, in general, m may be thought
of as a set of quantum numbers or indices, corresponding
to the eigenvalues of a maximal set of mutually commuting
operators that also commute with the representation operator
of the group G. For SU(2), the “representation operator” is
J2, and the maximal set of mutually commuting operators
contains a single operator, an angular momentum component,
usually chosen to be Jz. For SU(3), on the other hand, m will
be a set of two quantum numbers, the hypercharge and isospin,
eigenvalues of two operators which commute with one another
as well as with the Casimir operator which is block diagonal
in the representation.

Lattice gauge theories involve matter degrees of freedom
(mostly, as in our case, fermions), residing on the vertices
x ∈ Zd of a d dimensional spatial lattice, and gauge fields
residing on its links, labeled by a pair (x,k) of a vertex x from
which they emanate and a (positive) direction k = 1 . . . d in
which they emanate. We denote by k̂ the unit (lattice) vector
pointing in the kth direction. We will restrict our discussion to
d = 2—i.e., lattice gauge theories in 2 + 1 dimensions—but it
can be straightforwardly generalized to other dimensions (see
Fig. 1).

The states and Hamiltonians of lattice gauge theories are
locally invariant under some gauge group G. By locally we
mean that the state of the system is invariant under a special
type of group transformations (local gauge transformations)
which depend on different transformation parameters—or
group elements—for different positions x. We will first
describe the physical degrees of freedom and their local Hilbert
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FIG. 1. A single plaquette. It is labeled after the vertex on the left
bottom, x, where the fermionic spinor ψj†

m (x) resides. The gauge-field
operators Uj

mn(x,1) and Uj
mn(x,2) act on the gauge-field Hilbert spaces

of the links (x,1) and (x,2) respectively.

spaces, which will allow us then to explain these special
symmetry properties.

First, let us consider the type of Hilbert spaces which will be
used for our lattice fermionic matter field. In a fermionic Fock
space, we may define fermionic creation operators ψ

j†
m that

create, from the Fock vacuum, states which transform under
G as |jm〉. In operator terms, this reads

θψ
g ψj†

n θψ†
g = ψj†

m Dj
mn(g). (3)

Then, for a fixed j , the set of operators ψ
j†
m forms a spinor of

the j representation. Such spinors, as we shall see, describe
the matter degrees of freedom in a lattice gauge theory.

If G is a compact Lie group, θg may be written as

θg = eiφaQa , (4)

where φa are the group parameters corresponding to G, and
Qa is the charge at the vertex. Qa satisfies the group’s algebra,

[Qa,Qb] = ifabcQc, (5)

where fabc are the structure constants of G. After defining T
j
a ,

the j matrix representation of the a generator,

[Ta,Tb] = ifabcTc, (6)

we can explicitly define

Qa = ψj†
m

(
T j

a

)
mn

ψj
n . (7)

On the vertices of our lattice, we place fermionic spinors
ψ

j†
m , belonging to some irreducible representation j of the

gauge group G. We will omit the index j , assuming that we
only include spinors of one fixed representation, but in general
one may include more than one fermionic representation. In
most of the “conventional” lattice gauge theories associated
with Lie groups, one picks the fundamental representation for
the matter spinors [e.g., j = 1/2 for SU(2)].

We will choose, for convenience, to work with staggered
fermions [67,68]—i.e., fermions occupying even vertices
correspond to particles, and absences in odd vertices to
antiparticles. If there exists a continuum limit, two such spinors
will be united to a single Dirac spinor. The charge of such
fermions is updated to

θg = eiφaQa {det[Dj (g−1)]}N, (8)

where N = 0 for even vertices and N = 1 for odd ones.
The fermionic vacuum, called the “Dirac sea” |D〉, is a

state in which all the odd vertices are fully occupied and

the even ones are empty—this corresponds to having neither
particles nor antiparticles in the system. We will define the
transformation of the empty Fock vacuum |�〉 as

θg(x)|�〉 =
{|�〉, x even;

det[D(g−1)]|�〉, x odd.
(9)

Then, since

θg

∏
m

ψ†
mθ †

g = det [D(g)]
∏
m

ψ†
m (10)

[68], we get that the Dirac sea |D〉 is invariant under the
fermionic transformations.

The gauge fields are represented in another way [27,68]. On
each link of the lattice, there exists a Hilbert space of a second
type, spanned either by group element states or representation
states [68], which we shall explain now.

The group element basis consists of states attached to group
elements |g〉, on which one may act with the following unitary
transformations:

�g|h〉 = |hg−1〉,
�̃g|h〉 = |g−1h〉. (11)

We define a matrix of operators (in an “internal” group,
gauge or matrix space), Uj

mn, whose elements are operators in
Hilbert space, by

Uj
mn =

∫
dgDj

mn(g)|g〉〈g|. (12)

This is a “group element” operator. Under �g,�̃g , it respects
the transformation rules

�gU
j
mn�

†
g = U

j

mn′D
j

n′n(g),

�̃gU
j
mn�̃

†
g = D

j

mm′(g)Uj

m′n. (13)

If G is a compact Lie group, we may expand

Uj = eiφ̂aT
j
a , (14)

where φ̂a are operator group parameters corresponding to
g. The transformations may also be expanded in terms of
generators: define the right and left generators, Ra,La , such
that

[Ra,Rb] = ifabcRc,

[La,Lb] = −ifabcLc,

[La,Rb] = 0, (15)[
Ra,U

j
mn

] = U
j

mn′
(
T j

a

)
n′n,[

La,U
j
mn

] = (
T j

a

)
mm′U

j

m′n,

J2 ≡ RaRa = LaLa,

and then

�g = eiφaRa ,

�̃g = eiφaLa . (16)

Note that Uj does not commute with the generators, and thus
the representation number j is a dynamical quantity.

023604-3



ZOHAR, FARACE, REZNIK, AND CIRAC PHYSICAL REVIEW A 95, 023604 (2017)

The group parameters φ̂a on the links are the (generally)
non-Abelian, color components of the vector potential. Thus
one may call the group element basis “magnetic basis” as
well. The generators, on the other hand, are some non-Abelian
extension of “conjugate” degrees of freedom to the vector
potential, and thus stand for the (generally non-Abelian, right
and left) electric fields. This automatically explains the need
for the representation basis, |jmn〉. Every state in this basis is
composed out of three quantum numbers (or sets of which):
the representation j , and identifiers within the representation
m,n. This is similar to the m in |jm〉, however, here we have
two sets in general, one corresponding to left transformations
and the other to right ones (which are generally different as
G may be non-Abelian). These will be the eigenvalues of the
operators in the maximally mutual commuting sets, one for
the left (m) and one for the right (n), as may be deduced from
the algebra (15). For SU(2), for example, we can choose m as
the eigenvalue of Lz, and n as that of Rz.

The motivation for introducing the representation basis is
very clear for compact Lie groups, but one can do it formally
for finite groups as well. In both cases, the change of basis is
defined by the Wigner matrices,

〈g|jmn〉 =
√

dim (j )

|G| Dj
mn(g), (17)

where |G| is the order of G. A singlet state is given by |000〉;
then, it is possible to show [68] that

|jmn〉 =
√

dim (j )Uj
mn|000〉. (18)

Although the matrix elements of U
j
mn are Hilbert space

operators, they fulfill a very special property: they commute
with one another, as a direct consequence of (12): the matrix
elements U

j
mn are all diagonalized in the same basis and

thus they commute. Thus, when calculating, one may treat
the elements of U

j
mn as numbers for many purposes. In

particular, we may define “group space operations” or “matrix
operations,” which involve acting only on the matrix indices.
For example, when we talk about the trace of a Uj operator,
or of an operator composed of such operators, it is a trace in
the matrix space (or group space), which is still an operator
in Hilbert space: the sum of Hilbert space operators on the
diagonal of Uj . One has thus to be careful with the notion
of hermitian conjugation, and pay attention to whether it is
performed in the matrix space, or in the Hilbert space. The
following relation is very helpful for that purpose:(

Uj
mn

)† =
∫

dg|g〉〈g|Dj

mn(g)

=
∫

dg|g〉〈g|Dj†
nm(g) = (Uj†)nm, (19)

i.e., the conjugate transpose in Hilbert space of a matrix
element is equal to the matrix element in the transposed
position of the hermitian conjugation in matrix space. We may
also define matrix functions which are “blind” to the Hilbert
space structure: for example, define

Zj
mn = −i[lnmat(U

j )]mn (20)

where lnmat means that the logarithm is taken only in matrix
space (which is well defined thanks to the commutativity, in
Hilbert space, of the matrix elements of U ).

Thus, as a consequence of (19),(
Zj

mn

)† = Zj
nm, (21)

where the hermitian conjugation is taken in the Hilbert space.
If G is a compact group, we simply obtain that

Zj
mn = φ̂a

(
T j

a

)
mn

. (22)

From now on, we shall omit representation indices from the
U

j
mn in case they belong to the fundamental representation of

the group.

2. Lattice local gauge invariance

With the definitions made above at hand, we can finally
define a local gauge transformation: this is a transformation
which acts on all the Hilbert space intersecting at the vertex
x—i.e., the fermions at the vertex and all the links starting
and ending there—and depends on a group element which
may differ as a function of the position, g(x). The gauge
transformation is defined as

�̂g(x) = �̃g(x,1)�̃g(x,2)�†
g(x − 1̂,1)�†

g(x − 2̂,2)θ †
g(x).

(23)
A gauge invariant state |ψ〉 is invariant under such a

transformation [69],

�̂g(x)(x)|ψ〉 = |ψ〉, ∀x. (24)

If G is a compact Lie group, we may define generators
Ga(x), satisfying the group algebra, such that

[Ga,Gb] = ifabcGc,

Ga(x) = La(x,1) + La(x,2) − Ra(x − 1̂,1)

−Ra(x − 2̂,2) − Qa(x). (25)

Then, the equation

Ga|ψ〉 = 0, ∀x,a (26)

is satisfied for a gauge invariant |ψ〉 and forms a lattice Gauss
law, which gives a better intuition for identifying the right and
left generators as electric fields.

The “global singlet state”

|0〉 ≡ |D〉
⊗
links

|000〉 (27)

is invariant under gauge transformations (23), and any other
gauge invariant product may be obtained by acting on it with
a product of gauge invariant operators. There are several types
of such operators:

(1) Traces of products of U and U † operators along a closed
path. The simplest is the plaquette operator,

Tr[U (x,1)U (x + 1̂,2)U †(x + 2̂,1)U †(x,2)]. (28)

(2) Products of U and U † operators along a line, with
fermionic operators at the edges. The simplest is the link
interaction,

ψ†
m(x)Umn(x,k)ψn(x + k̂). (29)

023604-4



DIGITAL LATTICE GAUGE THEORIES PHYSICAL REVIEW A 95, 023604 (2017)

(3) Local fermionic group scalars,
ψ

†
m(x)ψm(x)≡ψ†(x)ψ(x).

(4) Gauge field operators which are diagonal in the
representation basis. The simplest case is the representation
operator,

�(x,k) =
∑

j

f (j )|jmn〉〈jmn|. (30)

A reasonable Hamiltonian for lattice gauge involves such
terms. In general, such a Hamiltonian will involve four terms:

(1) The electric Hamiltonian,

HE = λE

∑
x,k

�(x,k). (31)

It is called the electric Hamiltonian, because in the SU(N ) case
the quadratic Casimir operators J2 can take the role of � and
then this part is just a sum over the square of the electric field
everywhere, i.e., the electric energy.

(2) The magnetic Hamiltonian,

HB =
∑

x

HB(x)

= λB

∑
x

Tr[U (x,1)U (x + 1̂,2)U †(x + 2̂,1)U †(x,2)]

+ H.c. (32)

Here, in the case of a Lie group, we could obtain in the
continuum limit the magnetic energy term—e.g., the sum of
the magnetic field squared for QED [G = U(1)].

These first two parts describe only the gauge field, and in
the case of compact Lie groups they both add up to the Kogut-
Susskind Hamiltonian HKS = HE + HB , the Hamiltonian of
a lattice Yang-Mills theory [6,7].

(3) The fermionic mass Hamiltonian,

HM = M
∑

x

(−1)x1+x2ψ†(x)ψ(x), (33)

in which the alternating signs stand for the staggering of
fermions: particles on even sites, antiparticles on odd ones
[67,68].

(4) The gauge-matter interaction,

HGM =
∑
x,k

HGM (x,k)

= λGM

∑
x,k

ψ†
m(x)Umn(x,k)ψn(x + k̂) + H.c. (34)

In this work, we will discuss a digital implementation of
the total Hamiltonian,

H = HE + HB + HM + HGM. (35)

B. Digitization

Under the action of the Hamiltonian H , the system
evolution is described by the unitary operator U(t) = e−iH t .
The total Hamiltonian H is, however, hard to implement as
a whole in a cold atomic system, due to the interacting parts
HB and HGM . Instead, we can easily implement separate parts
of the Hamiltonian if we consider them individually. In our
particular case, as we shall see, the terms whose evolution

can be implemented independently are HE , HM , HBe, HBo,
HGM,eh, HGM,ev , HGM,oh, and HGM,ov , where

HBe =
∑

x even

HB(x) (36)

involves a sum only over even plaquettes and similarly HBo

involves a sum only over odd ones;

HGM,eh =
∑

x even

HGM (x,1) (37)

describes the gauge-matter interaction on horizontal links
originating from even sites and HGM,ev , HGM,oh, HGM,ov are
defined in a similar way.

We can then use each single term to evolve the system for
a very short time τ , i.e., we can separately realize the unitary
operators WE = e−iHEτ , WM = e−iHMτ , WBe = e−iHBeτ ,
Weh = e−iHGM,ehτ , etc. Then, by Trotter formula we have
e−i
j Hj t = limM→∞(�j e− iHj t/M )M ≡ limM→∞[W (t/M)]M

[70–72] and we see, putting τ = t/M , that we can approximate
the total evolution with a specific sequence of short evolutions
according to each of the pieces Hj [35,73]. Further details
on the digitization of the evolution will be given in a later
section.

1. Stators

A useful ingredient in our digital formulation of lattice
gauge theories is a mathematical object called stator [63]—
“state operator.” It is somewhat a “mixture” of an operator and
a state, living in a product Hilbert space. We shall briefly
describe some of its most relevant properties; for further
discussion and generalizations, the reader may refer to [64].

Consider two Hilbert spaces, HA and HB . Denote the set of
operators acting on a Hilbert space H by O(H). Then, a stator
S ∈ O(HA) × HB will be the result of acting with a unitary
UAB ∈ O(HA × HB) on some initial state |in〉 ∈ HB :

S = UAB |inB〉 ∈ O(HA) × HB. (38)

It may be written as an expansion of the form

S =
∑

i

Mi ⊗ |iB〉 (39)

where Mi ∈ O(HA) are Kraus operators satisfying
∑
i

M
†
i Mi =

1A, and |iB〉 ∈ HB . Mathematically speaking, S is an isometry
that maps a state |ψA〉 of the physical Hilbert space HA to the
tensor product UAB(|ψA〉 ⊗ |inB〉), living in HA × HB .

We say that the operators �A ∈ O(HA) and �B ∈ O(HB)
are a pair of S eigenoperators, if the following holds:

�BS = S�A. (40)

Relation (40) is useful for digital schemes in the following
way. Suppose thatHA describes our “physical system” andHB

describes some auxiliary degree of freedom. We have an initial
product state |ψA〉|inB〉, and we wish to evolve the physical
state |ψA〉 for some time t with a Hamiltonian H ∈ O(HA).
If there are a stator S and a Hermitian operator H ′ ∈ O(HB)
such that

H ′S = SH (41)
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we get, as well, that

e−iH ′t S = Se−iH t . (42)

Therefore we can obtain, effectively, a time evolution of the
physical state by creating a stator of the physical and auxiliary
ingredients, and then acting on the control:

e−iH ′tUAB|ψA〉|inB〉=e−iH ′t S|ψA〉=Se−iH t|ψA〉, (43)

i.e., we first let the physical and the control systems interact
such that UAB is generated, and then turn on a Hamiltonian
HB for the control for a time period t . Then, the stator is ready
for the next step, or can be undone by letting the two systems
interact again to realize U

†
AB . In the latter case we get

U†
ABe−iH ′tUAB |ψA〉|inB〉 = |inB〉 ⊗ e−iH t |ψA〉, (44)

i.e., we end with a product state, where the physical state
has evolved according to the desired Hamiltonian H and the
auxiliary system is back in its initial state.

In a similar way one can, for example, create a stator
which connects several physical degrees of freedom together,
and then obtain effectively a many-body interaction among
them. This is what we will do in order to obtain the plaquette
interactions. For that, we shall introduce a special kind of
stator, called group element stator:

S =
∫

dg|gA〉〈gA| ⊗ |gB〉. (45)

Following Eq. (12), we get the eigenoperator relations(
Uj

mn

)
B
S = S

(
Uj

mn

)
A

(46)

and (
Uj†

mn

)
B
S = S

(
Uj†

mn

)
A
. (47)

Consider now a single plaquette in a lattice gauge theory,
whose links are labeled by 1–4, counterclockwise from (x,1)
to (x,2), and have local Hilbert spaces {Hi}4

i=1 describing the
gauge degrees of freedom. We introduce an auxiliary degree of
freedom, serving as the control, in the middle of the plaquette
and we assign to it a similar Hilbert space H̃.

We define the unitary operator (interaction) Ui , which
creates a group element stator for the link i and the control.
For example, if the initial state of the control is |ĩn〉 = |̃e〉 (the
group element state corresponding to the identity element), we
have

Ui =
∫

dg|gi〉〈gi | ⊗ �̃†
g (48)

but this is only one possible choice.
We define then a “plaquette stator” which is the result of

acting on the initial state of the control with the following
sequence:

S� = U�|ĩn〉 ≡ U1U2U†
3U

†
4 |ĩn〉, (49)

i.e., a sequence of four two-body interactions creates a
plaquette stator for four physical degrees of freedom and the
control. S� satisfies the eigenoperator relation

Tr(Ũ j + Ũ j†)S� = S�Tr
(
U

j

1 U
j

2 U
j†
3 U

j†
4 + H.c.

)
, (50)

which, as we shall show next, directly gives rise to the magnetic
plaquette interaction HB .

Note that this is similar to procedures carried out in previous
works, where controlled rotations were utilized for the purpose
of obtaining a four-body interactions for particular lattice
gauge theories [compare for example the plaquette operator
U1U2U†

3U
†
4 with Eq. (2) in [61], or Eq. (58) in [39]]. Here,

however, we utilize the stator formalism which allows us to
present things in a more “natural” way, and to generalize the
results to more complicated gauge groups including dynamical
fermionic matter as well, as we shall show below.

2. Plaquette interactions

Using the stators defined above, we can obtain the magnetic
Hamiltonian HB in a digital way. What is required, basically, is
to create the stator S� for each plaquette and then act locally on
the control with some Hamiltonian H̃B that yields HB through
the eigenoperator relation (50). Therefore, for each plaquette
x, we need to act with the control Hamiltonian

H̃B(x) = λBTr(Ũ j (x) + Ũ j†(x)). (51)

The sequence

Up(x) = U†
�(x)e−iH̃B (x)τU�(x) (52)

is the unitary operation required for the creation of the
plaquette interaction for a single plaquette x, i.e.,

Up(x)|ψ1234(x)〉|ĩn〉 = |ĩn〉e−iHB (x)τ |ψ1234(x)〉 (53)

where |ψ1234(x)〉 is the initial state of the four links around the
plaquette x.

Since [HB(x),HB(y)] = 0 for all x and y, the evolution
generated by the global magnetic Hamiltonian HB is exactly
equivalent to the evolution obtained by combining single-
plaquette operations Up(x) across the whole lattice. In math-
ematical language, we have e−iHBτ = ∏

x Up(x). Moreover,
different plaquettes can be evolved in parallel or sequentially,
with both options leading to the same exact physics. To speed
up the simulation, the parallel option is clearly more practical.
However, we cannot create the plaquette interactions for all the
plaquettes at once, since every link is shared by two plaquettes
and thus has to belong to two stators simultaneously, but this is
impossible. Then, the fastest way is to realize the HB evolution
in two steps, one for each parity of the plaquettes: for example,
we can evolve the even plaquettes first (in parallel), and then
the odd ones. In fact, we can even use the same control atoms
for both steps, if we are able to move them from even to odd
plaquettes.

In summary, the magnetic Hamiltonian HB can be realized
as follows. We start with one control atoms placed in the center
of each even plaquette and apply the following sequence of
operations:

(1) Create the stators for even links:
(a) Move all the controls simultaneously to the links below

them (even horizontal links), to interact with the gauge field
and create the unitary operation,

U1e ≡
∏

x even

U1(x). (54)

Bring the controls back to their “rest position” in the center.
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(b) Repeat a similar process with the links on the right, to
create

U2e ≡
∏

x even

U2(x). (55)

(c) Proceed with the links above the center, for

U†
3e ≡

∏
x even

U†
3 (x). (56)

(d) Conclude with the last remaining links, and obtain

U†
4e ≡

∏
x even

U†
4 (x). (57)

Steps (a)–(d) result in the creation of

Upe = U†
4eU

†
3eU2eU1e =

∏
x even

Up(x) (58)

whose action on the initial state of the controls creates a product
of the even plaquette stators. The order of the steps (a)–(d) is
important, for the order of elements in the product obtained in
the auxiliary state; if the group is Abelian, on the other hand,
this order plays no role.

(2) Turn on the Hamiltonian H̃B,e = ∑
x even H̃B(x) and let

the system evolve for time τ , resulting in

ṼBe = e−iH̃B,eτ . (59)

(3) Undo the stators, by a process similar to step 1, but with
the inverse interactions—i.e., create U†

pe.
These steps are applied to a state |ψ(ti)〉|ĩn〉, where |ψ(ti)〉

is the physical state at time ti and |ĩn〉 is the initial state of all
the controls. Thanks to the stator relation (50), the final result
is

|ψ(ti + τ )〉|ĩn〉 ≡ U†
peṼBeU†

pe|ψ(ti)〉|ĩn〉 = WBe|ψ(ti)〉|ĩn〉.
(60)

where

WBe = e
−i

∑
x even

HB (x)τ
. (61)

Similarly, one can act on the odd plaquettes, to obtain the
time evolution WBo. For that, the control atoms should first be
moved to the center of the odd plaquettes.

3. Gauge-matter interactions

After having achieved the four-body plaquette interactions
as a sequence of two-body interactions, we will proceed to
obtain the three-body interactions of the matter with the gauge
field in a similar way. The type of interactions we are interested
in are those of HGM , involving the gauge field on a link
and the fermions on its side. We start by analyzing a single
link, emanating from the vertex x in the kth direction. The
corresponding Hamiltonian is

HGM (x,k) = λGMψ†
m(x)Umn(x,k)ψn(x + k̂) + H.c. (62)

Thanks to (21), we know that Zmn(x,k)ψ†
m(x)ψn(x) is

Hermitian, and

UW (x,k) = eiZmn(x,k)ψ†
m(x)ψn(x) (63)

is unitary. If G is a compact Lie group, from Eq. (22) we obtain

UW (x,k) = eiφ̂a (x,k)ψ†
m(x)T a

mnψn(x) = eiφ̂aQa

, (64)

an interaction of the “vector potential” φa with the fermionic
non-Abelian charge Qa .

Note that

UW (x,k)ψ†
n(x)U†

W (x,k) = ψ†
m(x)Umn(x,k). (65)

Thus, if we define the fermionic tunneling Hamiltonian

Ht (x,k) = λGM (ψ†
m(x)ψm(x + k̂) + H.c.) (66)

the tunneling Hamiltonian HGM may be obtained by

HGM (x,k) = UW (x,k)Ht (x,k)U†
W (x,k). (67)

This relation is the key ingredient for achieving the gauge-
matter interactions, which are three body interactions, by
using two body local interactions. In fact, this is a “gauging”
transformation, mapping a free fermionic tunneling term into
a charged interaction term, by using a gauge transformation
whose parameter is an operator. Examples may be found below,
where we discuss particular gauge groups.

One way to realize HGM (x,k) is the following. First, make
the link (x,k) and the vertex x interact, to generate U†

W (x,k).
In the next step, allow the fermions to tunnel along the link,
with the Hamiltonian Ht (x,k) for time τ , i.e., act with the
unitary evolution

Ut (x,k) = e−iHt (x,k)τ . (68)

Finally, make the link and the vertex interact again, but this
time generate UW (x,k).

Once again, the question is how to realize HGM for the
whole lattice. From Eq. (67), we can already see that we have
to respect some restrictions. For example, when we consider
a single link (x,1), we only have to apply UW (x,1) but not
UW (x + 1,1), otherwise we get an interaction also with the
gauge field of link (x + 1,1). Therefore, we cannot act with
UW (x,1) for all x simultaneously. For a similar reason, we
cannot act with both UW (x,1) and UW (x,2) at the same time
because HGM (x,1) would get a contribution from the gauge
field of link (x,2) and this is not what we want.

This implies that we must divide the dynamics to four parts
at least—this is the most economical way, and this is how we
shall do it. We consider four sets of links—even horizontal (eh),
even vertical (ev), odd horizontal (oh), and odd vertical (ov),
named after the parity of the link from which they emanate, and
their direction. The four sets have to be evolved one after the
other according to the recipe (67), but for all links in a given set
we can realize the gauge-matter interactions simultaneously.
Note that in this way we split HGM into four noncommuting
terms. This will be taken into account when we discuss the
digitization in more detail.

Let us consider the eh case for example. This is created
with the following sequence:

(1) Move all the gauge degrees of freedom on the even
horizontal links to the beginning of the link, where they interact
with the fermions in a way that generates

U eh†
W =

∏
x even

U†
W (x,1). (69)

Then bring them back to their “rest position” on the link.
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(2) Allow tunneling on these links, for time t , realizing

U eh
t =

∏
x even

Ut (x,1). (70)

(3) Move the gauge degrees of freedom to the beginning of
the link again, to interact with the fermions, this time for U eh

W .
The result of this sequence is

U eh
W U eh

t U eh†
W = Weh = e

−i
∑

x even
HGM (x,1)τ

. (71)

Similarly, one may obtain Wev,Woh,Wov .
There is also another possibility, which makes use of stators.

One first creates a stator for the relevant link, then lets it
interact with the fermion to generate Ũ eh†

W instead of U eh†
W

(i.e., it involves the control instead of the physical degree of
freedom). Similarly, after the fermionic tunneling one has to
realize Ũ eh

W . The final step is to undo the stator, and the result
is Weh again:

U†
ehŨ eh

W U eh
t Ũ eh†

W Ueh|ψ〉|ĩn〉
= U†

ehŨ eh
W U eh

t Ũ eh†
W S|ψ〉

= U†
ehSU eh

W U eh
t U eh†

W = Weh|ψ〉|ĩn〉. (72)

4. Local terms

The remaining parts of the Hamiltonian are WE = e−iHEτ

and WM = e−iHMτ . These are local terms which involve
no interaction, and thus can be implemented directly by
acting locally on the physical degrees of freedom, either
simultaneously or separately since they commute.

5. Complete sequence

With the interactions described above, we can write down
the complete τ time step,

W (τ ) = WMWEWovWohWevWehWB, (73)

where WB = WBeWBo (note that [WBe,WBo] = 0). Note that
Wov,Woh,Wev,Weh do not commute with each another. There
are other noncommuting ingredients as well, such as WE with
WB,Wov,Woh,Wev,Weh, and WM with Wov,Woh,Wev,Weh.

C. Examples: Abelian theories

In the scheme described above, we have discussed the most
general situation, including the case where the group G is
non-Abelian. Particular non-Abelian cases result directly from
that. In this section we will give instead examples of lattice
gauge theories with an Abelian gauge group G.

The first example we show is for the U(1) case—compact
QED, which is somewhat more intuitive. It involves infinite
dimensional local Hilbert spaces, both for the links and the
controls, since the gauge group is continuous [7]. For this
reason, the quantum simulation of a U(1) theory is not feasible
in practice. On the other hand, its truncation (ZN ) involves
finite Hilbert spaces and can be simulated in an experiment.
This will be the next example we discuss.

1. U(1) (compact QED)

The Hilbert space for the gauge field on each link is that of
a particle on a ring: it may be described by an angle φ̂ or an

angular momentum operator with an integer spectrum L,

L|m〉 = m|m〉. (74)

These operators are canonically conjugate:

[φ̂,L] = i, (75)

and φ̂ is the vector potential, while L is the electric field.
Thus, |m〉 are electric flux states—as already deduced before
for the general Lie group case, but in this case it is much more
intuitive.

From representing L in differential form, L = −i∂φ , we
find out that the wave functions, or the Fourier transform, are
given by

〈φ|m〉 = 1√
2π

eimφ. (76)

Just like in the ZN case, the U operators are not matrices.
It is straightforward to see that

U = eiφ̂ (77)

is a flux raising operator.
The staggered electric charge takes the form

Q(x) = ψ†(x)ψ(x) − 1
2 [1 − (−1)x1+x2 ] (78)

and the Gauss law operator (generator of gauge transforma-
tion) is simply

G(x) = L(x,1) + L(x,2) − L(x − 1̂,1)

−L(x − 2̂,2) − Q(x). (79)

The Hamiltonian ingredients, in this case, take the form

HE = λE

∑
x,k

L2(x),

HB = λB

∑
x

cos(φ̂(x,1) + φ̂(x + 1̂,2)

− φ̂(x + 2̂,1) − φ̂(x,2)),

HM = M
∑

x

(−1)x1+x2ψ†(x)ψ(x),

HGM = λGM

∑
x,k

(ψ†(x)eiφ̂(x,k)ψ(x + k̂) + H.c.). (80)

Next we turn to the digital scheme. Note that not only
the links, but also the controls are described by an infinite
dimensional Hilbert space. The initial state of the control is

| ˜in〉 = |φ = 0〉. (81)

If we let it interact with a link i, and generate the unitary
operation

Ui =
∫

dφ|φi〉〈φi | ⊗ e−iφL̃ = e−iφ̂i L̃ (82)

we obtain the stator

Si =
∫

dφ|φi〉〈φi | ⊗ | ˜̂φ〉, (83)

for which

ŨSi = SiU. (84)
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The local operation on the control, giving rise to the
plaquette interaction, is simply

H̃B = λB cos(φ̃) (85)

and the interaction of the links with the fermions, for HGM , is

UW (x,k) = eiφ̂(x,k)ψ†(x)ψ(x) (86)

as can be seen from

eiφ̂(x,k)ψ†(x)ψ(x)ψ†(x)ψ(x + k̂)e−iφ̂(x,k)ψ†(x)ψ(x)

= ψ†(x)eiφ̂(x,k)ψ(x + k̂). (87)

2. ZN

Next, we consider the case of finite Abelian groups–ZN

[74]. As we shall describe in the next section, for small
values of N these are the first candidates for an experimental
realization. We describe now the scheme for a general N . Note
that in the limit N → ∞, ZN converges to U(1), and thus
this may be seen as a truncation scheme for the previously
described U(1) case (more details on this are found in the next
section, where we discuss the experimental realization of ZN

gauge theories).
As the group is Abelian, it is irrelevant to talk about a rep-

resentation, or about different left and right transformations.
Thus, the representation basis for the gauge field will take the
simple form |m〉, with a single integer quantum number, and
dimension N . It is also redundant to describe U as a matrix,
and thus it will be, in the Abelian case, simply an operator
acting on the gauge field’s Hilbert space, which simplifies the
mathematics a lot.

In the local gauge field Hilbert spaces, on each link, we
define two unitary operators, P and Q, satisfying

P N = QN = 1,

PQP † = ei(2π/N)Q,

Q|m〉 = |m + 1〉 (cyclically),

P |m〉 = ei(2π/N)m|m〉. (88)

On each vertex, there is a single fermionic species ψ†. Due
to the staggering, the gauge transformation is

�(x) = P (x,1)P (x,2)P †(x − 1̂,1)P †(x − 2̂,2)

× e−i(2π/N){ψ†(x)ψ(x)− 1
2 [1−(−1)x1+x2 ]}. (89)

The Hamiltonian terms take the forms

HE = λE

∑
x,k

[1 − P (x,k) − P †(x,k)],

HB = λB

∑
x

Q(x,1)Q(x + 1̂,2)Q†(x + 2̂,1)Q†(x,2) + H.c.,

HM = M
∑

x

(−1)x1+x2ψ†(x)ψ(x),

HGM = λGM

∑
x,k

(ψ†(x)Q(x,k)ψ(x + k̂) + H.c.). (90)

Let us describe the form of the interactions and local
operations required for the realization of the digital sequence

described above. The control system will have the initial state

|ĩn〉 = 1√
N

∑
m

|m̃〉 (91)

which is an eigenstate of Q, Q̃|ĩn〉 = |ĩn〉. The stator for a link
i will take the form

Si = Ui |ĩn〉 = 1√
N

∑
m

Qm ⊗ |m̃〉

Q̃Si = SiQ
†
i

(92)

with the interaction

Ui =
∑
m

Qm ⊗ |m̃〉〈m̃|. (93)

For the plaquette interactions, we have

H̃B = λB(Q̃ + Q̃†) (94)

and, finally, the interaction with the fermions is

UW (x,k) = eln[Q(x,k]ψ†(x)ψ(x). (95)

III. APPLICATION FOR DIGITAL QUANTUM
SIMULATION: THE Z3 CASE

After having described the general scheme for the construc-
tion of digital lattice gauge theories, we will now discuss of
a particular case, Z3, which may be used for the construction
of feasible quantum simulators. Although the group is finite,
we want to stress that this and the example discussed in [62]
can be seen as an important first step toward the simulation
of compact Lie groups using the stator construction, as these
examples may be seen as truncations of a compact Lie group
[U(1)].

Previous proposals for quantum simulation of compact Lie
groups have considered truncations of the gauge field infinite
Hilbert space done in the so-called representation basis. This
is problematic for the use of stators since the U operators in
this particular truncation are not unitary anymore. Therefore
this method does not allow the construction of group element
stators. When one truncates a gauge group for the purpose of
building a quantum simulator with the scheme proposed in the
previous sections, the truncation should be done in the group
element basis [64,68] instead. For example, an approximation
of U(1) lattice gauge theories should be done in terms of ZN

theories [which converge to U(1) in the N → ∞ limit [74]].
Thus we shall describe here, as an example, the Z3 case (refer
to [62] for a similar proposal for Z2).

As we discussed for general ZN theories, the Hamiltonian
parts HB,e, HB,o, HGM,eh, HGM,ev , HGM,oh, and HGM,ov can
be obtained effectively if we have a ancillary system that can
interact with both the link and the matter degrees of freedom.

These ancillary systems initially reside in the middle of
every second plaquette (the even ones) and each of them is
a “copy” of the link degrees of freedom. In this particular
example it is characterized by a three-dimensional Hilbert
space H̃(x), spanned by the basis vectors |m̃(x)〉, m̃ = −1,0,1
(this particular choice of the labeling becomes natural in light
of the following discussion). Two operators P̃ (x) and Q̃(x) can
be defined similarly to what we did before.
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Stator
The explicit form of the stator for Z3 is

SQ,i ≡ Ui |ĩn〉 = 1√
3

1∑
m=−1

Qm
i ⊗ |m̃〉, (96)

with

|ĩn〉 = 1√
3

1∑
m=−1

|m̃〉 (97)

and

Ui = ei(3/2π) ln Qi ln P̃ . (98)

If we denote by VD a local unitary transformation that maps
the P basis into the Q basis, i.e., Q = V

†
DPVD , we can write

(98) as Ui = V
†
DU ′

iVD , where

U ′
i = ei(3/2π) ln Pi ln P̃ . (99)

An even simpler form can be obtained if we note that
ln P = 2π

3
√

3
(P − P †), and then

U ′
i = ei(2π/9)(Pi−P

†
i )(P̃−P̃ †). (100)

The SQ,i stator satisfies the eigenoperator relation

Q̃SQ,i = SQ,iQ
†, (101)

which will have a key role in the rest of the this work. We can
also define another type of stator—a P stator,

SP,i = ṼDSQ,i, (102)

where ṼD is the control system analog of VD . SP,i satisfies the
eigenoperator relation

P̃ SP,i = SP,iQ
†. (103)

The P stator will be used for implementing the gauge-matter
interactions.

A. Simulating system

Next we shall describe how to control ultracold atoms in
optical lattices [75–77] to implement the digital simulation of
the Z3 Hamiltonian.

1. Atomic ingredients

To simulate the matter, it is natural to use fermionic atoms.
The trapping of the fermions in the desired positions can be
achieved by creating a square optical lattice whose energy
minima coincide with the sites of the simulated lattice. The
particular internal level of the fermions is not relevant, because
the scheme described below does not involve any internal
transition of the matter fermions. Only the presence or absence
of a fermion is an important degree of freedom. To describe
creation matter fermions, we use the fermionic operators
ψ†(x).

To simulate the link (gauge field) degrees of freedom, we
need an atomic species that allows us to control three of its
internal levels. For example, we propose to use alkali-metal
atoms (bosons) that have an F = 1 ground state, i.e., a
threefold degenerate hyperfine level. These atoms can be

FIG. 2. The Z3 simulating system consists of three layers, to
avoid undesirable interactions. The lowest layer (red) is for the
fermionic matter at the vertices, the highest one (blue) is for the link
atoms (simulating the gauge field), and the ancilla atoms (green) are
trapped “at rest” in an intermediate layer, from which they can rigidly
move to interact with the other atoms, above or below them (see green
lines). Full circles denote minima which are initially occupied.

trapped in the desired positions by creating a suitable optical
lattice whose minima coincide with the links of the simulated
lattice. We anticipate that the link atoms and the matter
fermions must be trapped on different vertical layers, to avoid
undesired interactions with the moving ancilla atoms, which
will “rest” in an intermediate layer. To describe creation of link
atoms in a particular mF level, we use the operators a

†
mF

(x,k)
where mF = −1,0,1.

Finally, to simulate the auxiliary degrees of freedom, we
need a third atomic species that allows us to control three of its
internal levels as well. For example, we propose to use another
alkali-metal species (still bosonic) that has an F = 1 ground
state, i.e., a threefold degenerate hyperfine level. These atoms
can be trapped in the desired positions by creating a suitable
optical lattice whose minima coincide with the center of every
second plaquette of the simulated lattice. The control atoms
must interact with both the matter fermions and the link atoms,
therefore they must be able to move between two different
layers. To describe creation of auxiliary atoms in a particular
mF level, we use the operators b

†
mF

(x,k) where mF = −1,0,1
again.

The layer structure is shown in Fig. 2. The corresponding
atomic levels are presented in Fig. 3.

2. Optical lattices

The atoms described above have to be trapped with the
proper optical lattices that we describe below. All lengths are
expressed in units of the simulated lattice spacing s, except
where explicitly stated.
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(0,0)

FIG. 3. The Z3 simulating system consists of three atomic
species, trapped in three different layers. The simulated system is
planar, and contains gauge fields on the links (blue circles, with three
possible atomic levels), matter fermions on the vertices (represented
by red circles) and control, ancilla atoms (green) located at the centers
of every second plaquette, as described in the text, with three internal
levels as well.

To trap the link atoms, we need the optical potential

Vlink(x,y,z) = Vlink(x,y) + Vlink(z), (104)

where Vlink(z) ∝ (z − zlink)2 provides harmonic vertical con-
finement around a single layer at position zlink and

Vlink(x,y) ∝ cos2 [π (x + y)] + cos2 [π (x − y)] (105)

has minima for all positions (x = m + 1
2 ,y = n) and

(x = m,y = n + 1
2 ), i.e., in the middle of the links. The optical

lattice for the link atoms is therefore a square lattice, rotated
by 45◦ with respect to the simulated lattice and with a lattice
spacing equal to s√

2
. The minima have to be well separated

in order to prevent tunneling and interactions between pairs
of atoms in different positions. This potential can be easily
realized with two pairs of counterpropagating lasers (more
details on the choice of the optical wavelengths are given in
Appendix A).

To trap the matter fermions, we need the following
optical potential: Vmat(x,y,z) = Vmat(x,y) + Vmat(z), where
Vmat(z) ∝ z2 provides harmonic vertical confinement around a
single layer at position z = 0 and

Vmat(x,y) ∝ 1

1 + f (t) + h(t)
cos2

(
πx + π

2

)
+ 1

1 + g(t) + h(t)
cos2

(
πy + π

2

)
+ f (t) + g(t) + h(t)

1 + f (t) + g(t) + h(t)
cos2

×
[
π

2
(x + y) + φ(t)

]
.

In the standard configuration, the fermions are trapped
by well separated minima of equal depth, i.e., we have to
set f (t) = g(t) = h(t) = φ(t) = 0 and prevent tunneling and
interactions between pairs of atoms in different positions. The
minima are then in all positions (x = m,y = n) and they coin-
cide with the sites of the simulated lattice. Temporal shaping

of the optical lattice through the functions f (t),g(t),h(t),φ(t)
allows us to implement the Hamiltonians HM and HGM , as we
will discuss in the following [more details on the realization
of Vmat(x,y) are given in Appendix A].

To trap the auxiliary atoms, we need the optical potential

Vaux(x,y,z) = Vaux(x,y) + Vaux(z). (106)

Here Vmat(z) ∝ [z − zaux(t)]2 provides harmonic vertical con-
finement around a single layer at position zaux(t), that can be
varied in the range [0,zlink] (remember that the auxiliary atoms
have to interact with both the link and the matter atoms). In
the other two dimensions, the potential is given by

Vaux(x,y) ∝ cos2

(
π

2
x + π

4
+ ϕx(t)

)
+ cos2

(
π

2
y + π

4
+ ϕy(t)

)
. (107)

In the standard configuration, we have to set ϕx(t) = ϕy(t) = 0
and the minima are in all positions (x = 2m + 1

2 ,y = 2n + 1
2 ),

i.e., in the middle of the even plaquettes of the simulated
lattice. The minima have to be well separated in order to
prevent tunneling and interactions between pairs of atoms
in different positions. Temporal shaping of the optical lattice
through the functions ϕx(t), ϕy(t), zaux(t) allows us to move
the auxiliary atoms to the middle of odd plaquettes, or to bring
them close to the links and the matter atoms when interactions
are needed [more details on the realization of Vaux(x,y) are
given in Appendix A].

3. Interactions: Atomic collisions

When needed, interactions between different atoms can be
implemented by bringing two atoms together and letting them
scatter (collide). In the case of ultracold atoms (T < 1 mK), the
kinetic energy is small compared to any centrifugal barrier and
there can only be s-wave scattering (total angular momentum
L = 0). Moreover, the kinetic energy is typically smaller than
the hyperfine splitting, so if two atoms are initially in their
ground state, the transition probability to other hyperfine levels
is strongly decreased [78].

Suppose that our two atoms have initial states |F1,mF,1〉 and
|F2,mF,2〉 (we choose to denote with mF the projection of the
angular momentum along the z direction, i.e., the different val-
ues of Fz). For symmetry reasons, the scattering potential com-
mutes with the total angular momentum F2

tot = (F1 + F2)2 and
its projection on the z direction MF,tot = mF,1 + mF,2, which
are then conserved quantities. Moreover, we have seen that
energetic constraints imply conservation of individual angular
momenta F 2

1 , F 2
2 . Therefore, the allowed scattering processes

are |F1,mF,1〉 → |F1,m
′
F,1〉 and |F2,mF,2〉 → |F2,m

′
F,2〉 with

mF,1 + mF,2 = MF,tot = m′
F,1 + m′

F,2.
The scattering potential explicitly depends on the total

angular momentum Ftot, and can be approximated by the
following pseudopotential [78–80]:

Vscat(x) = 2π

μ
δ(x)

∑
Ftot

aFtotPFtot , (108)

where x is the relative position of the two atoms, μ is the
reduced mass of the two colliding atoms, aFtot is the scattering
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length for a particular value of Ftot, and PFtot is the projector
onto the subspace corresponding to this particular value. The
total angular momentum Ftot can take all positive integer values
between |F1 − F2| and F1 + F2.

As an example, we can consider the interaction between the
link and auxiliary degrees of freedom, that is a key step in the
generation of the stators. Therefore, we will identify F1 with
F and F2 with F̃ . If we assume that the two (nonidentical)
atoms have F = F̃ = 1, we can express the pseudopotential
in the alternative form

Vscat(x) = 2π

μ
δ(x)

2∑
j=0

gj ( �F · �̃F )j , (109)

where g0 = 1
3 (a2 + 3a1 − a0), g1 = 1

2 (a2 − a1) and g2 =
1
6 (a2 − 3a1 + 2a0).

If the optical trapping is insensitive to the value of mF and
all components of the spin move together, the overlap of the
atomic (Wannier) wave functions will also be independent of
mF when we bring two atoms close to each other. Denoting
this overlap as O(t) (accounting for its temporal dependence),
the scattering interaction can be finally written as

Uscat = e−iα
∑2

j=0 gj ( �F · �̃F )j , (110)

where α = 2π
μ

∫ T0

0 O(t)dt is the overlap integrated over the
whole interaction duration T0. We would like to make this
unitary operator equal to the one in (100), as required for
the creation of the stator. To make the comparison easier, we
rewrite (100) by inserting the identity

Fz = − i√
3

(P − P †) (111)

and obtain

U ′ = e−i(2π/3)FzF̃z . (112)

By inspection of Eq. (109), we see that there are many
more terms. For example, we have FxF̃x and FyF̃y that involve
changes in the values of mF and m̃F . To suppress these pro-
cesses, we can give them an energy penalty. This can be done,
for example, by adding an energy term E(mF ) = EmF to the
Hamiltonian of the link atoms, and similarly Ẽ(m̃F ) = Ẽm̃F

to the Hamiltonian of the auxiliary atoms (this can be achieved
through a Zeeman splitting—more details will be given in the
next section). Since the atomic collision conserves the quantity
MF = mF + m̃F , the transition mF → m′

F is characterized
by an energy cost (m′

F − mF )(E − Ẽ). By making E �= Ẽ , the
only energetically allowed processes (within a rotating wave
approximation) conserve both mF and m̃F . If we constrain
Eq. (110) to be diagonal in the mF ,m̃F basis and express it in
second quantization, we get

Uscat = e−iα(η0NtotÑtot+η1FzF̃z+η2N0Ñ0), (113)

where η0 = g0 + 3
2g2, η1 = g1 − 1

2g2, η2 = 3g2, Ntot =∑
MF

a
†
mF

amF
and N0 = a

†
0a0. Since we have one atom per

well and no tunneling is allowed, we can set Ntot = Ñtot = 1.
Finally, if we choose α = 2π

3η1
we get

Uscat = e
−i(2π/3)( η0

η1
+FzF̃z+ η2

η1
N0Ñ0)

. (114)

The first term in the exponential gives rise to a global phase
and hence is not important. The second term gives the desired
interaction, as in Eq. (112). The third term introduces an extra
phase when both atoms are in their mF = m̃F = 0 level. This
term is undesired and needs to be eliminated.

To achieve this, we can spatially separate the different mF

components of the atoms vertically (e.g., through a magnetic-
field gradient; see the next section for details), in a way that
guarantees that when we move the auxiliary atoms onto the
link, only the mF = m̃F = 0 components will overlap. This
gives rise to a unitary evolution of the form

Vscat = e−iβN0Ñ0 . (115)

If we tune the overlap and the interaction time such that
β = 2π (κ − η2

3η1
) > 0 (κ ∈ Z can be chosen as the smallest

allowed integer) and combine Eq. (114) with Eq. (115) we
finally get Eq. (112) (up to a global phase),

VscatUscat = e
−i(2π/3)( η0

η1
+FzF̃z)

e−i2πκN0Ñ0 . (116)

Note that the last piece of Eq. (116) has no effect whatsoever.
To undo the stator, we need the inverse action U ′†. This can be
implemented by flipping locally the m̃F = 1 and the m̃F = −1
levels of the auxiliary atoms, which is equivalent to mapping
F̃z into −F̃z. We denote the spin flipping by ṼF , and it is
achievable by addressing the control atoms locally with lasers
or rf light. Then,

ṼFUscatṼ
†
F = Wscat, (117)

where

Wscat = e
−i(2π/3)( η0

η1
−FzF̃z+ η2

η1
N0Ñ0)

, (118)

and putting it together with Eq. (115) again we get

VscatWscat = e
−i(2π/3)( η0

η1
−FzF̃z)

e−i2πκN0Ñ0 . (119)

This is exactly U ′† up to a global phase.

4. Magnetic fields

To lift the degeneracy of the ground state, we can use, for
example, a uniform magnetic field B, which gives rise to the
magnetic perturbation

HZ = μBgF mF B, (120)

where μB is the Bohr magneton and gF is the hyperfine Landé
factor. However, a static magnetic field will split the levels of
all atoms, so we must choose three atomic species that have
different Landé factors. Another possibility is to split the levels
with alternative methods that allow the addressing of a single
species (e.g., the ac stark effect).

We can achieve even more control if we use a magnetic-field
gradient, for example B(z) = bzẑ. In this case, different
mF levels will experience different vertical forces and as a
consequence they will be localized around different vertical
equilibrium positions within the harmonic well. This allows
us to tailor the atomic collisions (in particular control how
much the wave functions of different atomic components
overlap with each other) and make them depend on the
specific values of mF,1 and m̃F . If the separation between
the different components is big enough, we can for example
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bring together only the mF = m̃F = 0 levels and implement
the Vscat evolution described above [see Eq. (115)].

A magnetic-field gradient has been similarly employed
in previous experiments to selectively trap only the mF = 0
component (which is insensitive to the magnetic field) while
pushing all other components out of the trap [81], so a spatial
splitting of the mF components should be achievable with
weaker gradients.

B. Implementation of the digital dynamics

Having all the ingredients and techniques at hand, we can
finally discuss the implementation of the different parts of the
Z3 Hamiltonian.

1. Standard configuration of the lattice

First, let us describe the standard configuration of the
lattice. The potentials Vlink(x,y,z) and Vaux(x,y,z) are always
active to trap the link and auxiliary atoms in the desired
positions. These must be loaded with one atom per minimum.
Tunneling and interactions are prevented by creating deep
and well separated minima. Cooling of the atoms makes
sure that they are all in their motional ground state with
energy E0,link and E0,aux respectively. A uniform magnetic
field B1 (or an ac-stark effect) is present as well to lift the
degeneracy of the ground state and induce energy splittings
(�Elink and �Eaux respectively) between the different mF ,m̃F

components.
The control atoms are prepared in the state | ˜in〉 of Eq. (97).

The gauge field atoms on the links are prepared in the state |0〉
for their part in the global singlet state of Eq. (27).

The potential Vmat(x,y,z) is in its standard configuration
(see Sec. III A 2) and is half filled, with exactly one fermion
in each odd minimum (energy E0,mat). This implements
the Dirac state |D〉, and completes the global singlet state
of Eq. (27).

This gives rise to the noninteracting Hamiltonian H0,
expressed here in second quantization

H0 = E0,mat

∑
x

ψ†(x)ψ(x)

+
∑
x,k

(E0,link + �ElinkmF )a†
mF

(x,k)amF
(x,k)

+
∑
x,k

(E0,aux + �Eauxm̃F )b†mF
(x)bmF

(x). (121)

Whenever we implement a piece of the Z3 Hamiltonian, this
will be added to H0 (which is always acting on the system). To
recover the desired Hamiltonian H we must therefore move to
an interaction picture and cancel the “free evolution” H0—i.e.,
we will work in a rotating frame with respect to H0 and make
use of the rotating wave approximation.

2. Electric Hamiltonian

The electric Hamiltonian HE , expressed in second quanti-
zation, reads

HE = λE

∑
x,k

(1 + |mF |)a†
mF

(x,k)amF
(x,k). (122)

When acting with this Hamiltonian for a short time τ , as
prescribed by the digitization, the evolution of the system is
described by the operator

WE = e−iHEτ . (123)

Two terms can be easily identified in Eq. (122). The
first contains

∑
x,k a

†
mF

(x,k)amF
(x,k), which is a constant of

motion. Therefore, it gives rise to a global phase and can be
neglected. The second part,

∑
x,k |mF |a†

mF
(x,k)amF

(x,k), is the
relevant piece that has to be implemented. Therefore we need
to give an additional energy shift �Eel to the mF = ±1 levels
of the links (the same shift for both levels), for example by the
use of external lasers addressing these levels. This has to be
done for a time λE

�Eel
τ .

3. Mass Hamiltonian

The mass Hamiltonian HM , expressed in second quantiza-
tion, reads

HM = M
∑

x

(−1)m+nψ†(x)ψ(x), (124)

and the unitary evolution that we want to implement is

WM = e−iHMτ . (125)

In our cold-atomic system, this can be achieved by shaping
the optical lattice Vmat(x,y,z) through the function h(t) (see
Sec. III A 2 and Appendix A), that must be tuned from the
value 0 to some value h0. In this way, the energy of the even
minima is raised by an amount Meven and we can realize the
Hamiltonian

H ′
M = Meven

∑
x

[1 + (−1)m+n]ψ†(x)ψ(x). (126)

If we act with this Hamiltonian for a time Meven
M

τ we can obtain
the required unitary evolution, up to a global phase that is not
important.

4. Even plaquette interactions

For the unitary evolution WBe (even plaquette interactions),
we first create a stator for the even plaquette—i.e., the unitary
operation Upe (58). Its ingredients Uie (54)–(57) may be
obtained as

Ui = V
†
D,all

∏
x even

U ′
i (x)VD,all, (127)

where

U ′
i (x) = ei(3/2π) ln Pi (x) ln P̃ (x). (128)

To realize the product of Ui operators, we rigidly shift the
optical lattice of the auxiliary atoms so that each auxiliary atom
gets very close to one of the link atoms. This happens in parallel
for all even plaquettes, and only for even plaquettes because
of the initial positions of the control atoms. The interaction
process between two atoms has been extensively discussed in
Sec. III A 3 and can be controlled to give the desired evolution.
We then repeat this process for all four links around a plaquette,
with the right orientation, and obtain

Upe = V
†
D,allU

′†
4eU

′†
3eU ′

2eU ′
1eVD,all. (129)
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VD,all is the unitary transformation that changes from a P

basis to a Q basis for all link atoms. We can express it in the
alternative form VD,all = e−iHD (π/2

√
3), where

HD =
∑
x,k

[
(1 −

√
3)a†

0(x,k)a0(x,k)

− 1

2
(1 + 2

√
3)(a†

±1(x,k)a±1(x,k))

+
(
a
†
1(x,k)a0(x,k) + a−1(x,k)†a0(x,k)

− 1

2
a1(x,k)†a−1(x,k) + H.c.

)]
(130)

is a local Hamiltonian that can be created by means of optical
or radio-frequency fields. Acting on the control’s initial state
with Upe, when the controls are in the centers of the even
plaquettes, produces a plaquette stator SQ,�. If we now evolve
locally the control atoms with the unitary

ṼB = e−iτλB

∑
x even (Q̃(x)+Q̃†(x)) (131)

we obtain, using the stator, the even plaquette interactions WBe.
For disentangling the stators, we can use U†

pe.
To realize the odd plaquettes evolution (WBo), we can move

the auxiliary atoms to the centers of odd plaquettes and repeat
all of the above. Then we bring the auxiliary atoms back to the
centers of the even plaquettes.

5. Gauge-matter interaction on even horizontal links

We also generate the gauge-matter interactions with stators.
Let us demonstrate how to do that, for example, in the case of
even horizontal links. For that, we rigidly move the auxiliary
atoms to interact with the even horizontal link atoms and
create a P stator. Next, we move the auxiliary atoms to
interact with the fermions in the beginning of the link. This
interaction is similar to the one described in Sec. III A 3 (again
an atomic collision) but this time we have F1 = F ′ = 1/2
(the fermion) and F2 = F̃ = 1 (the auxiliary atom). The total
angular momentum Ftot can take only two values: |F̃ − F ′|
and F̃ + F ′. This gives rise to a Hamiltonian of the form

HWW ′ = OW (t)

(
g′

0ψ
†ψ
∑
m

b†mbm + g′
1ψ

†ψF̃ z

)
= OW (t)(g′

0ψ
†ψ + g′

1ψ
†ψF̃ z). (132)

Once again we can say that
∑

m b
†
mbm = 1, which gives rise to

the second equality. However, now the first term does not give
rise to a global phase, since the number of ψ fermions is only
a globally conserved quantity. We use the relation

F̃ z = − 3i

2π
ln P̃ , (133)

to obtain

HWW ′ = OW (t)

(
g′

0ψ
†ψ − 3i

2π
g′

1ψ
†ψ ln P̃

)
(134)

and split it into

HW = − 3i

2π
OW (t)g′

1ψ
†ψ ln P̃ (135)

and

HW ′ = OW (t)g′
0ψ

†ψ. (136)

Then, if the interaction takes time TW , and∫ TW

0
OW (t)dt = − 2π

3g′
1

(137)

we get that HW gives rise to the unitary

Ũ †
W = eψ†ψ ln (P̃ ) (138)

while HW ′ (which commutes with it) is responsible for

VW ′ (θ ) = e−iθψ†ψ, (139)

where

θ = − 8π

2g′
1

g′
0. (140)

Note the influence of the F̃z flipping operation on the unitary
operations that we have just introduced:

ṼF Ũ †
W Ṽ

†
F = ŨW,

ṼF VW ′ (θ )Ṽ †
F = VW ′ (θ ). (141)

With all these we can finally derive the gauge-matter inter-
action on the link. We begin with a P stator of the relevant
link, SPi , then let the control interact with the fermion at the
beginning of the link in order to get Ũ †

W and VW ′ (θ ). Next,
we allow tunneling on the link and realize Ut [as defined in
Eq. (68)]. Finally, we flip the m̃F̃ levels of the control, let it
interact with the fermion again, and reflip its levels, obtaining
ŨW and Ũ †

W . Altogether, acting on the P stator, we have

VW ′ (θ )ŨWUt Ũ †
WVW ′ (θ )SP = SP VW ′(θ )UWUtU†

WVW ′(θ ).

(142)

The sequence UWUtU†
W will now give rise to the desired time

evolution of HGM on the link. We are left, however, with
some fermion-dependent phases VW ′ (θ ), which, as we show in
Appendix B, do not influence the physics and may be ignored
once the entire lattice is considered.

Finally, we have to undo the P stator if we want to
disentangle the auxiliary and the link atoms and move to the
next step.

6. Complete sequence

We can now summarize and give the complete sequence
of operations required for a single time step W of the Z3

simulation:
(1) Start with the control atoms in the centers of even

plaquettes, x. First, we wish to obtain Wev . For that, we do
the following:

(a) Act with the sequence Uev = ṼDV
†
DU ′

evVD , to create P

stators for the even vertical links (which are on the left of the
control atoms).

(b) Move the controls to interact with the fermions
on the beginning of the even vertical links, i.e., obtain

U ev†
W e

−iθ
∑

x even
ψ†(x)ψ(x)

.
(c) Perform U ev

t .
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(d) Flip the control’s m̃F with Ṽ
†
F , then interact with the

fermions again and flip again, for U ev
W e

−iθ
∑

x even
ψ†(x)ψ(x)

.
(e) Act with Ṽ

†
D to convert the stator into a Q stator.

(f) Act with U†
ev to undo the stator.

The result is then

| ˜in〉W ′
ev (143)

where W ′
ev = e

−iθ
∑

xeven

ψ†(x)ψ(x)
Weve

−iθ
∑

xeven

ψ†(x)ψ(x)
.

(2) Repeat (1)(a)–1(e) for the link below the stator (even
horizontal), to obtain

Ueh| ˜in〉W ′
ehW

′
ev. (144)

(3) Even plaquette interactions:
(a) Complete the plaquette stators, acting with U†

evU†
ohUov .

(b) Act locally on the controls with ṼB .
(c) Undo most of the plaquette’s stator, acting with

UevUohU†
eh.

After step (3) we are left with

Uov| ˜in〉WBeW
′
ehW

′
ev. (145)

(4) Move the controls to the right—to the centers of the odd
plaquettes. To avoid undesired interactions between the link
and the auxiliary degrees of freedom during the movement,
it is important that the two atomic species live on different
vertical layers.

(5) Create the odd vertical link interactions:
(a) Act with ṼD to convert the stators into P stators.
(b) Repeat (1)(b)–(1)(f) with the link on the left of the

control.
The result is

| ˜in〉W ′
ovWBeW

′
ehW

′
ev. (146)

(6) Repeat (1)(a)–1(e) with the link below the control, to
obtain the interactions for odd horizontal links. The result is

Uoh| ˜in〉W ′
ohW

′
ovWBeW

′
ehW

′
ev. (147)

(7) Odd plaquette interactions:
(a) Complete the plaquette stators, acting with U†

ovU†
ehUev .

(b) Act locally on the controls with ṼB .
(c) Undo completely the plaquette stator, acting with

U†
ohU

†
evUehUov .

The result is

| ˜in〉WBoW
′
ohW

′
ovWBeW

′
ehW

′
ev. (148)

(8) Complete the sequence with the noninteracting steps
(mass and electric Hamiltonians) to obtain

| ˜in〉W ′ = | ˜in〉WEWMWBoW
′
ohW

′
ovWBeW

′
ehW

′
ev. (149)

The complete sequence is described in Fig. 4.
Considering the commutation relations of some of the steps,

discussed above, we finally obtain

W ′ = WEWMWBW ′
ohW

′
ovW

′
ehW

′
ev (150)

and, within our physical Hilbert space, this is physically
equivalent to

W (τ ) = WEWMWBWohWovWehWev (151)

as shown in Appendix B. If we put τ = t/M and repeat
the sequence W (τ ) for M consecutive times, we obtain the
trotterized evolution described in Sec. II B.

C. Limitations

Several kinds of errors can affect the precision of the
simulation. On one hand, we have intrinsic errors coming from
the digitization. The sequence described above is only equal to
the desired evolution to first approximation, and errors scaling
as t2/M arise because the various pieces of the sequence do
not commute. However, this error can be made as small as
desired by increasing the number of steps M , at the cost of a
longer simulation time. It is also important to note that each
piece of the sequence, and hence their commutators, is gauge
invariant so the digitized evolution of the simulating system
respects in principle the desired symmetry.

On the other hand, there might be experimental imperfec-
tions in the implementation of the desired local evolutions and
interactions. Importantly, such errors can break the symmetry
and tend to accumulate for a large number of steps M .
Therefore, care should be taken in minimizing their effect,
especially for errors affecting gates that take a fixed amount of
time, independent of M , such as VF , Uscat, Vscat, etc. For the
same reason, M should not be increased arbitrarily but must
be chosen to balance the digitization and the implementation
errors (see discussion below).

1. Trotterization

As we discussed, we want to simulate the evolution due to a
time-independent Hamiltonian H that can be written as a sum
of possibly noncommuting terms Hj .

U(t) = e−iH t = e−i(
∑

j Hj )t = (e−i
∑

j Hj (t/M))M. (152)

In the last step we simply divided the total evolution into M

smaller time steps. In our physical system we can implement
M times a sequence of short evolutions involving only one of
the Hj terms at a time,

ŨM (t) =
⎛⎝∏

j

e−iHj (t/M)

⎞⎠M

. (153)

The subscript M keeps track of the arbitrary choice of the time
step. It is known that [35,70,71,73]

lim
M→∞

‖ŨM (t) − U(t)‖ = 0, (154)

where ‖ · ‖ is the operator norm. Therefore, if all gates can be
realized perfectly, the sequence ŨM (t) can approximate U(t)
to arbitrary precision by increasing M . Moreover, once we fix
a particular value of M , we can evaluate the error due to the
approximation. Bounds can be derived following Ref. [71]
and adapting the proof to the case of unitary operators. We
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FIG. 4. The complete Z3 sequence, for a single time step W (simulating time τ ). (1) Two plaquettes—the left is even, the right is odd. Blue
circles denote the gauge field atoms, red ones the matter fermions (which can be present or absent) and green ones the control atoms, initially
in the centers of the even plaquettes. (2) Uev , creating a stator for the even vertical links [here and in the following, blue lines (squares) show
that a stator is active for the corresponding links (plaquettes)]. (3) The controls interact with fermions to realize U ev†

W . (4) Fermionic tunneling
for even vertical links is allowed: Ut (here and in the following denoted by a red line connecting a pair of fermions). (5) U ev

W . (6) The stator is
undone. (7)–(10) A similar process for even horizontal links, but without undoing the stators. (11)–(13) Plaquette stators are completed for even
plaquettes. (14) ṼB is generated by addressing the control atoms (local operations on atoms are denoted by red circles). This will eventually
give rise to WBe. (15)–(17) The plaquettes’ stators are undone, but stators for odd vertical links are kept. (18) The controls’ “rest positions” are
moved to the odd plaquettes on the right. (19)–(34) Similar process is repeated for the odd plaquettes, but the stators eventually are completely
undone in this case, for the next step. (35) The controls are moved back to the centers of the even plaquettes, and the link and vertex atoms are
evolved according to the noninteracting parts, WE and WM (again noninteracting terms are denoted by red circles). Then the whole sequence
can be repeated.

can thus get

‖(ŨM (t) − U(t))‖ � t2

2M

⎛⎝∑
j<k

‖[Hj,Hk]‖
⎞⎠exp

{
t

M

j‖Hj‖

}

� 3
t2

2M

⎛⎝∑
j<k

‖[Hj,Hk]‖
⎞⎠, (155)

where the last inequality holds if t
M

∑
j ‖Hj‖ � 1. As we

discussed in Sec. II B 5, the terms Wov,Woh,Wev,Weh do

not commute with one another, WE does not commute with
WB , Wov,Woh,Wev,Weh, and WM does not commute with
Wov,Woh,Wev,Weh. This results in 15 nonvanishing commuta-
tors for Eq. (155). Moreover, each commutator can be bounded
by the norm of the biggest Hamiltonian piece Hj . We get then

‖(ŨM (t) − U(t))‖ � 45
t2

M

(
max

j
‖Hj‖

)2
. (156)

Now, we have that Q and P are unitary operators so that
‖Q‖ = ‖P ‖ = 1. ‖ψ†(x)ψ(x)‖ = 1 as well, ∀x. We define the
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length of the system L as the number of sites along one (let
us say 1̂) direction. In two dimensions, the number of sites is
L2 and therefore ‖HM‖ � ML2. The number of plaquettes is
(L − 1)2 and therefore ‖HB‖ � λB(L − 1)2. The number of
links is 2L(L − 1) and therefore ‖HE‖ � λEL(L − 1). The
number of horizontal even links is (L − 1)L

2 and therefore
‖HT,h,e‖ � λGML(L − 1). The other gauge-matter interaction
terms can be bounded in the same way. Since all the norms
scale roughly as ∼L2, the biggest one will be determined by
the biggest coefficient λmax (some slight refinements could be
needed for small size L). In the end, we get

‖(ŨM (t) − U(t))‖ � 45
L4t2λ2

max

M
. (157)

2. Number of steps and simulation time

Our goal is to simulate the evolution of the system under
U(t) for a time T (simulated time) and with an error (in norm)
smaller than ε. This determines the number of time slices M

that have to be used,

M � 45L4λ2
maxT

2

ε
, (158)

and the duration of each simulated time slice,

τs ≡ T

M
� ε

45L4λ2
maxT

. (159)

Now we can compute the simulation time, i.e., the actual
time taken by the experiment. We repeat M times the sequence
described in the previous subsection.

(1) To realize the mass Hamiltonian for the fermions,
we need to give different energies to even and odd minima
by shaping the optical lattice and let the system evolve for
some time proportional to τs . The actual time taken by this
operation must take into account also the shaping of the lattice,
that must happen adiabatically and requires a (constant) time
independent of τs (in particular it cannot be made arbitrarily
small if we want the fermions to always remain in the lowest
energy level of the changing potential).

(2) To realize the electric Hamiltonian we need to turn
on and off some properly chosen laser beams and let the
system evolve for some time proportional to τs . Again, the
simulation time will be linear in the simulated time, plus a
constant contribution which is needed to ramp the intensity of
the lasers up and down.

(3) To realize the magnetic Hamiltonian we need several
steps. The creation of the stators requires a constant time
(that is independent of τs). We can then evolve the auxiliary
bosons for a time proportional to τs , with an additional constant
contribution which is needed to turn on and off some lasers.
Finally we can undo the stators in a constant time.

(4) To realize the gauge-matter interaction we also need
several steps. First we make one of the bosonic species interact
with the even fermions, for a time that is independent of τs .
Next, we modify the fermionic potential to let them tunnel.
This requires a time which is linear in τs , apart from a
constant contribution which is needed for shaping the lattice
adiabatically. Finally the bosons have to interact with the
fermions again.

To sum things up, the total time taken by the experiment is
(for some constants A, B, C)

T ′ = M

(
A + B

T

M

)
= BT + CT 2 (160)

and scales quadratically with the simulated time.
Note that the atomic collisions are typically the slowest

process and will give the bigger contribution to the constant
C. For example, in order to produce a 2π/3 rotation (for the
creation of stators), the required collision will take (without
Feshbach resonances) about 1 ms [35].

3. Second-order formula

The Trotter formula e−i
j Hj t = limM→∞ (�je
−iHj (t/M))M

gives a very simple decomposition of the total evolution. In
fact, there are infinitely many approximations of higher order
[82] that can be used to reduce the digitization error. For our
purposes, an useful decomposition is given by the second-order
Trotter formula

e−i
j Hj t = lim
M→∞

⎛⎝ N∏
j=1

e−iHj (t/2M)
1∏

j=N

e−iHj (t/2M)

⎞⎠M

,

(161)
where N is the number of terms in the total Hamiltonian that
can be implemented separately (8 in our specific case). This
decomposition is straightforward to obtain once we know how
to realize the sequence (149). First, for each of the pieces Wj

we have to change the time from t/M to t/2M . Second, we
must concatenate the sequence (149) with its inverse. Third,
we must repeat the process M times. In other words, we must
implement the following sequence:

(WevWehWBeWovWohWBoWMWE

×WEWMWBoWohWovWBeWehWev)M, (162)

which requires the same experimental effort as the ba-
sic Trotter decomposition. Still, we get a much better
bound for the digitization error. Indeed, if we define
U

(2)
M ≡ (

∏N
j=1 e−iHj (t/2M)∏1

j=N e−iHj (t/2M))M , we have [71]

∥∥(Ũ(2)
M (t) − U(t)

)∥∥ � t3

M2
�̃N ({Hj })exp

{
t

M

j‖Hj‖

}
� 3

t3

M2
�̃N ({Hj }), (163)

where, following Suzuki’s original notation, �̃N ({Hj }) is a
function of nested commutators and the last inequality holds
if t

M

∑
j ‖Hj‖ � 1. Using similar arguments as before we can

estimate �̃N ({Hj }) from above and get

∥∥(Ũ(2)
M (t) − U(t)

)∥∥ � 60
t3L6λ3

max

M2
. (164)

Now, if we want to simulate the evolution of the system under
U(t) for a time T (simulated time) and with an error ε, the
number of time slices M that have to be used becomes

M � 60L3λ
3/2
maxT

3/2

√
ε

, (165)
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and the duration of each simulated time slice

τs ≡ T

2M
�

√
ε

120L3λ
3/2
max

√
T

. (166)

Note that now the number of repetition has a better scaling
with respect to both the simulated time and the size of the
system. Therefore, even if the number of operations required
for a single time slice has doubled [compare Eq. (162) with
Eq. (149)], the total number of operations that have to be
implemented becomes much smaller (for reasonable values of
L and λmaxT ). This is of great help in keeping experimental
errors at bay.

Moreover the simulation time, i.e., the actual time taken by
the experiment is also reduced and becomes

T ′ = BT + 2CT 3/2, (167)

for some constants B, C that have roughly the same value as
in Eq. (160).

4. Higher-order bounds

In principle, one could go even beyond the second-order
formula. On one hand this allows us to further reduce the
number M of time slices, on the other hand the number of
operations required for a single time-slice increases exponen-
tially with the order of the approximation [83]. By balancing
the two trends, it is possible to find the approximation that
requires the minimum total number of operations [83], i.e.,
an experimental scheme with a shorter running time and a
smaller accumulation of errors. However, formulas beyond
the second order require a much greater level of tunability of
the experimental parameters.

For example, let us consider the implementation of the
gauge-matter interaction, which is based on letting the fermion
tunnel for a precise rescaled time λtunttun (λtun is here the
tunneling rate). In the case of the second-order formula, we
must have λtunttun = T/2M throughout the whole experiment.
Therefore, we need to implement a very specific gate and
we can optimize all the relevant parameters (e.g., shaping the
position and depth of neighboring potential wells, choosing
the nonrescaled tunneling time ttun, etc.) to make this gate
as precise as possible. In the case of higher-order formulas,
instead, the product λtunttun has to be different for different
steps of the sequence and can even take negative values [82].
Therefore, we should implement a tunable gate and this would
most likely give rise to bigger imprecisions in the realization.
Moreover, when we want to implement steps characterized by a
negative time we have actually to wait for a time 2π − λtunttun.
This considerably increases the error done in these steps and
slows down the simulation.

All things considered, using the second-order Trotter
formula is a good compromise: the bounds are already much
better with respect to the first-order formula and this comes
practically for free.

5. Propagation of experimental errors

Each building block of the sequence (162) can in principle
be affected by experimental errors of two kinds: systematic
errors, that add up coherently as the same gate is repeated

several times; random errors, that add up according to the
central limit theorem.

Let us consider first a single gate Uj (t) = e−iHj t . The actual
realization of this gate will look like U ′

j (t) = e−i(Hj +hj )t , where
hj is the sum of a small systematic deviation and a small
random fluctuation. We can assume the following condition
on the norm of the fluctuations: ‖hj‖ = δ‖Hj‖, with δ � 1.
Then, the error (in norm) affecting the gate can be bounded as
δλmaxL

2t .
The execution of some gates (fermionic tunneling, electric

Hamiltonian, etc.) takes a time proportional to τs and the
resulting error scales as δ

√
ε

120L
√

λmaxT
with respect to the simula-

tion parameters. The execution of other gates (local rotations,
atomic collisions, etc.) takes a time which is independent of
τs . We can define as texp a typical experimental time scale for
these gates and the resulting error scales then as δλmaxL

2texp.
This second type of error is clearly more dangerous and a lot
of care has to be taken into realizing these gates in the most
precise way.

We consider now the whole sequence (149). Each
single gate will be repeated a number of times
proportional to 2M . Its systematic errors will add
up linearly to give 2M

δ
√

ε

120L
√

λmaxT
= δL2λmaxT or

2MδλmaxL
2texp = 120 δλ

5/2
maxL

5T 3/2texp√
ε

(depending on the
duration of the gate). Random errors will instead follow the
central limit theorem and scale with

√
2M so they are less

dangerous.
Finally, we can take the biggest contribution to experimental

errors (∼2MδλmaxL
2texp) and demand that it is comparable to

the digitazion error ε. We then find the following relation
between δ and ε:

δtexp ∼ ε3/2

120λ
5/2
maxL5T 3/2

. (168)

This sets a strong constraint on the experimental requirements,
including how they should scale with respect to the simulation
“sizes” L and T . We see that one has to reduce the time scale
of the τ -independent gates as much as possible, or to make the
error magnitude δ as small as possible, or possibly both things
simultaneously.

However, one has to keep in mind that the above bound
on the errors is actually not tight, and the realization of the
sequence can be much better. Indeed, it is reasonable to
assume that different gates have independently distributed
errors, even the systematic ones. For example, in the full
sequence (149) we have to realize 2M times the block WE

and the 2M systematic errors will add up coherently. But then
we have to add the 2M blocks WM and their systematic error
has no correlation with the previous. Thus, there is the same
probability that all 4M errors add up to give a big total error
as that they cancel each other. By taking into account the
other blocks and considering that each block is itself made
of several gates, a partial cancellation of errors becomes very
probable.

6. Experimental errors

There are several sources of error that can affect the
proposed implementation. Some are common to many cold
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atom experiments and much effort has already been devoted to
fighting them. For example, decoherence due to spontaneous
scattering of lattice photons by the atoms can be slowed down
to time scales of several minutes [84–86]. Moving atoms
around and shaping the lattice in an adiabatic way, to guarantee
that atoms remain in the lowest Bloch band, has become a well-
controlled technique [65,86]. Other decoherence mechanisms
that might result from imperfect experimental parameters,
e.g., small fluctuations of the magnetic fields, etc., are also
commonly encountered.

Other errors are more specific to the present proposal. For
example, the digitization requires a high degree of control over
the turning on or off and the duration of laser pulses, or over the
overlap of atoms and their interaction time during collisions.
This is crucial to obtain unitary gates that are as close as
possible to the intended ones. Moreover, atomic collisions
have to be elastic: the splitting of the mF = ±1 levels has to
be sufficiently different for the three atomic species, otherwise
collisions will result in undesired spin flips of individual atoms.

D. Possible observations

Before moving to the concluding remarks, we would like
to comment briefly on what a simple first experiment could
look like. As a first step, it is easy to prepare the system
in an initial state involving half filling for the fermions (all
in one sublattice as in Fig. 3, thus representing a Dirac
sea) and with the gauge field atoms all prepared in the
zero flux state (mF = 0). This is the ground state of the
noninteracting parts of the Hamiltonian (35), with no static
charges. Then, the interactions can be suddenly turned on (a
quench), to observe and confirm the dynamical generation of
only gauge invariant charge and flux configurations. This can
be realized without single-site addressing of the atoms, since
the atoms are initially uniformly distributed and all subsequent
operations are done in parallel on the whole lattice, as detailed
above.

This should be feasible with state-of-the-art technology.
Indeed, one can check that a single Trotter step corresponds to
an experimental time of roughly ∼25 or ∼50 ms, depending
on the choice of the sequence (149) or (162) (this time is
mainly due to the creation or cancellation of stators and thus
does not depend strongly on the particular time step τs used
in the time slicing). Considering a coherence time of ∼1 s
for the atomic setup, this allows to concatenate ∼20 or ∼40
Trotter steps or ∼1000 elementary gates. This is in line with
other proposals of digital simulation based on ultracold atoms
in optical lattices or other setups, including trapped ions [60]
and Rydberg atoms [61]. For example, in a recent experiment
[60] interesting physics was observed in a small system after
an evolution involving ∼200 gate operations distributed into
four Trotter steps.

The flux and charge configurations can be measured by
fluorescence imaging [87–89], a technique which can resolve
the single occupation of each potential well in a species and
mF dependent way [90]. Since different charge configurations
correspond to different occupations of the fermionic wells and
different flux states correspond to different mF levels of the
link atoms, such measurements would reveal the complete flux
and charge configuration of the whole system.

If one adds the possibility of single-site addressing of atoms,
the above procedure may be repeated but, instead, starting
from the ground states of the noninteracting part with static
charges to observe dynamical string-breaking and perform
measurements and experiments as proposed in previous
proposals, such as in [34]. A more long-term goal could be
to turn on the interactions in an adiabatic manner to prepare
the ground state of the full model. Depending on the spectral
gap of the model, this probably requires longer coherence
times and further refinements of the stroboscopic sequence.

IV. SUMMARY

In this work, we discussed a digital formulation of lattice
gauge theories, whose key is the construction of a stroboscopic,
trotterized evolution of the lattice gauge theory Hamiltonian,
where all the separate time steps are individually gauge
invariant. This is achieved through interactions with an
auxiliary system, by the use of stators.

It is possible to formulate such a digital time evolution for
any lattice gauge theory based on a gauge group which is
either compact Lie or finite. In the case of compact Lie gauge
groups, the required local Hilbert spaces of the gauge fields
have an infinite dimension, and thus they must be truncated,
as usual, for a feasible quantum simulation. Conventional
“representation basis” truncation schemes are not compatible
with our scheme, as the stators used are based on the conjugate,
“group element basis.” Thus, truncations of gauge groups
should be done in the group element basis, as we did in
approximating U(1) by ZN , for example.

We introduced a way to implement a 2 + 1-dimensional Z3

lattice gauge theory using ultracold atoms in optical lattices,
realizing the general ideas and concepts introduced in this
work. This complements the simulation ofZ2, which should be
even simpler, discussed in [62]. The scheme proposed here al-
lows us to tailor complicated three- and four-body interactions
stroboscopically from two-body interaction with an ancilla,
hence reducing the need to use perturbation theory for such
interaction terms [45]. This opens the way to possibly easier
experimental realizations of a quantum simulator for lattice
gauge theories in more than 1 + 1 dimensions. Another key
point of the proposed scheme is the introduction of the layered
structure, which allows for a clean experimental procedure:
the different species may be trapped, evolved, and measured
separately and their interactions can be accurately controlled.
Furthermore, the experimental techniques involved in our
scheme (time and species dependent optical lattices, precise
control of timing and overlaps during atomic collisions) are
different from the experimental techniques usually required
in similar proposals (as Feshbach resonances, for example).
This complementary approach thus shows an alternative road
toward the experimental simulation of lattice gauge theories
with cold atoms, that could be less demanding, at least in some
experimental setups.
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APPENDIX A: OPTICAL LATTICES FOR Z3

In this Appendix, we discuss some details about the
realization of the optical lattices.

1. Trapping the matter fermions

We start with the trapping of the matter fermions, where we
want to realize the following potential in the x - y plane:

Vmat(x,y) ∝ 1

1 + f (t) + h(t)
cos2

(
πx + π

2

)
+ 1

1 + g(t) + h(t)
cos2

(
πy + π

2

)
+ f (t) + g(t) + h(t)

1 + f (t) + g(t) +h(t)

× cos2

(
π

2
(x + y) + φ(t)

)
. (A1)

One way to implement the potential Vmat(x,y) relies on
three pairs of counterpropagating out-of-plane waves (lasers)

�Emat ∝ E1(ei�k1·�r+i(π/2) + e−i�k1·�r−i(π/2))ê1

+E2(ei�k2·�r+i(π/2) + e−i�k2·�r−i(π/2))ê2

+E3(ei�k3·�r+iφ(t) + e−i�k3·�r−iφ(t))ê3, (A2)
where

E1 =
√

1

1 + f (t) + h(t)
, E2 =

√
1

1 + g(t) + h(t)
,

E3 =
√

f (t) + g(t) + h(t)

1 + f (t) + g(t) + h(t)
,

�k1 = π (1,0,ξ ), �k2 = π (0,1,ξ ), �k3 = π

(
1

2
,

1

2
,ζ

)
.

(A3)
If we assume, for simplicity, that all the lasers have the

same wavelength λmat (this will depend on the particular
optical transition addressed by the trap), we have to im-
pose that |�k1| = |�k2| = |�k3| = 2πs

λmat
and we get the conditions

ζ 2 = ξ 2 + 1
2 and s > λmat

2
√

2
. The second condition is important

in the choice of the simulated lattice spacing s. Next, the
polarization vectors ê1,ê2,ê3 must be orthogonal to each other.
This can be achieved if

ê1 ∝ {ξ,α1,1}, ê2 ∝ {α2,ξ,1},
(A4)

ê3 ∝ {α3, − α3 − 2
√

ξ 2 + 1
2 ,1},

with

α1 =
1 −

√
1 − 4ξ 4 − 2ξ

√
2 + 42

2ξ
,

α2 =
1 +

√
1 − 4ξ 4 − 2ξ

√
2 + 4ξ 2

2ξ
,

α3 =
−1 − 2ξ 2 +

√
1 − 4ξ 4 − 2ξ

√
2 + 4ξ 2√

2 + 4ξ 2
. (A5)

Note that Eq. (A5) is only valid when 1 − 4ξ 4 −
2ξ
√

2 + 4ξ 2 > 0. The potential generated by the fields in
Eq. (A2) becomes

Vmat(x,y,z) ∝ E2
1 cos2

(
πx + πξz + π

2

)
+E2

2 cos2

(
πy + πξz + π

2

)
+E2

3 cos2

[
π

2
(x + y) + πζz + φ(t)

]
. (A6)

Finally, if we add a confinement along the z direction so
that we can effectively put z = 0 in Eq. (A6), we get the result
anticipated in Eq. (A1).

2. Shaping the lattice

By tuning the functions f (t), g(t), h(t), φ(t) in Eq. (A1)
we are able to put the optical lattice in different configurations.

In the standard configuration, the lattice has equally deep
minima that coincide with the sites of the simulated lattice.
The minima have to be sufficiently deep to prevent tunneling
and interactions between fermions residing at neighboring
sites. The standard configuration can be achieved if we set
f (t) = g(t) = h(t) = φ(t) = 0.

If we want to realize the staggering of the fermions, we need
to smoothly increase the parameter h(t) to some value h0 (for
example h0 = 0.3), while keeping f (t) = g(t) = φ(t) = 0 as
this will create an energy difference between even and odd
minima. We then let the system evolve for some time and
finally we bring it back smoothly to the standard configuration.

If we want to realize the tunneling of the fermions, we need
to remember that this has to be done in four steps.

(1) For even-horizontal tunneling (Uhop,eh) we need tunnel-
ing only between pairs of sites described by coordinates (n,m)
and (n + 1,m), with the additional constraint n + m = 2k. We
can smoothly increase f (t) to some value f0 (for example
f0 = 2) and tune φ(t) to the value π/4, while keeping
g(t) = h(t) = 0. In this way we lower the energy barrier
between the desired sites, without affecting the rest of the
lattice. We then let the system evolve for some time and finally
we bring it back smoothly to the standard configuration.

The remaining steps are analogous:
(2) For odd-horizontal tunneling [between pairs of sites

described by coordinates (n,m) and (n − 1,m), with n + m =
2k], smoothly increase f (t) to some value f0 and tune φ(t) to
the value −π/4, while keeping g(t) = h(t) = 0.

(3) For even-vertical tunneling [between pairs of sites
described by coordinates (n,m) and (n,m + 1), with n + m =
2k], smoothly increase g(t) to some value g0 and tune φ(t) to
the value π/4, while keeping f (t) = h(t) = 0.

(4) For odd-vertical tunneling [between pairs of sites
described by coordinates (n,m) and (n,m − 1), with n + m =
2k], smoothly increase g(t) to some value g0 and tune φ(t) to
the value −π/4, while keeping f (t) = h(t) = 0.

All changes to the functions f (t),g(t),h(t),φ(t) have to be
implemented adiabatically [65,86], so that the atoms remain
in the ground state of the optical potential at all times.
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FIG. 5. The external, static vector potential for each link, which
results from the physical realization, for both an even plaquette (left)
and an odd one (right). The lattice curl for both types of plaquette is
zero, which means that these phases do not influence the physics and
may be removed or, practically, be ignored.

3. Trapping the other atoms

Trapping the other atoms is a much easier task. For the
link atoms, we need to arrange a static square lattice; for

the auxiliary atoms we need a square lattice that can be
moved rigidly in all three directions. This is commonly
realized in current cold-atoms experiments. The only subtlety
in putting the three optical lattices together is choosing the
simulated lattice spacing s in a way that is compatible with
the condition s > λmat

2
√

2
and similar conditions coming for the

wavelengths λlink, λaux used to trap the auxiliary and the link
atoms.

APPENDIX B: UNPHYSICAL PHASES OF THE Z3

SIMULATION

In this Appendix we wish to study the influence of the
redundant phase transformations on the fermions—and show
that they have no effect whatsoever the physics—i.e., that
W ′

ohW
′
ovW

′
ehW

′
ev is physically equivalent to WohWovWehWev .

We will consider a more general case, in which the phases of
the transformations multiplying from the left and the right are
different—θ,θ ′; our case applies to θ = θ ′. For simplicity of
notation, we introduce ε = λGMτ .

We start by manipulating W ′
ev ,

W ′
ev = e

−iθ ′ ∑
xeven

ψ†(x)ψ(x)
e
−iε

∑
xeven

[ψ†(x)Qψ†(x+̂2)+H.c.]
e
−iθ

∑
xeven

ψ†(x)ψ(x)

= e
−i(θ+θ ′)

∑
xeven

ψ†(x)ψ(x)
e
−i
∑

xeven
[εeiθ ψ†(x)Qψ†(x+̂2)+H.c.]

. (B1)

Multiplying by W ′
eh, we obtain

W ′
ehW

′
ev = e

−iθ ′ ∑
xeven

ψ†(x)ψ(x)
e
−iε

∑
xeven

[ψ†(x)Qψ†(x+̂1)+H.c.]
e
−i(2θ+θ ′)

∑
xeven

ψ†(x)ψ(x)
e
−i
∑

xeven
[εeiθ ψ†(x)Qψ†(x+̂2)+H.c.]

= e
−i(2θ+2θ ′)

∑
xeven

ψ†(x)ψ(x)
e
−i
∑

xeven
[εei(2θ+2θ ′ )ψ†(x)Qψ†(x+̂1)+H.c.]

e
−i
∑

xeven
[εeiθ ψ†(x)Qψ†(x+̂2)+H.c.]

. (B2)

Similarly,

W ′
oh = e

−iθ ′ ∑
xodd

ψ†(x)ψ(x)
e
−iε

∑
xodd

[ψ†(x)Qψ†(x+̂1)+H.c.]
e
−iθ

∑
xodd

ψ†(x)ψ(x)

= e
−i
∑

xodd
[εe−iθψ†(x)Qψ†(x+̂1)+H.c.]

e
−i(θ+θ ′)

∑
xodd

ψ†(x)ψ(x)
(B3)

and

W ′
ohW

′
ov = e

−i
∑

xodd
[εe−iθ ψ†(x)Qψ†(x+̂1)+H.c.]

e
−i(θ+2θ ′)

∑
xodd

ψ†(x)ψ(x)
e
−i
∑

xodd
[εψ†(x)Qψ†(x+̂2)+H.c.]

e
−iθ

∑
xodd

ψ†(x)ψ(x)

= e
−i
∑

xodd
[εe−iθ ψ†(x)Qψ†(x+̂1)+H.c.]

e
−i
∑

xodd
[εe−i(2θ+2θ ′)ψ†(x)Qψ†(x+̂2)+H.c.]

e
−i(2θ+2θ ′)

∑
xodd

ψ†(x)ψ(x)
. (B4)

If we now complete the product W ′
ohW

′
ovW

′
ehW

′
ev , we obtain in the middle the phase

e
−i(2θ+2θ ′)

∑
x

ψ†(x)ψ(x)
(B5)

which within our Hilbert space (since the total number of fermions is conserved) gives rise to a global phase and thus may be
ignored.

The contribution of W ′
ohW

′
ovW

′
ehW

′
ev to the sequence is now

e
−i
∑

xodd
[εe−iθψ†(x)Qψ†(x+̂1)+H.c.]

e
−i
∑

xodd
[εe−i(2θ+2θ ′)ψ†(x)Qψ†(x+̂2)+H.c.]

e
−i
∑

xeven
[εei(2θ+2θ ′)ψ†(x)Qψ†(x+̂1)+H.c.]

e
−i
∑

xeven
[εeiθψ†(x)Qψ†(x+̂2)+H.c.]

(B6)

and we see that the gauge-matter interaction terms of HGM acquired some phases which correspond to a static external U(1)
vector potential θ (x). However if we calculate its lattice curl

β(x) ≡ θ (x,1) + θ (x + 1̂,2) − θ (x + 2̂,1) − θ (x,2) (B7)
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which corresponds to a static magnetic field, we get that β = 0 (see Fig. 5). Thus these phases have no physical effect and
they can be gauged away or, effectively, ignored. We can conclude, indeed, that W ′

ohW
′
ovW

′
ehW

′
ev , acting on our physical state, is

equivalent to WohWovWehWev .
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