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Retardation effects in induced atomic dipole-dipole interactions
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We present mean-field calculations of azimuthally averaged retarded dipole-dipole interactions in a Bose-
Einstein condensate induced by a laser, at both long and short wavelengths. Our calculations demonstrate that
dipole-dipole interactions become significantly stronger at shorter wavelengths, by as much as 30-fold, due to
retardation effects. This enhancement, along with the inclusion of the dynamic polarizability, indicate a method
of inducing long-range interatomic interactions in neutral atom condensates at significantly lower intensities than
previously realized.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) offer a theoretical and
experimental platform for studying the physics of many-
body systems. BECs can be used as easily manipulable
test beds for simulating many-body physics phenomena
from condensed matter physics, quantum gases, and as-
trophysics. Of particular interest are systems where mi-
croscopic interatomic interactions give rise to macroscopic
effects.

The most readily accessible atom-atom interactions in a
BEC typically are the hard-sphere (s-wave) contact interac-
tions, which, for instance, modify condensate ground-state
shapes, perturb oscillation modes, and affect tunneling rates
in optical lattices [1]. This interaction can sometimes be
tuned with magnetic fields via Feshbach resonances, where
the interaction can change from repulsive to attractive [2].
Such tunability is an important feature in generating models
of many-body systems.

The s-wave interactions, however, are isotropic and in-
herently local, limiting the range of accessible physical
models. The nonlocal components of dipole-dipole and van
der Waals interactions, on the other hand, offer a different
set of physical systems that cannot be studied with only
the local s-wave interaction. Van der Waals interactions
have been predicted for Rydberg-dressed condensates [3],
and dipole-dipole interactions have been observed in atomic
systems with permanent [4] and induced dipoles [5]. In
addition to the nonlocality, dipole-dipole interactions are
also anisotropic, with regions of attractive and repulsive
interactions, which has been observed in the anisotropic
expansion of dipolar BECs [4] and scattering between Rydberg
atoms [6].

There are several routes to realizing dipole-dipole inter-
actions in ultracold gases. One method is to use atomic
BECs with permanent dipole moments to explore the inter-
play between s-wave and dipolar interactions in many-body
systems. Some groups have been successful in creating a
dipolar BEC using atoms with permanent magnetic dipoles,
such as chromium [7], erbium [8], and dysprosium [9]. These
dipolar BECs have been used to explore new physics and
macroscopic behavior such as droplet states [10,11] and roton
dispersion [12–14]. A second avenue to study dipole-dipole
interactions comes from degenerate molecular gases, using
molecules that have permanent electric dipole moments.

Although molecular BECs have been created [15–18], the
challenge and complexity of generating dense samples of
ultracold heteronuclear molecules encourages an alternative
approach.

Here, we consider a third approach: illuminating a neutral
atomic BEC with an off-resonant laser to create induced
dipoles, which then interact with each other. This approach
leverages the robustness of atomic BEC creation and adds
tunability, as the strength of these induced interactions may
be tuned by adjusting the wavelength and intensity of the
laser. Previous work suggested, though, that these interactions
typically require unfeasibly enormous laser power to achieve
comparable interaction strength to s-wave interactions [19].
However, strengthening of dipole-dipole interactions due to
retardation effects in the short-wavelength regime, which was
not previously considered, may bring induced dipoles into
the realm of reasonable power requirements. This retardation-
induced strengthening is possible in induced dipolar BECs,
because dipole oscillations on the order of 100 THz or faster
are required for propagating dipolar fields to be retarded
significantly on the scale of BEC dimensions. Since retardation
effects are generated by the oscillating fields that are inherent
in creating the induced dipoles, retardation effects also could
be observed by similarly driving oscillations in permanent
dipoles at optical frequencies.

In previous work, a particularly compelling application of
induced dipolar BECs was suggested. By using many different
laser beams, a long-range 1/r potential could be induced in an
atomic BEC. This gravitational-like interaction could be strong
enough to self-bind a BEC and form a model for gravitationally
bound many-body systems, such as neutron stars [20]. This
application is enticing, yet extremely complicated due to the
multilaser layout.

As an intermediate step to generating a self-bound BEC, a
one-dimensional (1D) compression experiment would demon-
strate the strength of induced dipole-dipole interactions. For
1D compression, a single laser beam is used to generate axial
compression of a BEC via induced dipole-dipole interactions.
Previous work used the variational principle to perform
calculations of this system in the long-wavelength limit, where
retardation effects are negligible [21]. These results indicate
that laser intensities of at least 108 W/cm2 are required to
observe axial compression. However, at such large intensities
the lifetime of a BEC would be reduced to ∼1 ms, far too
short to reach a stable ground state or observe dynamics.
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ẑ

I = 0.5

qPolarization

I = 0.9

FIG. 1. A linearly polarized laser beam illuminates a pencil-
shaped condensate from the radial direction to induce dipole-dipole
interactions. The condensate compresses axially as the relative laser
intensity I increases.

The enhancing effects of retarded interactions are needed to
overcome these limitations.

In this paper, we present calculations that show retardation
effects can be large for induced dipole-dipole interactions in
BECs. These retardation effects are only present for inter-
actions induced by short-wavelength lasers, where variational
principle approaches break down and more complicated calcu-
lations are required. Retardation effects lead to an increase in
interaction strength, lowering the required laser intensity and
lengthening the lifetime of atoms in an induced dipolar BEC to
more experimentally favorable values. Here, we first present
the theory for induced dipole-dipole interactions, describe the
numerical modeling techniques employed, present simulation
results, and finally discuss the ramifications for the feasibility
of observing induced dipole-dipole interactions.

II. THEORY: AZIMUTHALLY AVERAGED
LASER-INDUCED DIPOLE-DIPOLE INTERACTIONS

Following the approach of Ref. [21], a trapped pencil-
shaped BEC is illuminated with a uniform plane-wave laser
polarized in the axial direction, shown in Fig. 1. The laser
induces electric dipoles in the atoms of the BEC, aligning
the dipoles along the polarization axis of the laser. The
choice of axial polarization suppresses super-radiant Rayleigh
scattering [22] or collective atomic recoil lasing (CARL) [23],
which are forbidden in the direction of polarization. The
interaction potential between two atoms, separated by r, with
dipoles induced by a laser with wave vector q polarized in the
z direction is [24]

UDD(r) = d2

r3
[(1 − 3 cos2 θ )[cos(qr) + qr sin(qr)]

− (sin2 θ )q2r2 cos(qr)] cos(qy), (1)

where r is the interatomic distance, and θ is the angle between
the interatomic axis and the polarization axis (z axis), so that
cos θ = z/r . The parameter d2 = Iα2(q)

4πcε2
0

is the induced dipole-

dipole interaction strength; here, I is the laser intensity, and
α(q) is the dynamic atomic polarizability [25]. The tunable
parameters for induced dipole-dipole interactions are the laser
intensity and also frequency, since the polarizability is highly
frequency dependent.

The dipole-dipole interaction is three-dimensional in
(r,θ,φ), where y = r sin θ sin φ. We reduce the dimensionality
by azimuthally averaging over φ to give a two-dimensional

(2D) interaction,

ŪDD(r) = 1

2π

∫
dφ UDD(r)

= d2

r3
[(1 − 3 cos2 θ )[cos(qr) + qr sin(qr)]

− (sin2 θ )q2r2 cos(qr)]J0(qρ). (2)

Here r2 = z2 + ρ2, and the trailing cosine in Eq. (1) has
been converted to a Bessel function of the first kind, J0.
In the long-wavelength limit, this approximation reproduces
analytic results from variational principle calculations [21].
In the short-wavelength limit, the local condensate density
is approximately isotropic and homogeneous in space on
the scale of the laser wavelength, and this simplification is
reasonable. A density-weighted azimuthal average would only
marginally improve the accuracy of the calculations at the
expense of significant computational resources.

In Eq. (2), the retarded terms are those that include the laser
wave number q, where the notable retarded terms are scaled by
factors of qr and q2r2, which are small in the long-wavelength
regime (qr � 1). In this limit the instantaneous dipole-
dipole interaction d2

r3 (1 − 3 cos2 θ ) is reclaimed. However,
in the short-wavelength regime (qr > 1) these retardation
terms with qr and q2r2 are large, amplifying the dipole-
dipole interactions. Additionally, the dipole-dipole interaction
strength is highly dependent on the atomic polarizability,
which drastically increases near atomic resonances, by as
much as 104 times. These two effects—atomic polarizability
and retardation amplification—are what make the short-
wavelength regime desirable for demonstrating and studying
dipole-dipole interactions.

The azimuthally averaged interaction will, if strong enough,
alter the ground state of the BEC. To calculate this ground
state, we begin with a mean-field approach. The mean-field
Gross-Pitaevskii (GP) equation describing a BEC at zero
temperature, with order parameter ψ and nonlocal dipole-
dipole interactions, is [26]

ıh̄
∂ψ

∂t
= Hψ =

[
−h̄2∇2

2m
+ Vext(r) + gn(r)

+
∫

dr′n(r′)ŪDD(r′ − r)

]
ψ, (3)

where |ψ(r,t)|2 = n(r) is the BEC density, Vext =
m
2 (ω2

ρρ
2 + ω2

zz
2) is the cylindrically symmetric trapping po-

tential with trapping frequencies ωρ and ωz, and g = 4πh̄2a/m

is the s-wave interaction strength with scattering length a.
The validity of the GP mean-field approximation is dependent
on weak interactions [20]. This condition requires weak
s-wave interactions, na3 � 1, as well as weak dipole-dipole
interactions, na3

dd � 1, where add � h̄/md2. Both conditions
are easily satisfied for small scattering lengths a and small
dipole-dipole interaction strengths d2. However, following
laser-induced collapse, these approximations can break down,
as discussed later.

Evaluating the first three terms in the GP equation is
straightforward; however, the dipole-dipole interaction is
a computationally expensive convolution of density with
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FIG. 2. The dimensionless angular component of the spatial
Fourier transform of azimuthally averaged induced dipole-dipole
interactions. At small frequencies, a constant attractive interaction
dominates the long-range interaction. In the large frequency limit,
the short-range instantaneous dipole interaction is dominant.

ŪDD that must be computed in the frequency domain. The
convolution theorem gives∫

dr′n(r′)ŪDD(r′ − r) = (2π )3/2
∫

d3k eık·r n̂(k) ˆ̄UDD(k)

= (2π )3F−1
3D {n̂(k) ˆ̄UDD(k)}, (4)

where k is the cylindrically symmetric frequency coordinate,
with components kρ and kz in the radial and axial directions,

respectively. Additionally, n̂(k) and ˆ̄UDD(k) are the three-
dimensional (3D) Fourier transforms F3D of the BEC density
and the dipole-dipole interaction, respectively.

The Fourier transform of the azimuthally averaged dipole-
dipole interaction, ˆ̄UDD(k) = (2π )−3/2

∫
d3r e−ık·r ŪDD(r),

can be calculated using a similar technique as in Ref. [21],
giving

ˆ̄UDD(k) = 1

(2π )3/2

4πd2

3
Uang(k), (5)

where the dimensionless angular component of the interaction
is contained in

Uang(k) = −1 + 3Re

⎛
⎝ k2

z − q2√
k4 − 4q2k2

ρ

⎞
⎠. (6)

Note that in the long-wavelength limit (q � k), Eq. (5)
is the Fourier transform of the instantaneous dipole-dipole
interaction. Figure 2 shows a plot of Uang. Large spatial
frequency (k � q) corresponds to the instantaneous case,
Uang(k) � −1 + 3(kz/k)2. At small frequencies there is a
singularity at k4 = 4q2k2

ρ , which results in an offset circle
in k space, inside of which has a constant value of −1.

III. NUMERICAL MODELING

For computational efficiency, we perform simulations in
dimensionless units. The dimensionless Hamiltonian from

Eq. (3) is

H̃ = −∇̃2 + (ρ̃2 + λ2z̃2) + 8πãNBECñ(r)

+ 8π
d̃2

3
NBEC F−1

3D {Uang(k) ˆ̃n(k)}, (7)

where the tilde represents dimensionless quantities with
lengths scaled by lρ = √

h̄/mωρ , energies by h̄ωρ , and
densities by NBEC(mωρ/h̄)3/2. Here we have substituted the
Fourier-transformed form of the dipole-dipole potential.

The dipole-dipole system’s ground state is computed by
means of imaginary time propagation (ITP), with a change of
variables t → ıτ [27]. The dimensionless ground state BEC
order parameter ψ̃ is found by iterating through imaginary
time with

ψ̃i+1 = ψ̃i − 
τ H̃ ψ̃i, (8)

until ψ̃ converges. Here 
τ is the imaginary time step between
i and i + 1 iterations, and the order parameter is renormalized
after every iteration with

∫
dr |ψ̃ |2 = 1. A random value is

assigned to 
τ each iteration, which eliminates oscillations in
the order parameter. We scale 
τ so that a single random step
through imaginary time can change the order parameter by at
most 5% of the previous value.

The order parameter and dimensionless Hamiltonian are
sampled over a 2D grid (ρ,z) with Nradial and Naxial bins in each
direction. The first three terms in Eq. (7) are the kinetic energy,
trapping potential with trap ratio λ = ωz/ωρ , and s-wave
scattering energy with scattering length ã = a/lρ . The last
term corresponds to the nonlocal dipole-dipole interactions,
which require a Fourier transform. Three-dimensional fast
Fourier transforms are often used to calculate the convolution
in the dipole-dipole interaction term, but due to the enforced
cylindrical symmetry in Eq. (5), the discrete Hankel Fourier
transform (DHFT) is faster [28–30]. A DHFT calculates the
3D Fourier transform by performing a Fourier transform
in the axial direction and a circularly symmetric Hankel
transform in the radial direction. Using a DHFT requires
sampling the radial direction at Bessel zeros j0(n), such that
the ith radial coordinate is ρi = j0(i + 1)/R, where R is the
maximum radial range, for i = 0,1, . . . ,Nρ − 1. The axial
sampling is linearly spaced such that the j th axial coordinate
is zj = j Z

Nz−1 , for j = 0,1, . . . ,Naxial − 1. Each iteration, a
DHFT transform is performed on n(r), and an inverse DHFT
is performed on Uang(k) ˆ̃n(k). While the DHFT calculation is
computationally feasible, it is significantly slower than any
other step in this calculation.

The computation is dramatically slowed by the singularity
in Uang on the surface k4 − 4q2k2

ρ = 0. Near this surface
it is difficult to sample Uang accurately, but supersampling
and averaging near the surface of the singularity does re-
duce errors significantly [27]. Every bin that corresponds
to

√
(kρ − q)2 + k2

z > q and k4 − 4q2k2
ρ < 1 is sampled 105

times on a finer grid size and then averaged.
The simulation process starts with a randomized order

parameter over the radial range [j0(1)R/j0(Nρ),R] and axial
range [0,Z]. While computing the Hamiltonian from Eq. (7),
the order parameter is advanced by Eq. (8) using the previous
order parameter, and the process repeats at least 1000 times,
until the order parameter converges to its ground state. Typical
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values for Nradial and Naxial are 163 and 1944 bins, respectively.
These values are chosen to sample properly the scale set by
the laser wavelength, and the axial number of bins is further
selected for the quickest DHFT.

Consistency checks are done to ensure the ground-state
BEC has a constant chemical potential μψ = Hψ . The
ground-state order parameter in the absence of dipole-dipole
interactions is also compared to the well known theoretical
value predicted for trapped BECs. Typically we achieve errors
no more than 0.5% of the density in each bin. Results of these
simulations are shown in the next Section.

As ITP is a computationally intensive technique with the
dipole-dipole potential, we investigated whether a simpler
calculation could reach similar results, namely, the variational
principle (VP). In the VP, the ground-state energy configura-
tion is found by minimizing the energy functional,

E = Ekin + Etrap + Es-wave + EDD, (9)

in cloud size s, using a Gaussian ansatz in the frequency
domain, n(k) = (2π )−3/2NBEC exp(−s2

ρk
2
ρ/4 − s2

z k
2
z /4). In SI

units, the terms in the energy functional are

Ekin = h̄2N

2m

[
1

s2
ρ

+ 1

2s2
z

]
, (10)

Etrap = mN

2

[
ω2

ρs
2
ρ + ω2

z s
2
z

2

]
, (11)

Es-wave = ah̄2N2

√
2πmszs2

ρ

, (12)

and

EDD = N2d2

2π

[
−√

2π

3szs2
ρ

+
∫ ∞

−∞
dkz

∫ ∞

0
dkρ kρ

× Re

⎧⎨
⎩ k2

z − q2√
k4 − 4q2k2

ρ

⎫⎬
⎭ exp

(
−sρk

2
ρ

2
− s2

z k
2
z

2

)⎤
⎦.

(13)

The integral in EDD is numerically challenging to perform due
to the singularity at k4 − 4q2k2

ρ = 0, and the same technique
used for ITP did not provide consistent integration results
near the singularity. Though the variational approach does
not provide accurate retardation calculations, ITP and VP
calculations produce the same results for long wavelengths,
where the integral vanishes and leaves only the instantaneous
term. For short wavelengths, ITP is the preferred method
for calculating the ground state of a BEC with dipole-dipole
interactions since it reduces inaccuracies from the singularity
by supersampling and averaging.

IV. RESULTS

We calculate the cylindrically symmetric ground-state BEC
density using the ITP method described above. We choose
parameters to match our existing apparatus, namely, a BEC
of 1.5 × 106 87Rb atoms in a 30:1 pencil-shaped trap, with
ωr = 2π × 237 Hz and a = 100a0 [31]. Using the same initial
parameters, we perform simulations varying laser intensity,
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FIG. 3. Ground-state BEC density calculated for a 30 μm
inducing laser at different laser intensities: (a) I = 0, (b) I = 0.66,
and (c) I = 0.92. As the intensity increases, the interactions are
strengthened and the condensate compresses. The axial and radial
widths are found by fitting these distributions to a Thomas-Fermi
function.

and thus linearly varying dipole-dipole interaction strength.
Figure 3 shows the ground-state density of a BEC illuminated
by a long-wavelength laser with varying intensities. The in-
creasing dipole-dipole interactions cause the BEC to compress
strongly in the axial direction.

The condensate compression as a function of laser intensity
is shown in Fig. 4. The amount of compression is quantified by
measuring the peak density, axial width, and moment of inertia
and normalizing by the corresponding parameters in the ab-
sence of dipole-dipole interactions (I = 0). The peak density
and axial width are determined through fits to a Thomas-Fermi
profile, n(ρ,z) = n0[1 + (ρ/sρ)2 + (z/sz)2], with peak density
n0 and axial and radial widths sz and sρ . The moment of
inertia is calculated using

∑
bins(ρ

2 + z2)n(ρ,z)4π 
ρ 
z.
These three different indicators of compression are used to
check for consistency, since when the condensate compresses
significantly at short laser wavelength, the distribution can
depart significantly from a Thomas-Fermi profile.

As the laser intensity increases, the condensate begins to
collapse in size. The intensity where this occurs is the critical
intensity Icrit. Above this intensity, the condensate shrinks
to near zero size from the strongly attractive dipole-dipole
interactions, and the mean-field approach breaks down as the
interactions become too strong. We choose the critical intensity
by determining the intensity at which the axial width or
moment of inertia drops to 50% of its initial value, or when the
peak density increases tenfold. Despite clear departures from
Thomas-Fermi distributions, all three size parametrizations
used for consistency checks give the same critical intensity, so
henceforth the moment of inertia is used for determining Icrit.
The critical intensity corresponds to the intensity where the
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FIG. 4. Collapse curves for three relative parameters that indicate
collapse—(a) condensate axial size, (b) inverse peak density, and
(c) moment of inertia—as a function of scaled laser intensity. Each
parameter is scaled by its value when dipole-dipole interactions are
turned off, I = 0. Each plot contains four different laser wavelengths:
1000 μm (solid black), 30 μm (dotted red), 10 μm (dashed blue),
and 1 μm (dash-dotted green). The critical intensity is chosen to be
when the condensate reaches half the unperturbed width or moment of
inertia, or ten times the initial density. Despite significant distortions
to Thomas-Fermi distributions from compression, these metrics for
critical intensity agree well with each other and are deemed suitable
for quantifying the critical intensity even at short wavelengths.

s-wave and dipole-dipole interaction strengths from Eq. (7)
are equal, ã = d̃2/3 [32]. At long wavelengths, where no
retardation effects are present, the critical intensity is analytic,

ILW = 12πcε2
0h̄

2

m

a

α2
, (14)

but short wavelengths still require numerical modeling. Within
collapse curves, the scaled intensity I = I/ILW is used as an
atom-independent measure of interaction strength, where full
collapse occurs at I = 1 for long wavelengths.

Certain wavelengths also allow for intermediate collapse
states, where the axial component significantly compresses
to the point that s-wave scattering balances dipole-dipole
interactions at an intermediate size. These intermediate states
are only found near λ ∼ 30 μm for our parameters (see Fig. 4).
More generically, these intermediate states can be found at
wavelengths that are comparable to the size of the condensate.
Only found above critical intensity, these intermediate collapse
points are interesting, but do not influence the determination
of Icrit.

To study the wavelength dependence, we perform simula-
tions and obtain collapse curves for a range of wavelengths,
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FIG. 5. Critical intensity example for 87Rb with 30:1 trap ratio
and 1.5 × 106 atoms. The strong dip in critical intensity at lower
wavelengths is due to a large increase in polarizability near 87Rb
resonances at 780 and 795 nm. The difference between the critical
intensity found using the long-wavelength approximation (black) and
the ITP-calculated critical intensity (red) is due to retardation effects,
and the ratio gives the retardation enhancement. The inset shows the
critical intensity near resonance, where critical intensity varies due to
the drastic change in polarizability.

and we vary the laser intensity for each wavelength to find
the critical intensity. The critical intensity as a function of
wavelength is shown in Fig. 5, along with the long-wavelength
approximation. Here we see a clear departure from long-
wavelength behavior, as the critical intensity from the full
ITP calculation is significantly lower at shorter wavelengths.
Near-resonance wavelengths benefit from the sharp increase in
α, as well as retardation effects, leading to critical intensities
of 104 W/cm2 and lower. These critical intensities are four
orders of magnitude lower than the intensities calculated at
long wavelengths and can be supplied with a 1 W laser focused
to ∼100 μm.

The deviation from the long-wavelength critical intensity
is interpreted as due to retardation effects, quantified by
Aret = ILW/Icrit. The retardation effect is atom independent,
since the size of the effect depends only on the condensate size
relative to the laser wavelength. We plot the atom-independent
retardation effect in Fig. 6, fixing axial width and atom
number while varying radial width. For long wavelengths
(λ � sρ), retardation effects are negligible. However, at short
wavelengths (λ � sρ), retardation effects lead to as much
as a 30-fold increase in the interaction strength. As seen in
Fig. 6, the change in scaling behavior occurs when the laser
wavelength becomes smaller than the BEC’s radial width, that
is, when the BEC is large enough that atomic dipoles on one
side of the BEC reside in the extended, nonlocal region of the
potential produced by atoms on the other side.

This increase in interaction strength from retardation effects
is due to the dependence on qr in the interatomic interaction
[Eq. (2)], as well as the long-range nature of the interaction.
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function is fit to the data above s̃ρ ∼ 1. Retardation effects can amplify
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Although the complicated dipole-dipole potential does not
allow for analytic results in the retarded regime, we note that in
the large condensate limit (s̃ρ > 1), retardation effects follow
a simple linear relationship over several decades. Thus we
phenomenologically fit Aret with Aret � 1.5 sρ

λ
. We can use this

model to predict reduced critical intensities for other BECs of
atoms with no permanent dipole moment, where the critical
intensity is Icrit � ILW/Aret. For wavelengths that are similar
to the condensate radial width (0.1 < s̃ρ < 1), there are sharp
increases in the retardation effect as only a fraction of the
condensate’s interactions are retarded, and the exact fraction
of a wavelength contained within the condensate is important.
As the wavelength decreases further (s̃ρ > 1), the majority of
the condensate undergoes retarded interactions leading to the
calculated linear trend with dependence on qr .

Next we consider the feasibility of observing these laser-
induced dipole-dipole effects in a BEC. Using the phe-
nomenological equation for retardation effects, coupled with
atom-dependent dipole-dipole interaction strengths, we can
search for more auspicious wavelengths and atoms. The
strongest interactions are found near atomic resonances, where
α increases sharply. However, atoms are more likely to
absorb photons from near-resonant lasers due to high photon
scattering rates, and one would expect a BEC to be destroyed
quickly. The scattering-limited lifetime of 87Rb atoms at the
critical intensity is shown in Fig. 7. Surprisingly, the drop in
critical intensity due to increased polarizability and retardation
balances the decreased detuning’s effect on scattering; thus,
atomic lifetimes near resonance actually slightly increase.
These short wavelengths have the added benefit of requiring
significantly lower laser powers because of the reduced critical
intensity.

The best achievable lifetime for a 87Rb BEC for wave-
lengths between 750 nm and 10 μm at the critical intensity is
only ∼5 ms at 890 nm. This lifetime is too short to allow a
BEC to equilibrate before substantial loss reduces the effect of
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FIG. 7. Lifetime of a 10:1 pencil-shaped 87Rb BEC (1.5 × 106

atoms) irradiated by a laser at the critical intensity. The lifetime in
the long-wavelength limit (dotted) is compared to the lifetime with
retardation enhancements included (solid), where the phenomenolog-
ical fit for the retardation enhancement is used. A 30-fold increase in
lifetime is expected near the atomic resonances at ∼0.78 μm, due to
retardation enhancement.

dipole-dipole interactions, but the lifetime may be increased
by reducing the s-wave length scattering using a Feshbach res-
onance. Reducing s-wave scattering allows higher densities,
which enhances the strength of dipole-dipole interactions and
lowers the critical intensity [Eq. (14)]. We expect a lifetime of
at least 100 ms to be necessary to study ground state behaviors,
and this demanding requirement necessitates reducing the
scattering length 20-fold via a Feshbach resonance, which is
challenging to do over an entire extended sample of 87Rb. For
this reason, we also consider other easily trapped alkali atoms,
such as 85Rb, 133Cs, and 23Na with their typical scattering
lengths [2,33,34]. We note the longest lifetimes in 87Rb,
with its favorable polarizability, while the other three atomic
lifetimes near resonance are approximately 2 ms. However,
87Rb has few accessible Feshbach resonances [35], unlike the
other three atoms. Using one of these other atoms requires
a 50-fold reduction in scattering length to obtain ∼100 ms
lifetimes. However, this reduction in scattering length is a
more attainable task with 85Rb, 133Cs, and 23Na as these atoms
have wider and low-field Feshbach resonances.

V. CONCLUSIONS

We have studied the effect of retardation in laser induced
dipole-dipole interactions in a BEC and shown that retardation
effects are strong enough to amplify induced dipole-dipole
interactions by at least 30-fold at short wavelengths. This
amplification means an experimental realization requires much
lower laser intensities than the long wavelength calculations
originally suggested. Successful demonstration of the retarda-
tion effects is a first step to creating strong enough long-range
induced dipole-dipole forces to create a self-bound BEC
with gravitationlike dipole-dipole interactions, and it seems
essential to work at short wavelengths.
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There are a number of concerns with an experiment to
demonstrate retarded dipole-dipole interactions. First, the
lifetime of the 87Rb atoms is very short (∼5 ms) without the
use of Feshbach resonances. Using a Feshbach resonance can
increase the lifetime to 100 ms or longer by decreasing the
required laser intensity with a challenging 20-fold reduction in
scattering length. Alternative atomic choices are 85Rb, 133Cs,
and 23Na, but they require a greater reduction in scattering
length due to their slightly lower lifetimes (∼2 ms). Second,
to avoid any spurious size-altering effects, any spatially
dependent dipole forces from gradients in laser intensity must
be avoided. This criterion will require an extremely smooth
laser intensity profile, meaning larger initial laser intensities.
Lensing effects due to the BEC are not considered, but can
cause significant intensity gradients, though typically these
would not play a large role in a transversely oriented laser.
Last, using an inducing laser frequency within a few linewidths
of a resonance can alter the dipolar interaction potential via

rescattering and collective effects (see [36] and references
therein).

Further work could be done to explore shorter wavelengths
to search for even larger amplification due to retardation
effects. However, this limit requires significant computa-
tional resources or an alternative technique. We expect the
phenomenological approximation to continue to be valid
at readily achievable shorter wavelengths, however. Even
stronger enhancement could reduce the critical intensity
and lengthen lifetimes further, potentially to a realm where
Feshbach resonances are not required to observe the effect of
retarded induced dipole-dipole interactions.
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Science 299, 232 (2003).
[35] A. Marte, T. Volz, J. Schuster, S. Dürr, G. Rempe, E. G. M. van
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