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Analytical solutions of the Schrödinger equation for a hydrogen atom in a uniform electric field
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We consider the Schrödinger equation for the hydrogen atom in a uniform electric field, searching for solutions
of this equation in parabolic coordinates in a separable form. With some restrictions on the parameters, we have
found the exact analytical expressions for the continuum wave function component and for the most important
Stokes multiplier.
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I. INTRODUCTION

The hydrogen atom in a uniform electric field, being the
simplest Stark system, has always served as a model for devel-
opment of various numerical and analytical approaches. This
system was studied by Schrödinger [1] in the framework of
perturbation theory. It was found that the perturbation series are
divergent, indicating serious mathematical difficulties inherent
to the problem. These difficulties, in particular, have affected
calculations of the ionization rate, the correct expression for
which was obtained, after many unsuccessful attempts, only
in Refs. [2,3] using the comparison equation method.

The experimental study of photoionization of atomic
hydrogen in an electric field [4–6] revealed a number of special
features of its cross section, in particular, the resonant structure
at negative energies. In theoretical studies, the continuum
wave functions of excited states were obtained numerically
[7] or in the framework of the semiclassical theory [8–10].
Another approach was based on the concept of resonances. The
positions of resonances were determined by various methods,
including the perturbation theory [5,11] and the complex
variational method [12]. It has been shown that the Stark
resonances are uniquely determined by the Borel summing
of asymptotic series of perturbation theory [13–15].

Impressive ionization microscopy experiments [16–19]
have attracted attention to analysis of a spatial distribution
of electron current produced by ionization of atoms in electric
field. The numerical calculations of the spatial structure of
electronic wave function are based on solution of the coupled
channels equations [20,21] and on a wave-packet propagation
approach [19]. The theoretical description of microscopic
experiments widely uses the semianalytical approach, which
is based on the local-frame-transformation theory and on the
semiclassical propagation of outgoing waves [22–24].

Modern theoretical results reproduce experiments and still
keep improving. However, the theory of the Stark systems
cannot be considered as complete. The exact analytical
solution of the fundamental Stark problem for atomic hydrogen
is still unknown and, therefore, it is impossible to estimate the
real accuracy of semiclassical calculations.

A certain progress in overcoming this difficulty has been
made [25]. By means of transition into the momentum
representation, the problem has been reduced to the study of
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the triconfluent Heun equation [26]. The detailed analysis of
the global asymptotes of solutions of this equation has enabled
us to formulate the analytical procedure of calculation of the
Stokes multipliers. Also, it was shown that the physical charac-
teristics of the system can be expressed in terms of the Stokes
multipliers. However, at negative energies, representation of
some of these multipliers in an exact analytical form proved
to be impossible and calculations have been carried out with
the involvement of semiclassical approach.

In this work, we present the exact analytical solutions of
the Stark problem for a hydrogen atom. Such solutions exist
if the energy of the atom has some certain values, depending
on the strength of the external electric field. The use of these
solutions gives opportunities for estimation of accuracy of
approximate approaches.

The derivation of the exact solutions is based on the results
obtained in our previous work [25]. In Sec. II we briefly
describe the basic equations and definitions given in this study.
Section III describes the exact solutions and the conditions for
their existence. The specific examples of such solutions are
given in the appendix. The limiting behavior of the exact wave
functions in the asymptotic regions is analyzed in Sec. IV. In
the concluding section we apply the exact results to the analysis
of the accuracy of the semiclassical approach at calculation of
some parameters in our work [25].

II. LAPLACE TRANSFORM AND THE ASYMPTOTIC
SOLUTIONS OF A QUARTIC OSCILLATOR

Hydrogen in a uniform electric field is described by the
wave function

ψE,n1,m = χ1(ξ ) χ2(η)√
ξη

eimϕ, (1)

where (ξ ,η) are parabolic coordinates [1] and the components
χ1(ξ ), χ2(η) satisfy the coupled reduced biconfluent Heun
equations

d2χ1

dξ 2
+

[
−F

4
ξ + E

2
+ β1

ξ
− m2 − 1

4ξ 2

]
χ1 = 0 , (2)

d2χ2

dη2
+

[
F

4
η + E

2
+ β2

η
− m2 − 1

4η2

]
χ2 = 0 . (3)

β1 + β2 = 1 . (4)

Here m is the integer projection of an angular momentum onto
the field direction. F is the strength of the field. The parameters
β1 and β2 are the separation constants.
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For a given energy E, Eq. (2) defines the discrete spectrum
of parameter β1. The parabolic quantum numbers n1 and
n2, which correspond to separation constants β1 and β2 =
1 − β1, at negative energies are given by the conventional
equations [27]

n1 = nβ1 − (|m| + 1)/2 , (5)

n2 = nβ2 − (|m| + 1)/2 , (6)

where the parameter n is

n = 1/
√−2E. (7)

In the presence of the external field, the parabolic quantum
numbers n1 and n2 have noninteger values. For the states with
large values of n1, the quantum number n2 is negative.

The eigenvalue problem (2) can be easily solved by a
variational method, expanding the solutions on the basis of
hydrogen functions. Alternatively, in the physically relevant
region F � 1, the spectrum of the parameter β1 can be found
in frames of the perturbation theory [27].

The solutions of Eq. (3) belong to continuous spectrum and
describe the scattering and ionization processes. Analysis of
solutions of Eq. (3) is the most complicated and, at the same
time, the most physically interesting part of the problem. The
existence of exact solutions of this equation is the main focus
of our work.

The accurate analysis can be performed in the Laplace
representation

χ2(η) = η(m+1)/2
∫
L

eaηz e�/2ψm(z) dz , (8)

where

a = (F/4)1/3, � = z3/3 − ε z , (9)

and the function ψm(z) satisfies the equation for the quartic
oscillator

d2ψm

dz2
+

[
λ + m z −

(
z2 − ε

2

)2
]

ψm = 0 (10)

with

ε = −2E

(2F )2/3 , λ = 2

(2F )1/3 β2 . (11)

The Laplace transform of Eq. (2) is totaly analogous to that
of Eq. (3) and leads to equation for the quartic oscillator with
λ = −2β1/(2F )1/3.

In Refs. [25,28], we have performed a detailed study
of asymptotic properties of solutions of the quartic oscilla-
tor equation. The asymptotic representation of solutions at
|z| → ∞ is given by the Thomé series [29]

ψm(z) = Cm(z), Dm(z), (12)

where

Cm(z) = zm−1e−�/2
∑

n

cn/z
n , (13)

Dm(z) = z−m−1e�/2
∑

n

dn/z
n , (14)

and the coefficients cn and dn satisfy the recurrence relations

ncn + λcn−1 − ε (n − m − 1)cn−2

+ (n − m − 1)(n − m − 2)cn−3 = 0, (15)

ndn − λdn−1 − ε (n + m − 1)dn−2

− (n + m − 1)(n + m − 2)dn−3 = 0, (16)

with initial conditions

c0 = 1, c1 = −λ, c2 = 1
2 (λ2 + ε − ε m), (17)

d0 = 1, d1 = λ, d2 = 1
2 (λ2 + ε + ε m). (18)

The complex plane of the variable z is divided into six domains
by the anti-Stokes lines

arg z = i π/3 − π/6 , i = 1, . . . ,6 , |z| → ∞. (19)

These six domains are labeled by roman numbers from I
to VI counterclockwise, starting from the domain around
the semiaxis z > 0. The asymptotic representation of a
general solution of Eq. (10) in different domains is a linear
combination of functions C and D. The coefficients of this
linear combination change their value at the intersection of the
Stokes lines. The magnitude of these changes is determined
by the Stokes multipliers Tm,i , specific for ith domain (see
Refs. [25,28] for details).

In Ref. [30] we have shown that the amplitude of
the normalized wave function χ2(η) near origin η = 0 and
the phase of the function χ2(η) at η → ∞ are determined
by the Stokes multiplier T|m|,3:

χ2(η → 0) = a|m|/2

|T|m|,3| |m|! η(1+|m|)/2, (20)

χ2(η → ∞) = 1√
π a3/4η1/4

cos

[
2

3
(aη − ε)3/2

+ 3πm

2
− arg T|m|,3 + π

4

]
. (21)

The Stokes multipliers are revealed in many physical phenom-
ena. In Refs. [25,30] we have shown that the basic physical
properties of the Stark system can be expressed in terms of
the Stokes multipliers for the quartic oscillator equation. The
quantization condition for Eq. (2) is

T|m|,1(β1) = 0. (22)

The complex Stark resonances are the solutions of equation

T|m|,3(β2) = 0. (23)

The argument of the multiplier T|m|,3(β2) defines the scattering
phase. The absolute value of the Stokes parameter T|m|,3
determines the photoionization cross section.

The Stokes multipliers have been found in Refs. [25,28] in
an analytical form. The multiplier Tm,1 for arbitrary energy
and the multiplier Tm,3 at positive energies are expressed
through the parameters of asymptotic solutions of recurrences
(15) and (16). The multiplier Tm,3 at negative energies has
been found in frame of complex asymptotic analysis. The
analytical expressions obtained in Ref. [25] for Tm,3 at negative
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energies contain undetermined parameters—the dynamical
phase and the dynamical amplitude. These parameters have
been calculated in Ref. [25] in semiclassical approximation at
the condition

ε � 1. (24)

The exact solutions, which will be described below, provide
possibility to check the accuracy of the semiclassical approach.

III. EXACT SOLUTIONS

Analyzing the asymptotic behavior of solutions of Eq. (10),
we have found that at some conditions this equation can
be solved exactly. Generally, the solution of the recurrence
equation (16) is the infinite sequence of coefficients dn. At the
same time, this sequence can be truncated in the case, when
the parameter m is negative:

m = −k − 1, k = 0,1,2, . . . . (25)

In this case, when the condition

dk+1 = 0 (26)

is fulfilled, all the subsequent coefficients will vanish auto-
matically, and the truncated asymptotic series (14) becomes
an exact solution of the quartic oscillator equation. This exact
solution can be recast in the form

ψm(z) = Dm(z) = e�/2
k∑

n=0

dnz
k−n . (27)

The condition (26) is a polynomial equation of |m|th order
in λ. Together with Eq. (4) it defines implicitly such a relation
between the energy and the field, which ensures the existence
of the solution of the Stark problem in an exact analytical form.
It can be shown that at low electric fields such solutions exist
for negative energies below the Stark resonances. In the limit
F = 0, these energies formally coincide with the Coulomb
levels

En = − 1

2n2
, n = n1 + n2 + |m| + 1, (28)

with

n1 = 0,1,2, . . . , (29)

but with negative values of the parabolic quantum number n2:

n2 = −1,−2, . . . ,−|m|. (30)

To calculate the wave function χ2(η) in the coordinate
representation, we insert expression (27) for the function
ψm(z) in the integrand of Eq. (8) and we take the integration
contour which starts in domain IV at z → −∞ and ends in the
asymptotic region of domain II:

χ2(η) = η−k/2
∫ eiπ/3∞

−∞
eaηz ez3/3−ε z

k∑
n=0

dnz
k−n dz . (31)

The calculation of the integral in Eq. (31) can be performed
analytically (see Ref. [31]) and leads to a complex expression
for the wave function

χ2(η) = π η−k/2[f1(ζ ) + i f2(ζ )], (32)

where the variable ζ is

ζ = ε − aη = −2E + Fη

(2F )2/3 , (33)

and the real functions f1,2(ζ ) are

f1(ζ ) =
k∑

i=0

(−1)idk−i Bi(i)(ζ ) (34)

and

f2(ζ ) =
k∑

i=0

(−1)idk−i Ai(i)(ζ ). (35)

Ai(ζ ) and Bi(ζ ) are the Airy functions. The superscripts in
parentheses, (i), denote the ith derivative of functions.

The exact solution χ2(η), which is given by Eq. (32), is not
physical, since it has the singularity at η = 0. This solution is
the combination of two terms,

g1,2(ζ ) = η−k/2f1,2(ζ ), (36)

each of which is also an exact singular solution of Eq. (3).
The regular physical solution can be obtained as a linear
combination of these two singular solutions,

χ2(η) = η−k/2[c1 f1(ζ ) + c2 f2(ζ )], (37)

where the coefficients c1 and c2 must be chosen from the
condition

χ2(η = 0) = 0, (38)

which can be satisfied at the choice

c1 = f2(ε), c2 = −f1(ε). (39)

Finally, the exact physical solution has the form

χ2(η) = η−k/2[f2(ε) f1(ζ ) − f1(ε) f2(ζ )]. (40)

IV. THE ASYMPTOTIC BEHAVIOR OF EXACT
SOLUTIONS

At small η, the behavior of the exact regular solution (40)
is determined by the Taylor series

χ2(η → 0) = η−k/2
∑

n

J (n)(ζ )
∣∣
ζ=ε

(−aη)n

n!
. (41)

In this equation, the function J (ζ ) is

J (ζ ) = f2(ε) f1(ζ ) − f1(ε) f2(ζ ). (42)

The derivatives J (n)(ζ )|ζ=ε can be calculated as

J (n)(ζ )|ζ=ε = lim
ζ→ε

J̃n(ζ ), (43)

where

J̃n(ζ ) = f2(ζ ) f
(n)
1 (ζ ) − f1(ζ ) f

(n)
2 (ζ )

= ηk/2g2(ζ ) [ηk/2g1(ζ )](n) − ηk/2g1(ζ ) [ηk/2g2(ζ )](n)

(44)

[see Eq. (36)]. As it was stated above, the functions gi(ζ )
are the exact solutions of Eq. (3). Calculating the derivatives
[ηk/2gi(ζ )]

(n)
sequentially one after the other for n = 1,2, . . . ,
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and taking into account at small η only the leading term
in Eq. (3), we replace at each step the second derivative of
functions gi(ζ ) by

d 2gi

dη2
= m2 − 1

4η2
gi = k(k + 2)

4η2
gi. (45)

As a result, in the limit of small η we get

[ηk/2gi(ζ )](n) = pn ηk/2−ngi + qn ηk/2−n+1g′
i ,

g′
i = dgi

dζ
. (46)

Here the parameters pn and qn satisfy the recurrence equations

pn+1 = k(k + 2)

4a2
qn − k − 2n

2a
pn,

qn+1 = pn − k − 2n + 2

2a
qn, (47)

p0 = 1, q0 = 0,

which have the simple solution

qn = k!

(k + 1 − n)!(−a)n−1 , pn = − k

2a
qn, n � 1. (48)

Substituting Eq. (46) into Eq. (44), we get

J̃n(ζ ) = ηk+1−nqn(g2 g′
1 − g1 g′

2). (49)

The expression in parentheses, i.e., Wronskian


 = g2 g′
1 − g1 g′

2, (50)

has some constant value, and it is seen from Eq. (49) that
k derivatives J (n)(ζ )|ζ=ε, n = 1,2, . . . ,k, are equal to zero,
while

J (k+1)(ζ )|ζ=ε = qk+1
 = 

k!

(−a)k
. (51)

The Wronskian 
 can be calculated as [see Eq. (49)]


 = η−kJ̃1(ζ ). (52)

Here J̃1(ζ ), Eq. (44), is

J̃1(ζ ) = f2(ζ )
df1(ζ )

dζ
− f1(ζ )

df2(ζ )

dζ
. (53)

The functions f1,2(ζ ) are given by Eqs. (34) and (35). Then,
Eq. (53) reduces to

J̃1(ζ ) =
k∑

i,j=0

(−1)i+j dk−idk−j [Ai(i)Bi(j+1) − Bi(i)Ai(j+1)].

(54)
According to the Airy equation,

� ′′(ζ ) = ζ �,

the derivatives of solutions �(ζ ) can be written in the form

�(i)(ζ ) = Pi(ζ )�(ζ ) + Qi(ζ )� ′(ζ ), (55)

where the polynomials Pi(ζ ) and Qi(ζ ) satisfy the recurrence
equations

Pi+1 = P ′
i + ζ Qi,

Qi+1 = Q ′
i + Pi, (56)

P0 = 1, Q0 = 0.

Several first polynomials are

P1 = 0, Q1 = 1,

P2 = ζ, Q2 = 0,

P3 = 1, Q3 = ζ, (57)

P4 = ζ 2, Q4 = 2,

P5 = 4ζ, Q5 = ζ 2,

P6 = 4 + ζ 3, Q6 = 6ζ.

Applying Eq. (55) to each of the functions Ai(ζ ) and Bi(ζ ),
we recast Eq. (54) in the form

J̃1(ζ ) = W

k∑
i,j=0

(−1)i+j dk−idk−j [PiQj+1 − QiPj+1], (58)

where W is the Wronskian

W = Ai(ζ ) Bi′(ζ ) − Bi(ζ ) Ai′(ζ ) = 1

π
. (59)

Now, Eq. (52) reads


 = W η−k

k∑
i,j=0

(−1)i+j dk−idk−j

× [Pi(ζ ) Qj+1(ζ ) − Qi(ζ ) Pj+1(ζ )]. (60)

The Wronskian 
 does not depend on η. Consequently, in this
sum of polynomials in ζ = ε − aη, all the terms with powers
less than k cancel each other. The term with the highest power
k corresponds to i,j = k and the coefficient before this term
is equal to (−1)k . As a result,


 = (a)k

π
. (61)

Finally, the derivative J (k+1)(ζ )|ζ=ε reduces to

J (k+1)(ζ )
∣∣
ζ=ε

= (−1)kk!

π
, (62)

and, at small η, the behavior of the wave function χ2(η)
is

χ2(η → 0) = − ak+1

π (k + 1)
η1+k/2 = − a|m|

π |m|η
(1+|m|)/2. (63)

Calculation of the asymptotic behavior of the function χ2(η)
at η → ∞ is straightforward. The function χ2(η) is given
by Eq. (40) with functions f1(ζ ) and f2(ζ ) from Eqs. (34)
and (35). Calculating the functions f1(ζ ) and f2(ζ ) in the
limit η → ∞, we take into account only the highest order
derivatives in the right-hand side of Eqs. (34) and (35). The
asymptotic forms of Airy functions are

Ai(ζ → −∞) = 1√
π |ζ |1/4 cos

[
2

3
|ζ |3/2 − π

4

]
, (64)

Bi(ζ → −∞) = 1√
π |ζ |1/4 cos

[
2

3
|ζ |3/2 + π

4

]
. (65)
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FIG. 1. The relative error of the semiclassical representation [25]
of the Stokes multiplier T2,3.

For the function χ2(η) we get

χ2(η → ∞) = −R a(2|m|−3)/4

√
π η1/4

cos

[
2

3
(aη − ε)3/2

+ 3πm

2
+ ϕ + 3π

4

]
, (66)

where

ϕ = 2 arctan

(
f1(ε)

R + f2(ε)

)
, R =

√
f 2

1 (ε) + f 2
2 (ε). (67)

As it was stated in Sec. II, the asymptotic behavior of the
wave function χ2(η) in a general case is given by Eqs. (20)
and (21), and it is determined by the Stokes multiplier T|m|,3.
Comparison of Eqs. (20) and (21) with Eqs. (63) and (66) leads
to exact analytical form of the Stokes multiplier T|m|,3 in the
solvable case:

|T|m|,3| = πR

(|m| − 1)!
, arg T|m|,3 = −π

2
− ϕ. (68)

V. CONCLUDING REMARKS

In this work we have found some exact solutions for the
hydrogen atom in a uniform electric field. These solutions are
given by Eq. (40), where the functions f1,2(ζ ), Eqs. (34) and
(35), are the finite sums of derivatives of Airy functions. The
condition of existence of these solutions is the polynomial
equation (26). Analysis of the asymptotic properties of the
exact solution made it possible to obtain an exact analytical
expression (68) for the Stokes multiplier T|m|,3, which is
of great importance, since it determines the positions of
resonances, the scattering phase, and the photoionization cross
section [25,30].

The exact analytical results provide a powerful tool for
testing various approximate methods and numerical results.
As an example, we have compared the exact values of the
Stokes multiplier T|m|,3 given by Eq. (68) with the data
calculated using the semiclassical representation of the dynam-
ical parameters in the analytical expressions from Ref. [25].
The comparison shows that the semiclassical approach has
satisfactory accuracy even for relatively small values of the
parameter ε. Figure 1 illustrates this result for the case |m| = 2.

APPENDIX: TWO SPECIFIC EXAMPLES

1. The case m = −1

The parameter k, which is defined by Eq. (25), is equal to
zero, and the condition of existence of exact solution, Eq. (26),
reads

d1 = 0 , (A1)

which leads to

β2 = 0 (A2)

[see Eqs. (18) and (11)]. At these conditions (i.e., m = −1,
β2 = 0), the function (40) becomes an exact solution of Eq. (3)
at arbitrary values of the energy E and the field F . In this case,
the sums in Eqs. (34) and (35) contain single terms and the
function (40) is simplified as

χ2(η) = Ai(ε) Bi(ε − aη) − Bi(ε) Ai(ε − aη). (A3)

Here the reduced energy ε and the force constant a are given
by Eqs. (11) and (9).

The set of energies, at which the analytical solution (A3)
can be applied, is determined by the eigenvalue problem (2)
with β1 = 1 − β2 = 1. In particular, at F � 1, this energies
are

E = − 1

2(v + 1)2 + 3F

2
(v + 1)2, (A4)

v = 0,1,2, . . . . (A5)

2. The case m = −2

In this case the parameter k is equal to unity and the
condition (26) reads

d2 = 1
2 (λ2 − ε) = 0. (A6)

This equation has two solutions,

λ = ±√
ε, (A7)

and leads to the following coupling between the energy E and
the parameter β2:

β2 = ±
√

−E/2. (A8)

At these conditions, the function (40) becomes an exact
solution of Eq. (3). The sums in Eqs. (34) and (35) contain
two terms and the function (40) has the form

χ2(η) = η−1/2{[±√
εAi(ε) − Ai′(ε)]

× [±√
εBi(ε − aη) − Bi′(ε − aη)]

− [±√
εBi(ε) − Bi′(ε)]

× [±√
εAi(ε − aη) − Ai′(ε − aη)]}. (A9)

The set of energies at which the analytical solution (A9) can
be applied is determined by the eigenvalue problem (2) with
β1 = 1 − β2 = 1 ∓ √−E/2. In particular, at F � 1, these
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energies are

E = − 1

2(v + 3 + n2)2
+ 3F

2
(v + 1)(v + 2), (A10)

v = 0,1,2, . . . , n2 = −1,−2. (A11)

Here n2 is the parabolic parameter given by Eq. (6).
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