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Stimulated Raman scattering of an ultrashort XUV radiation pulse by a hydrogen atom

Mihai Dondera* and Viorica Florescu†

Department of Physics and Centre for Advanced Quantum Physics, University of Bucharest, MG-11, Bucharest-Măgurele, 077125, Romania
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We consider the hydrogen atom H(1s) exposed to an ultrashort laser pulse with a central frequency ω0 ranging
from several hundreds of eV to 1.5 keV (≈55 a.u.) and a peak intensity of 3.51 × 1016 W/cm2. We study
the excitation of the atom by stimulated Raman scattering, a process involving pairs of frequencies (ω1,ω2).
These frequencies are non-negligible components of the pulse Fourier transform and they satisfy the condition
Eg + h̄ω1 = Eb + h̄ω2,Eg and Eb ≡ En being the ground-state and the excited-state energy, respectively. The
numerical results obtained by integrating the time-dependent Schrödinger equation (TDSE) are compared with
calculations in lowest order perturbation theory (LOPT). In LOPT we consider, in the second order of PT, the
contribution of the term A · P in the dipole approximation and, in first order of PT, the expression of A2 taken for
first-order retardation effects. (A denotes the vector potential of the field and P is the momentum operator.) We
focus on the Raman excitation of bound states with principal quantum numbers n up to n = 13. The evaluation in
perturbation theory of the A · P contribution to 1s-ns and 1s-nd transition probabilities uses analytic expressions
of the corresponding Kramers–Heisenberg matrix elements. At fixed pulse duration τ = 6π a.u. (≈0.48 fs), we
find that the retardation effects play an important role at high frequencies: they progressively diminish as the
frequency decreases until the contribution of A · P dominates over the A2 contribution for ω0 values of a few
a.u. We also study the dependence of the Raman process on the pulse duration for several values of ω0. In the
case ω0 = 13 a.u. (≈354 eV) where dipole and nondipole contributions are of the same order of magnitude, we
present the Raman excitation probability as a function of the pulse duration for excited ns, np, and nd states.
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I. INTRODUCTION

The construction of fourth-generation free-electron laser
(FEL) sources opens the way to the exploration of new
regimes in atomic and electronic processes, with major
applications in physics, chemistry, and biology. FELs can
produce femtosecond (fs) pulses at short wavelengths and high
intensities [1–3] and it is now possible to investigate nonlinear
processes in XUV and x-ray regimes [4]. These last years, we
have investigated stimulated Compton scattering (SCS) [5,6],
which is a two-color process leading to the ionization of
hydrogen atoms. It involves two photons of frequencies ω1 and
ω2, one absorbed, the other emitted. The frequencies satisfy
the condition

Eg + h̄ω1 = Ec + h̄ω2, (1)

where Eg and Ec are the ground-state and final-continuum-
state energies, respectively. Here it is worth noticing that
considerable progress has been realized in the production
of high-intensity two-color x rays at FELs (see Ref. [7] and
other references therein), opening the pathway to investigate
nonlinear processes with two colors, like SCS. The main
outcome of our previous studies is that nondipole effects play a
crucial role in SCS, and this for photon energies ranging from
several hundreds of eV to keV [8].
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In parallel with the technological progress evoked above
around FELs, a considerable activity has been devoted to
shorten the FEL pulse duration, from the fs to sub-fs domain
and below, see Refs. [9–11] for recent works and Refs. [12,13]
for reviews. Recent calculations of stimulated Raman transi-
tions at frequencies of 30–40 eV [14] have explored the case of
the sodium atom, and it has been shown that, at pulses durations
of few fs (1, 3, 5 fs), Raman redistribution can overwhelm
photoionization. The terminology of SRS has been given in
reference to a phenomenon discovered immediately after the
laser was invented [15,16].

In the present paper, following a previous letter [17], we
study stimulated Raman scattering (SRS) in hydrogen by an
ultrashort pulse. The pulse considered, whose duration is such
that the laser bandwidth �ω is of the order of (or larger than)
the Bohr frequency ωbg = (Eb − Eg)/h̄ (Eb being the energy
of an excited bound state), provides an infinite number of pairs
of frequencies ω1 and ω2 satisfying the condition ω1 − ω2 =
ωbg , thus making possible SRS through the absorption of a
quanta h̄ω1 and the stimulated emission of another quanta h̄ω2,
accompanied by the atomic transition g → b. In Ref. [17] only
the case ω0 = 55 a.u. was considered and the results were
obtained by numerical integration of TDSE. In a few cases
we compared with perturbation theory (PT) results without
giving details about the equations used. In the present paper we
investigate thoroughly SRS in a domain of frequencies ranging
from the XUV to soft x rays. At the peak intensity of I0 ≡
3.51 × 1016 W/cm2 used here and for the photon energy range
considered (about 100 to 1500 eV), the theory of tunneling is
not valid [the photon energy is much larger than the ionization
potential of H(1s) [18]] and the concept of the multiphoton
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process applies. In this context the validity of the perturbation
theory and of the dipole approximation remains to be checked,
in particular for photon energies of a few hundred eV. We focus
here on these two points.

The relative importance of the nondipole effects, through
the contribution of the A2 term and which has been already
noticed in the case of SCS [5], is found also in the present
study with the same explanation: the partial cancellation of
the second-order contributions related to A · P in the high-
frequency regime. This raises the question of determining the
frequency range where nondipole effects dominate SRS.

The calculations are done in the semiclassical theory:
the electromagnetic field is described classically while the
quantum mechanics is used to treat the electronic structure
of the atom. The electromagnetic field is taken as a pulsed
plane wave with pulse durations ranging from 1 fs to 100 as.
For the photon energies considered, which are well above
the ionization potential, the direct excitation of the hydrogen
atom by one-photon absorption is negligible, the bound-
state excitation is due to nonlinear processes involving the
absorption and emission of photons, like SRS.

We start Sec. II by reproducing, for further reference,
the expression of the Kramers–Heisenberg–Waller (KHW)
matrix element, given in Eq. (3). Then we present in
Secs. II B and II C, respectively, the electromagnetic pulse
and the approximate Hamiltonian operator used in the TDSE
calculations, following the method presented in our previous
publications [19,20]. We continue Sec. II by giving details on
our use of time-dependent perturbation theory. We show that
perturbation theory (PT) is an efficient tool for the study of
SRS under our conditions of laser wavelength and intensity,
both for the interpretation of TDSE results and as a “low cost”
procedure to describe the studied process.

Equations (19) and (20) represent the main results of
Sec. II. They show, in the case of a pulse, how the KHW
matrix element, modulated by a function characterizing the
pulse, determines the SRS amplitude. The numerical results
in Sec. III are based on the previously mentioned equations in
which the approximate form (8) is used for the KHW matrix
element. It contains in the first-order of PT the retardation
correction associated with the A2 term in the Hamiltonian and
the second-order contribution of A · P in dipole approxima-
tion. An approximate formula for the transition amplitude,
related to the KHW matrix element and pulse properties, is
presented in Eq. (26). All the probabilities calculated within
this LOPT treatment are proportional to I 2. The graphs in
Sec. III illustrate the dependence of the (total and partial)
Raman excitation probabilities on the central frequency and
pulse duration.

II. THEORY AND METHODS

For further reference we write the exact expression of
the nonrelativistic Hamiltonian for the electron in a central
atomic field V (r), in interaction with the electromagnetic field
described in the Coulomb gauge by the potential vector A,

H = 1

2me

P2 + V (r) − e

me

A · P + e2

2me

A2, ∇ · A = 0.

(2)

In the semiclassical formalism adopted here, A is a function
of the space coordinate r and time.

A. Kramers–Heisenberg–Waller matrix element
for bound-bound transition

We first write the expression of the Kramers–Heisenberg–
Waller matrix element between two atomic states |g 〉 and |b 〉
of a one-electron atom. It is convenient for what follows to
mention directly the particular case in which the absorbed
photon and the emitted photon of frequency ω and ω′,
respectively, have the same direction of propagation n and the
same linear polarization, taken as the z axis of the reference
system,

MKHW
bg (ω,ω′)

= 1

me

〈b|e−i ω′
c

n·rPzG
(+)(Eg + h̄ω)ei ω

c
n·rPz|g〉

+ 1

me

〈b|ei ω
c

n·rPzG
(+)(Eg − h̄ω′)e−i ω′

c
n·rPz|g〉

+ 〈b|ei
ωbg

c
n·r|g〉. (3)

The two frequencies ω and ω′ are connected by Eg + h̄ω =
Eb + h̄ω′. We have attached the label “KHW” in reference
to the names of Kramers and Heisenberg [21] who, by
using the principle of correspondence, introduced the formula
in a study of elastic radiation scattering on an atom, and
Waller [22] to whom the introduction of retardation effects
is due. The first two terms, representing the second-order
PT contribution of the term linear in the potential vector in
the Hamiltonian (2), involve the Green (resolvent) operator
G(+)(W ) = G(W + iε) = (W + iε − Ha)−1 and the last term
is the first-order contribution of the A2 term in the Hamiltonian.

In dipole approximation the last term vanishes and the
matrix element reads

MKH
bg (ω,ω′) = 1

me

〈b|PzG
(+)(Eg + h̄ω)Pz|g〉

+ 1

me

〈b|PzG
(+)(Eg − h̄ω′)Pz|g〉 (4)

or, in more compact form

MKH
bg (ω,ω′) = �DA

33 (Eg + h̄ω) + �DA
33 (Eg − h̄ω′), (5)

with

�DA
33 (�) ≡ 1

me

〈b|PzG
(+)(�)Pz|g〉. (6)

Note that now we use the upper subscript KH . Because the
ground state is an s (l = 0) state, the Kramers–Heisenberg
amplitude leads to final s and d excited states.

The first retardation correction in the expansion in 1/c of
the last term of Eq. (3),

i
ωbg

c
n · rbg, (7)

with rbg being the electron position matrix element, leads to p

excited states.
In the case of the Coulomb field, the matrix element (5)

can be analytically expressed in closed form, as shown in the
Appendix.
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The approximate expression of the SRS amplitude involved
in our calculations uses the “hybrid” form of the matrix
element (3), which only includes the dipole approximation for
the A · P terms and the first nondipole correction originating
from the term A2,

M(hyb)
bg (ω,ω′) ≡ M(KH )

bg (ω,ω′) + i
ωbg

c
n · rbg. (8)

B. Electromagnetic radiation pulse

The radiation pulse, taken with linear polarization along
the z axis and propagating along the direction n in the xy

plane, is described by a vector potential oriented along the
z axis with an amplitude A = A(t ′), t ′ = t − n · r/c. The
function A(t ′) is conveniently expressed as A(t ′) = A0f (t ′),
where A0 is its peak value and f (t ′) is its carrier multiplied
by a slowly varying envelope. For numerical simulations, as
in our precedent works, A(t) is nonzero over a time interval
(−τ/2, τ/2) where τ is the total pulse duration, and is chosen
to have a cos2 envelope.

The spectral properties of the pulse are characterized with
the Fourier transform ϕ(ω) of the function f (t):

ϕ(ω) =
∫

f (t)eiωtdt, f (t) = 1

2π

∫
ϕ(ω)e−iωtdω. (9)

The function |ϕ(ω)| reaches its maximum value for ω = ±ω0,
where ω0 is the central frequency of the pulse. An important
parameter for the process under study is the spectral width
�ω of the pulse, defined as the full width at half maximum
(FWHM) of |ϕ(ω)|2, and given in the case of a cos2 pulse by
�ω ≈ 1.44ω0/N , where N is the number of carrier cycles.

It will be seen in Sec. II E that, for the SRS description in
PT [see in particular Eq. (20)], the properties of the function


(ωbg,ω) ≡ ϕ(ω)ϕ(ωbg − ω) = ϕ(ω)ϕ∗(ω − ωbg), (10)

where ωbg is a Bohr frequency, play a decisive role. Here we
note that, for a quasimonochromatic pulse (i.e., a pulse with
very long duration), the function 
 takes negligible values due
to the fact that the laser bandwidth �ω goes to zero as the pulse
duration increases to infinity.

C. Approximate semiclassical Hamiltonian

With the laser pulse introduced in the Sec. II B, the
Hamiltonian operator (2) becomes

H = 1

2me

P2 + V (r) − e

me

A(t ′)Pz

+ e2

2me

A2(t ′), with t ′ = t − n · r/c, (11)

where V (r) = −e2/4πε0r is the atomic potential (e < 0 is
the electron charge in SI units). This expression is used as
starting point in Sec. II E to build the transition amplitudes
in PT. For the numerical integration of the TDSE, we
adopt an approximate form of the potential vector in the
Hamiltonian [5]; with the choice of x axis taken along the pulse
propagation direction n, A(t′) is given to a first approximation
by

A(t ′) ≈ A(t) + F (t)x/c, (12)

where F (t) ≡ −Ȧ(t) is the electric field in dipole approxima-
tion, and we get

H ≈ Ha + H(1)
DA + H(1)

RET + H(2)
RET. (13)

This approximate Hamiltonian is written as a sum of the
atomic Hamiltonian Ha ≡ P2/2me + V , of the interaction
term in dipole approximation (DA), H(1)

DA ≡ −(e/me)A(t)Pz,
and of two other terms describing nondipole corrections:
H(1)

RET ≡ −(e/mec)F (t)xPz and H(2)
RET ≡ (e2/mec)F (t)A(t)x.

We note that we neglected the terms of higher order in 1/c—a
procedure justified in the nonrelativistic theory—as in the
present case. At the same time we remark that the interaction
terms have a very simple structure (a time-dependent function
multiplied by a time-independent electron operator), which
is very convenient for numerical calculations. We also recall
the different selection rules associated to the three interaction
terms (l′ = l ± 1; m′ = m) for H(1)

DA,(l′ = l, l ± 2; m′ = m ±
1) for H(1)

RET, and (l′ = l ± 1; m′ = m ± 1) for H(2)
RET.

D. Nonperturbative approach

For the numerical integration of the TDSE corresponding
to the approximate Hamiltonian (13) we have used a spectral
method based on the expansion of the wave function

ψ(r,t) =
∑
n, l, m

e−iEnl t c(l,m)
n (t)unlm(r) (14)

in a discrete basis of the atomic Hamiltonian Ha—for
details see Refs. [19,20]. The coupled differential equations
satisfied by the coefficients c(l,m)

n (t) are integrated over the
pulse duration by using a Runge–Kutta method, with initial
conditions corresponding to the atom in the ground state 1s.
The populations of the excited states at the end of the pulse
are simply calculated by taking the squared moduli of the
coefficients in Eq. (14) at t = τ/2.

E. Perturbative method

Our approach relies on the time-dependent PT applied to the
Hamiltonian expressed in Eq. (11), where the terms A2(t ′) and
A(t ′)Pz are treated in first and second order of PT, respectively.
The time integrals involved in the general expression of the
transition amplitude Ag→b can be performed by using the
Fourier transform ϕ(ω) of the vector potential scaled to its
peak value, A(t)/A0, defined in Eq. (9). We give directly the
compact result obtained:

Ag→b = 1

2πih̄

(eA0)2

me

∫
dωϕ(ω)ϕ(ωbg − ω)Tbg(ω), (15)

where the integral in ω is on the real axis and

Tbg(ω) ≡ 1

me

〈b|ei
ωbg−ω

c
n·rPzG

(+)(Eg + h̄ω)ei ω
c

n·rPz|g〉

+ 1

2
〈b|ei

ωbg

c
n·r|g〉. (16)
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The integral in ω, denoted by J in the following, can be
recast in the form

J =
∫ ∞

ωbg/2
dωϕ(ω)ϕ(ωbg − ω)[Tbg(ω) + Tbg(ωbg − ω)].

(17)

But, using the explicit expression (16), we notice the relation

Tbg(ω) + Tbg(ωbg − ω) ≡ MKHW
bg (ω,ω − ωbg), (18)

with MKHW
bg being the KHW matrix element (3). Finally, we

have

Ag→b = 1

2πih̄

(eA0)2

me

J , (19)

with

J =
∫ ∞

ωbg/2
dω
(ωbg,ω)MKHW

bg (ω,ω − ωbg), (20)

where 
(ωbg,ω) is the function (10). The probability of the
transition induced by SRS is then

pg→b = |Ag→b|2 = (eA0)4

4π2h̄2m2
e

|J |2. (21)

Equation (20) shows that, in the case of a pulse, we meet
the KHW matrix element MKHW

bg (ω,ω′) of stimulated Raman
scattering in the presence of two fictitious monochromatic
fields with frequencies ω and ω′, satisfying the energy
conservation law

Eg + h̄ω = Eb + h̄ω′. (22)

The wave vectors of the two fields

k = ω

c
n, k′ = ω′

c
n, (23)

are along the pulse direction n, their difference being k − k′ =
ωbgn/c. We note that the contribution to J due to absorption
of two photons, coming for ω < ωbg (for which ω′ < 0), is
negligible for the photon energies corresponding to our pulse.

The numerical calculation of the matrix elements Mbg and
of the integral J appearing in Eq. (20) is a rather difficult
task, due to the presence of the Green operator and retardation
factors. This is why we use the form given in Eq. (8) for the
matrix element, with further approximations described below.

An efficient approximation of the amplitude (19) is obtained
by taking into account the spectral properties of the pulse,
manifested under the integral J by the overlap function (10).
The Bohr frequency ωbg and the pulse bandwidth �ω are the
two parameters which dictate the properties of 
. If �ω is
comparable with ωbg or higher, the overlap 
(ωbg,ω) of the
two Fourier transforms is significant. On the contrary, for �ω

less than ωbg the function 
(ωbg,ω) takes smaller values, going
to zero in the case of the monochromatic field. Practically,
the dominant contribution to the integral (20) comes from a
frequency interval I slightly larger than (ω0, ω0 + ωbg) (its
width depends on the ratio �ω/ωbg); the function 
(ωbg,ω)
taking negligible values outside this interval. Approximating
the matrix element Mbg(ω,ω − ωbg) over this interval by
its value at a frequency ω1 between ω0 and ω0 + ωbg (this

being equivalent to neglecting the variation of the second-order
coupling term, associated with A · P), one obtains

J ≈ KMKHW
bg (ω1,ω2), with ω2 ≡ ω1 − ωbg, (24)

with the notation

K ≡
∫
I
dω
(ωbg,ω) =

∫
I
dωϕ(ω)ϕ(ωbg − ω). (25)

If we adopt the approximation described above, the final result
for the transition amplitude is

Ag→b ≈ 1

2πih̄

(eA0)2

me

KMKHW
bg (ω1,ω2). (26)

The corresponding transition probability is

pg→b = |Ag→b|2 ≈ (eA0)4|K|2
4π2h̄2m2

e

∣∣MKHW
bg (ω1,ω2)

∣∣2
. (27)

The spectral properties of the pulse, manifested only in the
integral K, are partially separated from those of the atom, the
last ones entering in the matrix element MKHW

bg (ω1,ω2) and in
K through the parameter ωbg .

The optimal choice of ω1 is in the middle of the interval in
between ω0 and ω0 + ωbg . Thus we have

ω1 = ω0 + ωbg/2, ω2 = ω0 − ωbg/2. (28)

This choice leads to an improvement of the approxima-
tion (26) when the function 
(ωbg,ω) is symmetric around
ω1, 
(ωbg,ω1 − w) = 
(ωbg,ω1 + w). Indeed, in this case a
linear variation (not necessary small) of MKHW

bg (ω,ωbg − ω)
over the interval I (chosen symmetric around ω1) can be
ignored, since the integral

∫
I dω
(ωbg,ω)(ω − ω1) vanishes.

This situation arises in particular if the pulse has a shape
described by an even function of time. Then, to a very good ap-
proximation, its Fourier transform ϕ(ω) is an even function of
ω − ω0 (for positive frequencies ω) and the product 
(ωbg,ω)
is symmetric around ω1. We also note that ω0 and ω0 + ωbg

give the positions of the maxima of |ϕ(ω)| and |ϕ(ω − ωbg)|.
This explains why usually their product, equal to |
(ωbg,ω)|,
has a pronounced maximum at ω1 in the case �ω > ωbg .

In the numerical calculations we use the approximation (8)
to calculate the matrix element MKHW

bg . The formula (8),
used in conjunction with Eq. (26) or (19), has the nice
feature of leading, at the level of transition amplitudes or
excitation probabilities, to the separation of the A · P and A2

contributions. This is easy to understand, taking into account
that the corresponding selection rules are different: the first
term in Eq. (8) is responsible for the Raman transitions to the
ns and nd states, while the last term (related to retardation
effects) leads to transitions to np states.

III. RESULTS AND DISCUSSION

We report calculations of SRS for a laser pulse with the
peak intensity fixed at I0 = 3.51 × 1016 W/cm2 in a domain
of the central frequency ω0 ranging from 5 to 55 a.u.

Our numerical results are presented in Figs. 1 to 6. Data
obtained with the TDSE are shown only in Fig. 1. In all other
figures the results are provided by PT calculations; we did this
because we have found a very good agreement between the
output of these two approaches. We calculate the probability
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FIG. 1. Total excitation probability for a pulse with peak intensity
I = I0 and a total duration τ = 6π a.u. (≈0.48 fs). Comparison be-
tween results based on TDSE integration in different approximations
(see text) and on perturbation theory (PT).

of transition (21) in PT based on Eqs. (19) and (20), in which
for the element matrix M we use the dipole approximation in
the case of ns and nd transitions, with the analytic expressions
given in the Appendix. The approximation (7) is used for the
np transitions; the derivation of the analytic expression of the
associated amplitudes is straightforward.

First, we refer to calculations performed for a pulse
with a fixed duration τ = 6π a.u., whose the spectral width
�ω = 0.48 a.u. is close to the ionization potential of the
hydrogen atom. In Fig. 1 we present results based on TDSE
integration and PT equations. The quantity represented is the
total excitation probability, approximated by the sum over the
n = 2–13 contributions, as a function of the pulse frequency
ω0 = 5–55 a.u. The TDSE results are obtained: (i) in the
dipole approximation (labeled “TDSE, DA” in the figure),
(ii) including the first nondipole correction H(1)

RET beyond
DA (“TDSE, AP”), (iii) keeping only the interaction term
H(2)

RET originating from A2 term (label “TDSE, A2”), and (iv)
with the full Hamiltonian (13) (“TDSE, FH”). We also show in
Fig. 1 perturbative results corresponding to cases (i) and (iii),
indicated by the labels “PT, DA” and “PT, A2,” respectively,
and their sum (“PT, DA + A2”).

We start the discussion by analyzing in Fig. 1 the results
obtained with the TDSE. The comparison between TDSE-FH
and TDSE-DA shows that retardation effects are important in
the higher part of the frequency range, for ω0 > 20 a.u., and de-
crease progressively from high to low frequencies, becoming
negligible for ω0 < 10 a.u. We extend the comparison in order
to understand the relative role of the two nondipole corrections
H(1)

RET and H(2)
RET. Considering that, in Fig. 1, the “TDSE, AP”

results are very close to those of “TDSE, DA” over the whole
frequency interval, it is clear that the correction H(1)

RET plays a
minor role. This clearly indicates that the retardation effect is
mainly due to the term associated with A2, a feature directly
confirmed by the “TDSE, A2” calculation. We also note that
the TDSE and LOPT results agree well (for the intensity and

20 40 60
Pulse duration  (a.u.)
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-10
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-10

E
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(l)   2s, 14 a.u.

(u)  2p, 12 a.u.

(m) 2p, 13 a.u.

(l)   2p, 14 a.u.

FIG. 2. Results in PT for the excitation probability of 2s (contri-
bution of A · P in DA) and 2p states (contribution of A2), for a pulse
with peak intensity I = I0, and for several frequencies, indicated on
the figure. The circle symbols show the approximate PT results for
2s states, calculated by using Eq. (27). The labels “u,” “m,” and “l”
refer to upper, middle, and lower solid (dashed) lines, respectively.

frequency range considered), both separately, for the DA and
A2 calculations, but also regarding their sum. The agreement
between “TDSE, FH” and “PT, DA + A2” results is expected
since the selection rules in LOPT (given at the end of Sec. II C)
lead to different final-l values for “PT, DA” and “PT, A2,”
therefore the two contributions do not interfere.

In relation with Fig. 1, we have already noticed that the
dominant contribution comes in the upper frequency range
from the term A2, while in the lower-frequency part the
contribution of A · P dominates. Figure 1 clearly indicates
that the excitation mechanism changes within the interval
10–20 a.u., where a transitory regime is observed. To evaluate
more precisely at what frequency this change occurs we
compare in Fig. 2 the excitation probabilities for the states
2s (solid line) and 2p (dashed line), as a function of the pulse
duration, calculated in perturbation theory for A · P (in DA)
and considering only the nondipole term A2. The figure clearly
shows that the relative role of the latter two contributions is
inverted within the frequency interval 12–13 a.u. Decreasing
the frequency, the relative importance of the A · P term
increases rapidly. Figure 3, which differs from Fig. 2 by the
photon frequencies considered, shows that, within the range
ω0 = 4–6 a.u., the A · P (in DA) contribution overcomes the
A2 one by more than one order of magnitude.

Figures 2 and 3 also illustrate the closing of the excitation
channel at long pulse durations. The excitation probability
increases first in the range of short durations, reaches a
maximum, then goes to zero monotonically for long durations.
Increasing the pulse duration, the laser bandwidth decreases
and, for a duration of 50 a.u., the channel is practically closed.
This is expected because, in this case, the laser bandwidth has
a value �ω ≈ 0.18 a.u., slightly less than a half of the Bohr
frequency ω21 = 0.375 a.u.

We now examine the pertinence of the approximation lead-
ing to Eq. (26). We recall that, within this approximation, we
have assumed that the KHW matrix element in Eq. (20) varies
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FIG. 3. Same as Fig. 2, except that the frequencies considered are
4, 5, and 6 a.u. For visibility, a logarithmic scale is used on vertical
axis.

slowly with the frequency ω in the regions of interest. These
considerations lead to a simple expression of the transition
amplitude which finally involves a convolution product of
pulse Fourier transforms calculated at two fixed frequencies.
Calculations based on the approximate expression (26) are
presented only in the case of 2s transitions (Figs. 2 and 3). In
Figs. 2 and 3 we compare for the 2s state the PT results in
DA, given by Eq. (21) (full lines), with the corresponding
approximate PT results given by Eq. (27) (circles). The
agreement observed confirms, for the actual conditions, the
validity of the assumptions leading to Eq. (27).

In the next three figures (Figs. 4–6) we show results
for a fixed frequency of 13 a.u., also considered in Fig. 2
for transitions to 2s and 2p states. Here we extend the
presentation with the populations of ns, np, and nd states
shown, respectively, in Figs. 4–6, as functions of the pulse
duration. We also show the sum of the transition probabilities,
for n = 2–5 and n = 2–13 in Figs. 4 and 5, and for n = 3–5
and n = 3–13 in Fig. 6.
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FIG. 4. PT results for excitation probabilities 1s → ns, with
n = 2–5, and totals for n = 2–5 and n = 2–13. The peak intensity is
I0 and the frequency is fixed to 13 a.u.
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FIG. 5. The same as Fig. 4, now for np states.

Comparing Fig. 6 with Figs. 4 and 5, we note that the
excitation probabilities of nd states are much smaller (by
more than three orders of magnitude) than the excitation
probabilities of ns and np states, a feature already observed in
Ref. [17] at ω0 = 55 a.u. Here we also note that the excitation
probabilities of ns and np states have comparable values.

In each of the above-mentioned figures we remark that the
position of the maximum of the excitation probability shifts to
a lower pulse duration with the increase of n. Also, the figures
clearly show that the maximum value decreases rapidly with n;
this is well illustrated in Figs. 4 and 5 by the quasiconvergence
of the summation for n = 2–5. The similarity of Figs. 4–6 has
a simple interpretation on the basis of the approximation (27).
For a given pulse duration and quantum number n, the only
change from one figure to another is the value of the matrix
element Mbg , which depends at most on ω0 (and not on the
other pulse parameters). As a consequence, the frequency ω0

being the same in Figs. 4–6, the probabilities differ by a scaling
factor on the vertical axis.

Finally, it is important to mention that we have checked that
the results presented in Figs. 2–6 agree very well with TDSE
calculations. This confirms the pertinence of the perturbation
theory approach in our context. With the quadratic dependence
of the probabilities with the intensity for SRS, one may predict
much larger populations of bound states at higher intensities.
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FIG. 6. Same as Fig. 4, but for nd states (n � 3).
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Nevertheless, as noticed above, increasing the intensity, the
perturbation theory might loose its validity. Also, relativistic
effects of the order of 1/c2 or higher (in the atomic Hamiltonian
or field-atom couplings), not considered in this paper, might
become important. As recently demonstrated [23], at much
higher peak intensities (beyond 1020 W/cm2), for which
the validity of PT becomes questionable, the retardation
effects may change drastically the dynamics of excitation and
ionization processes.

IV. CONCLUSIONS

We have investigated the excitation of the hydrogen atom
in its ground state by stimulated Raman scattering of an
ultrashort pulse with central frequencies ranging from 100
eV to 1.5 keV and a peak intensity of 3.51 × 1016 W/cm2.
The process occurs at sub-fs pulse durations (or fs durations,
for the hydrogen atom initially in an excited state), for which
the spectral bandwidth of the laser pulse is of the order of
the Bohr frequencies of the atom. We used two approaches:
a nonperturbative one, based on the numerical integration of
the time-dependent Schrödinger equation, and a perturbative
method. Both approaches include nondipole contributions of
first order in 1/c, originating from the interaction terms in
the Hamiltonian. In the case of perturbation theory, we have
developed the general formulation for the transition amplitude
from which we have derived a simple approximate expression
[see Eq. (26)]. The latter equation is the product of two contri-
butions: the first factor is associated with the spectral properties
of the pulse while the second term contains the atomic matrix
elements; this simplifies considerably the calculations. There
is a very good agreement between TDSE and PT calculations.

For the high-frequency range, from 55 a.u. down to around
20 a.u., the numerical results show that the contribution of the
A2 term to the total excitation probability dominates by orders
of magnitude that of the A · P term. Therefore, in the latter
case, np states are preferentially populated, the population of
ns states is much smaller but dominates that of the nd states.
For the low-frequency domain, the roles of the interaction
terms are reversed, the A · P (in DA) term dominating the
effect for central frequencies of the order of a few a.u. The
transitory regime is located in the range 10–15 a.u., where the
probabilities are comparable. Below the latter frequency range

the dipole approximation is valid and SRS mainly populates ns

(and nd states to a lesser extent). It would be therefore of high
interest to explore SRS around free-electron laser facilities,
since these sources provide intense laser pulses in soft-x-ray
regime with short pulse duration; the case of frequencies of
few hundreds of eV is of particular interest in this context.
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APPENDIX: KRAMERS–HEISENBERG MATRIX
ELEMENT FOR 1s-ns AND 1s-nd TWO-PHOTON

TRANSITIONS

In the case of atomic hydrogen in the ground state, the
matrix element (5) has a compact analytic expression for both
ns and nd final states. In fact, analytic expressions for the two-
photon bound-bound matrix element are available for any pair
of bound states [24] and even with retardation included [25].
For the case we are interested in, according to Eq. (6) of
Ref. [26],

�
(DA)
33

∣∣
ns,1s

(�) = a(τ ) and �
(DA)
33

∣∣
nd,1s

(�) =
√

5b(τ ), (A1)

with τ = 1/
√−2�au, Re τ > 0, and �au the value of �

taken in atomic units. The invariant amplitude a(τ ) is a linear
combination of three F1 Appell functions of the variables

xn = (1 − τ )(n − τ )

(1 + τ )(n + τ )
and yn = (1 − τ )(n + τ )

(1 + τ )(n − τ )
. (A2)

The invariant amplitude b(τ ) is a combination of two of these
functions [see Eqs. (12)–(15) of Ref. [26]].

In the case n = 1 and n = 2 the amplitude b(τ ) vanishes.
The case n = 1 corresponds to Rayleigh scattering. In this
case, by using the standard integral representation of the
three Appell functions involved, the following simple result
obtained,

a(τ )|n=1 = 27τ 5

(1 + τ )8(2 − τ )
2F1(2 − τ, 4, 3 − τ ; x1) = 1

2

τ

2 − τ
2F1

(
1, 4, 3 − τ ;

x1

x1 − 1

)
, (A3)

coincides with the results of Gavrila given in Eqs. (54) and (55) of Ref. [27].
For n = 2 the result can be expressed simply as

a(τ )|n=2 = 211/2

35

[
3τ

2+τ
−2

1−τ

3−τ
2F1

(
1, 5, 4−τ ;

x2

x2−1

)]
, (A4)

in agreement with Refs. [28,29].
For n > 2 each Appell function reduces to a sum of (n − 2) hypergeometric Gauss functions of the variable yn. For n = 3

more compact expressions have been derived in Eqs. (29) and (30) of Ref. [30]. We have transformed them in order to eliminate
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the apparent singularity they present at τ = 3 and got

a(τ )|n=3 = 3
√

3

64(2 − τ )(3 + τ )

(
−9+24τ−11τ 2 + 5

(1 − τ )2(27 − 7τ 2)

(1 + τ )(3 + τ )(4 − τ )
2F1(1, − 1 − τ, 5 − τ ; x3)

)
,

b(τ )|n=3 = 3
√

3τ 2

8
√

10(2 − τ )(3 + τ )

(
1 + (1 − τ )2

(1 + τ )(3 + τ )(4 − τ )
2F1(1, − 1 − τ, 5 − τ ; x3)

)
. (A5)

For large values of the principal number n the amplitudes a(τ ) and b(τ ) decrease as n−3/2 [see Eqs. (21)–(23) of Ref. [26]].
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