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Strong-field ionization via a high-order Coulomb-corrected strong-field approximation
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Signatures of the Coulomb corrections in the photoelectron momentum distribution during laser-induced
ionization of atoms or ions in tunneling and multiphoton regimes are investigated analytically in the case of
a one-dimensional problem. A high-order Coulomb-corrected strong-field approximation is applied, where the
exact continuum state in the S matrix is approximated by the eikonal Coulomb-Volkov state including the second-
order corrections to the eikonal. Although without high-order corrections our theory coincides with the known
analytical R-matrix (ARM) theory, we propose a simplified procedure for the matrix element derivation. Rather
than matching the eikonal Coulomb-Volkov wave function with the bound state as in the ARM theory to
remove the Coulomb singularity, we calculate the matrix element via the saddle-point integration method by
time as well as by coordinate, and in this way avoiding the Coulomb singularity. The momentum shift in the
photoelectron momentum distribution with respect to the ARM theory due to high-order corrections is analyzed
for tunneling and multiphoton regimes. The relation of the quantum corrections to the tunneling delay time is
discussed.
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I. INTRODUCTION

In the strong-field ionization process of atoms and
molecules, the Coulomb field of the atomic core plays a
significant role for electron dynamics in the continuum and for
the asymptotic photoelectron momentum distribution (PMD);
see, e.g., [1,2]. Different schemes of attosecond spectroscopy
[3,4] rely on PMD to derive information on the time-resolved
atomic dynamics. Hence, an accurate description of Coulomb
effects is of paramount importance for the strong-field theory.
One of the main analytical tools in the strong-field theory is
the so-called strong-field approximation (SFA) [5–7]. In the
standard SFA, the effect of the Coulomb field of the atomic
core for the continuum electron is neglected, describing it
via the Volkov wave function [8], corresponding to the free
electron in a plane laser field. Although including the effect
of the Coulomb field of the atomic core by a perturbative
approach in the standard SFA as a recollision was very
insightful, providing an explanation for the nonsequential
double ionization [9], high-order-harmonic generation [10],
and recently the low-energy structures [11,12], the quantitative
description of fine interference structures in PMD (see, e.g.,
[13]) requires a more accurate theory, accounting for Coulomb
field effects nonperturbatively.

The Coulomb-corrected SFA (CCSFA) has been developed
in [14,15], where the electron continuum state in the SFA
amplitude is approximated by the eikonal Coulomb-Volkov
state. The latter describes the electron in the laser and
Coulomb fields, using the eikonal approximation [16] to treat
the Coulomb field effect. The main difficulty of CCSFA
mentioned above is that the phase of the continuum wave
function has a singularity near the core and the wave function
cannot be straightforwardly applied in the calculation of the
SFA matrix element. The singularity is removed using the
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matching procedure of the eikonal Coulomb-Volkov wave
function with the bound atomic state. More recently, a new
version of CCSFA has been derived more systematically in
[17–19], rigorously implementing the matching procedure in
the analytical R-matrix (ARM) theory.

The aim of this paper is twofold. First, we extend
CCSFA, considering high-order corrections to the eikonal
wave function for the continuum electron, and employ it in
CCSFA. We calculate PMD with the high-order CCSFA and
discuss the impact of the corrections on PMD. Second, we
propose a method to avoid the Coulomb singularity in CCSFA
amplitude without using the complex matching procedure of
the ARM theory. This is achieved by calculating the SFA
matrix element via the saddle-point integration method not
only by time, but also by coordinate. When neglecting the
high-order corrections, our method provides results which
coincide with the ARM theory.

The high-order Coulomb corrections to the eikonal
Coulomb-Volkov wave function contain classical and quantum
terms. Why is quantum correction to the eikonal Coulomb-
Volkov wave function important? Recently a lot of experimen-
tal effort has been directed towards measuring the tunneling de-
lay time during the laser-induced tunneling ionization [20–22].
The theoretical description of the tunneling delay time within a
fully quantum theory is still missing. In the first-order eikonal
CCSFA, the tunneling time is vanishing [23] because the
tunneling is described within the Wentzel-Kramers-Brillouin
(WKB) approximation where the wave function under the
barrier is real. Then usually a combined quantum-classical
consideration is applied to describe the tunneling delay time.
The ionization is described quantum mechanically and the
electron’s further propagation in the continuum is described
classically; see, e.g., [21]. In the quasistatic regime of tunneling
ionization, the known Wigner formalism [24] can be applied
to calculate the tunneling delay time as a energy derivative
of the phase of the electron wave function under the barrier
[25,26]. In the second step, the derived tunneling delay time
is included into the initial conditions of the further classical
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propagation. However, in the nonadiabatic regime, when the
tunneling delay time is comparable with the laser period, the
Wigner formalism is not applicable conceptually. In this case,
there is a desire for a systematic description of the modification
of PMD due to the ionization delay time. In this context, the
quantum corrections in our CCSFA address the issue of the
impact of the Coulomb field of the atomic core on quantum
effects during ionization.

Note that the quantum recoil effects for the continuum
electron at photon emission and absorption in a strong laser
field have been first considered in [27] (the relativistic version
in [28]). CCSFA based on this wave function was proposed in
[29]; however, the final results were obtained only in the Born
approximation.

The structure of the paper is the following. In Sec. II, the
considered system is introduced. The scheme of CCSFA is
discussed in Sec. III. The results in the zeroth- and first-order
SFA are presented in Secs. IV and V. Comparisons with
the ARM and Perelomov-Popov-Terent’ev (PPT) theories are
given in Secs. VI and VII. Our main result—the second-
order SFA containing quantum corrections—is presented in
Sec. VIII. The relation of the high-order CCSFA to the
ionization delay time is analyzed in Sec. IX, and to the heuristic
quasiclassical theory of [30] in Sec. X.

II. THE CONSIDERED SYSTEM

We consider the ionization process of an atom (ion) in a
strong laser field. Our description is one dimensional (1D).
The active electron in the free atomic system is bounded by a
1D Coulomb potential,

V (x) = − Z

|x| , (1)

with the nuclear charge Z. Atomic units are used throughout.
Our aim is to develop a framework for high-order CCSFA
for further extension in a 3D case. For this reason, rather
than choose the very deeply bound ground state of a 1D atom
[31,32], we assume that initially the 1D atom is in the first
excited state with the Rydberg-like eigenenergy, Ip = κ2/2,
and with the following wave function [33]:

〈x|φ(t)〉 = κ(2κx)Z/κ√
2Z�

(
2Z
κ

) exp(−κ|x| + iIpt)

≡ ca exp[Sa(x,t)], (2)

Sa(x,t) = −κ|x| + iIpt + Z/κ ln(2κx), (3)

ca = κ√
2Z�

(
2Z
κ

) . (4)

Note that the electron ground-state wave function in a 1D
soft-core potential has the same asymptotic form in the region
x � 1/κ , relevant to our calculations.

In this paper, our intention is to describe the ionization
step including the Coulomb effects at the tunnel exit. We do
not consider Coulomb effects at recollisions. Therefore, the
ionization of the atom is considered in a half-cycle laser pulse,

where the recollisions are excluded explicitly:

F (t) =
{
E0 cos(ωt) for |ωt | < π/2
0 for |ωt | � π/2,

(5)

with the laser field amplitude E0 and frequency ω. However,
our results are valid for a sinusoidal laser field when the
contribution of the recollisions and the frustrated ionization
are neglected. For the separation of the contribution of
recollisions in the photoelectron dynamics, a restriction on
the Keldysh parameter should be applied, γ � 2; see the
derivation below in Sec. V. Note that our theory generalized
in two or three dimensions would allow application for an
elliptically polarized laser field without restriction on the
Keldysh parameter because of lack of recollisions in that case.

We consider the nonrelativistic regime of the interaction
when the typical electron momenta in the bound state as well
as in the laser field are small with respect to the speed of light c:
κ/c � 1 and E0/(cω) � 1. We also exclude over-the-barrier
ionization, which implies that the typical laser electric field
Es is much smaller with respect to the atomic field strength:
Es/Ea < κ/16Z, with Es = E0 in the tunneling ionization
regime, Es = γE0 in the multiphoton-ionization regime, γ =
ωκ/E0 is the Keldysh parameter, and Ea = κ3 is the atomic
field. The depletion of the bound state is neglected. Finally, we
assume that the photon energy is much less than the typical
energies of the electron in the bound state Ip and in the laser
field Up: ω � Ip, Up with the ponderomotive potential Up =
E2

0/(4ω2), which are necessary for application of the saddle-
point integration (SPI) method in the calculation of the matrix
element. Within these restrictions, we describe the ionization
dynamics analytically with SFA, which will be explained in
the following section.

III. HIGH-ORDER COULOMB-CORRECTED
STRONG-FIELD APPROXIMATION

The dynamics of the electron is described by the
Schrödinger equation in the length gauge,

i∂t |ψ(t)〉 = H0|ψ(t)〉 − xF (t)|ψ(t)〉, (6)

with the unperturbed atomic Hamiltonian,

H0 = p̂2
x

2
+ V (x). (7)

We calculate PMD w(p) = |M(p)|2 analytically via the SFA
amplitude [9],

M(p) = −i

∫ ∞

−∞
dt〈ψp(t)|xF (t)|φ(t)〉, (8)

where |ψp(t)〉 is the solution of Eq. (6) with the asymptotic
momentum p. The approximate solution in the high-order
eikonal approximation is found using the following ansatz:

〈x|ψp(t)〉 ≡ ψp(x,t) = exp[iS(x,t)]√
2π

. (9)

The latter is inserted into the Schrödinger equation which
yields an equation for the eikonal function S,

− ∂tS = (∂xS)2

2
− xF + α

[
V (x) − i

∂xxS

2

]
, (10)
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where we introduce an artificial perturbation parameter α,
which we will set to unity later, such that we consider
the Coulomb potential as well as the quantum correction
perturbatively. Foreseeing the subsequent calculation, we can
insert the typical value for the coordinate x ∼ √

κ/Es and
time t ∼ κ/Es into the perturbation of the original differ-
ential equation, V ∼ Z/x ∼ Z

√
Es/κ and ∂xxS ∼ V t/x2 ∼

Z
√

Es/κ , and see that the quantum term is of the same
order as the potential one and the simultaneous perturbative
treatment of both of the terms is justified when E0 � Ea;
see Eq. (22) in [34].

In the usual eikonal approximation, in particular in [14,17],
the last quantum term ∂xxS is neglected and the atomic
potential is treated perturbatively in the eikonal equation (10).
In contrast to that, we include and take into account the
quantum term, as well as the atomic potential by perturbation
theory. The quantum term yields a correction to the eikonal
S(x,t) of the second order. Therefore, we also have to include
in the solution of the eikonal the second-order correction due
to the atomic potential. With the ansatz

S = S0 + αS1 + α2S2, (11)

the zeroth-, first-, and second-order equations read

−∂tS0 = (∂xS0)2

2
− xF, (12)

−∂tS1 = ∂xS0∂xS1 + V − i
∂xxS0

2
, (13)

−∂tS2 = (∂xS1)2

2
+ ∂xS0∂xS2 − i

∂xxS1

2
. (14)

The zeroth-order equation is the Hamilton-Jacobi equation for
the electron in the laser fields, which provides the well-known
Volkov action [8] for the electron in the laser field,

S0(x,t) = [p + A(t)]x +
∫ tf

t

dt ′
[p + A(t ′)]2

2
. (15)

The first- and second-order equations are solved with the
method of characteristics:

S1(x,t) =
∫ tf

t

dt ′V (x(t ′)),

S2(x,t) =
∫ tf

t

dt ′

[∫ tf
t ′ dt ′′∂xV (x(t ′′))

]2

2

−i

∫ tf

t

dt ′
∫ tf

t ′
dt ′′

∂xxV (x(t ′′))
2

, (16)

where x(t ′) = x + ∫ t ′

t
ds[p + A(s)] is the electron classical

trajectory in the laser field solely, and A(t) is the laser vector
potential, with F (t) = ∂tA(t). Whereas S1 is a correction to the
phase of the ionizing electron due to the Coulomb potential
energy along the laser-driven trajectory, the (first) classical
term in S2 accounts for the perturbation of the Coulomb energy
due to the perturbation of the trajectory by the Coulomb field.

Further, we note that the terms in S0, S1 and the first term in
S2 are quasiclassical terms of the order of 1/h̄, and the second
summand in S2 is a quantum term of the order of h̄0. The
latter is a special feature of the 1D system. In a 3D Coulomb

system, this term does not exist due to the fact that �V (r) = 0
for r > 0.

We insert our approximate wave function for the con-
tinuum electron into the SFA amplitude of Eq. (8). The
two-dimensional integration in the matrix element is carried
out by the SPI method (the applicability of SPI for S0 CCSFA
is discussed in Sec. IV). For the latter, we exponentiate the
whole expression,

M(p) = − ica√
2π

∫
dtdx exp{−iS∗(x,t)

+ ln[xF (t)] + Sa(x,t)}, (17)

where ∗ indicates complex conjugation. The saddle-point
conditions

dζ (x,t)

dt

∣∣∣∣
(t,x)=(ts ,xs )

= 0,

dζ (x,t)

dx

∣∣∣∣
(t,x)=(ts ,xs )

= 0, (18)

with ζ (x,t) = −iS∗(x,t) + ln[xF (t)] + Sa(x,t), define the
saddle points (ts ,xs) around which the exponent is quadrat-
ically expanded in SPI. To be consistent with the expansion of
S(x,t), we also expand the saddle points (ts ,xs) up to second
order,

ts = t (0)
s + αt (1)

s + α2t (2)
s ,

xs = x(0)
s + αx(1)

s + α2x(2)
s , (19)

and solve the saddle-point equations perturbatively. The
corresponding zeroth-, first-, and second-order functions in
the exponent are

ζ0(x,t) = −iS0(x,t) + ln[xF (t)] + Sa,0(x,t),

ζ1(x,t) = −iS1(x,t) + Sa,1(x),

ζ2(x,t) = −iS∗
2 (x,t), (20)

with Sa,0(x,t) = −κx + iIpt , Sa,1(x)=Z/κ ln[2κx]. There-
fore, the zeroth-order saddle-point equations read

− ∂tS0(x,t) = −Ip + i
F ′(t)
F (t)

, (21)

∂xS0(x,t) = i

(
κ − 1

x

)
. (22)

The zeroth-order (t (0)
s ,x(0)

s ) solution is found numerically.
The higher-order equations are solved analytically and the
solutions as well as the SFA amplitude M(p) are expressed
by (t (0)

s ,x(0)
s ).

We may estimate the zeroth-order solution in a cosine-
electric field as t (0)

s ∼ arcsin[iκω/E0]/ω − i/
√

κEs and
x(0)

s ∼ √
κ/Es , which correspond to the solutions in the case of

a short-range potential. One can give a physical interpretation
for xs as the point where the ionization starts, i.e., at x < xs

the bound state is undisturbed, and at x > xs there is a nonzero
outgoing current. At any value of the Keldysh parameter,
the starting point of the ionization xs is smaller than the
exit coordinate, xs � xe. In fact, the exit coordinate for any
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γ is xe = (2/γ 2)(
√

1 + γ 2 − 1)(Ip/E0) [35]. Consequently,
xs/xe ∼ √

E0/Ea � 1 at γ � 1, and xs/xe ∼ √
ω/Ip � 1 at

a large γ . Note that the saddle point xs is also far away from the
atomic core, xsκ � 1, and therefore, the eikonal S1(xs,t) is not
singular. Thus, the electron always starts ionization under the
barrier far away from the core, but also far away from the exit,
1/κ � xs � xe. It is an analog to the matching coordinate in
ARM that fulfills the same conditions.

The derivation of the higher-order corrections to the saddle
points is straightforward, but cumbersome, and yields a large

analytical expression. We give only the structure of the first-
order solution of the (t,x) saddle points,

t (1)
s = −∂xt ζ0∂xζ1 + ∂t ζ1∂xxζ0

∂xt ζ
2
0 − ∂tt ζ0∂xxζ0

∣∣∣
x=x

(0)
s ,t=t

(0)
s

,

x(1)
s = ∂tt ζ0∂xζ1 − ∂t ζ1∂xt ζ0

∂xt ζ
2
0 − ∂tt ζ0∂xxζ0

∣∣∣
x=x

(0)
s ,t=t

(0)
s

. (23)

The structure of the SFA amplitude up to second order is the
following:

M(p) ≈ −ica

√
2π√

det ζ
exp

[(
ζ0 + αζ1 + α2ζ2 + α2 ∂xxζ0∂t ζ

2
1 − 2∂xζ1∂xt ζ0∂tζ1 + ∂tt ζ0∂xζ

2
1

2
(
∂xt ζ

2
0 − ∂tt ζ0∂xxζ0

)
)∣∣∣∣

(x(0)
s ,t

(0)
s )

]
, (24)

where det ζ is the Van Vleck–Pauli–Morette [36] determinant
of the matrix formed by the second-order derivatives of ζ ,

det ζ = det

(
∂xxζ ∂xt ζ

∂txζ ∂tt ζ

)
. (25)

2π/
√

det ζ arises from SPI and represents intuitively the
typical size of the volume element dxdt .

Finally, we determine the maximum of PMD via the
extremum condition,

∂w(p)

∂p

∣∣∣∣
p=pm

= 0, (26)

which is solved again perturbatively, pm = p(0)
m + αp(1)

m +
α2p(2)

m , providing the maximum of the probability amplitude,

M(pm) ∼ exp(ζ )√
det ζ

∣∣∣∣
p=pm

, (27)

with the function in the exponent being expanded up to second
order. In the next section, we will discuss the results of the
calculations. The results obtained in the nth − order expansion
are referred to as Sn CCSFA.

IV. S0 CCSFA

The ionization amplitude in the zeroth order,

M(p) ∼ exp(ζ0)√
det ζ0

, (28)

corresponds to the standard SFA describing the ionization from
short-range potentials with Z � κ . As a check of accuracy for
our SPI, we calculate analytically the S0 CCSFA amplitude for
a cosine-laser pulse and compare it with the PPT result [37].
The saddle point for the most probable final momentum, i.e.,
the position and time where and when the ionization dynamics
starts, can be given approximately analytically, where higher-
order terms in E0/Ea are dropped,

x(0)
s ≈

√
κ

Es

, (29)

t (0)
s ≈ arcsin[iγ ]

ω
− i√

κEs

. (30)

The latter provides PMD for ionization from a short-range
potential in the leading terms in E0/Ea ,

w(p)

= πκ2

eEs

exp

[
−κ3(−

√
γ 2+1γ+2γ 2 sinh−1 γ + sinh−1 γ )

2γ 3E0

− (p − p(0))2

�2

]
, (31)

where

p(0) =
∫ ∞

0
dtF (t) = E0

ω
(32)

is the most probable momentum, Es = E0

√
1 + γ 2, and

� =
√

Es√
κ[

√
1 + 1/γ 2 sinh−1(γ ) − 1]

(33)

is the width of the momentum distribution. We note that the
derived ionization amplitude differs from the PPT result in a
short-range potential by a constant factor of π/e ≈ 1.16, which
arises due to the approximate x integration with SPI in contrast
to the exact x integration in PPT. The SPI error mainly arises
due to the Gaussian x-integration region (−∞,∞) and can be
reduced to a factor of [1 + erf(1)]2π/4e ≈ 0.98 (cf. with Eq.
(8.16) of Chap. 3 in Ref. [38]), when the integration spans only
over the relevant region of the coordinate (0,∞). In fact, the
region behind the atomic core (x < 0) does not contribute to
the ionization. In the high-order calculations, the integration
region will be restricted in the same way. The application of
SPI does not change the scaling of the probability with respect
to the laser and atom parameters, but only gives an approximate
overall factor. The latter is also the case in high-order CCSFA.

Generally, the saddle-point approximation by time can be
improved by including the third-order term ∂ttt ζ0(x(0)

s ,t (0)
s )(t −

t (0)
s )3/6 in the integration around the saddle point. However,

the analysis of this term shows that it has no influence on the
momentum distribution of the ionized electron, and changes
the ionization probability only insignificantly due its relative
smallness that can be estimated by (E0/Ea)/72.
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V. S1 CCSFA

The Coulomb field effect on PMD is described by the
first-order correction terms to the eikonal wave function.
The correction that leads to a qualitative change compared
to the short-range potential case is the first-order Coulomb-
correction ζ1 in the exponent,

exp(ζ0 + ζ1)√
det ζ0

. (34)

Note that the preexponential term det ζ1 yields a contribution
which is small compared to the leading term in the order of
E0/Ea and is neglected in S1 CCSFA. This term is included
in the wave function of the next order, and its effect will be
discussed in S2 CCSFA.

The Coulomb-correction term in S1 CCSFA, exp(ζ1), has
two consequences. First, exp(ζ1) changes the magnitude of the
ionization probability via the following correction factor:

∣∣∣∣ ca

ca,0
exp

[
ζ1

(
x(0)

s ,t (0)
s

)]∣∣∣∣
2

≈
4Z/κ

(
1

4
√

γ 2+1
√

f

) 2Z
κ

�
(

2Z
κ

+ 1
)

× exp

{
4Z

κ
coth−1

[
(
√

γ 2 + 1 − 1)

γ

× coth

(
sinh−1(γ )

2
− γ

√
f

2 4
√

γ 2 + 1

)]}
. (35)

The expression above contains high-order E0/Ea terms which
should be neglected within the S1 SFA. When the leading
E0/Ea term is maintained, one arrives at the final result of S1

SFA,

∣∣∣∣ ca

ca,0
exp

[
ζ1

(
x(0)

s ,t (0)
s

)]∣∣∣∣
2

≈ 16Z/κ
(

E0
κ3

)− 2Z
κ

�
(

2Z
κ

+ 1
) , (36)

with ca,0 = √
κ/2π . We note that the ionization amplitude of

S0 CCSFA given by Eq. (31), with the correction factor of S1

CCSFA given by Eq. (36), reproduces the PPT-ionization rate
[37,39].

Second, ζ1 yields a shift of the momentum distribution due
to a momentum transfer to the Coulomb potential during the
motion of the ionized electron in the continuum immediately
after leaving the tunnel exit (we emphasize again that here
recollisions are not considered). The momentum shift derived
from the condition of the extremum of M(p), given by Eq. (26),
with S1 CCSFA, is shown in Fig. 1. We can also give an
analytical estimation of the momentum shift via ∂xζ1. It
consists of two terms. The first arises during the motion in
the half-cycle laser pulse and will be called �p

(1)
C , and the

second �p
(2)
C during the motion in the field-free time region

( )

( )

FIG. 1. (a) The Coulomb momentum shift vs the laser field
strength in the quasistatic regime γ = 0.1, Z/κ = 1 with the
quasiclassical S1 CCSFA (solid line), the quasiclassical S2 CCSFA
(dashed line), the quantum S2 CCSFA (dotted line), and the ARM
theory which coincides exactly with the curve via the S1 CCSFA
(dot-dashed line). The black dots display the result of the method
of Sec. X. (b) The ratio of the ionization rate at the peak of the
momentum distribution to the corresponding ARM-ionization rate
in the quasistatic regime γ = 0.1, Z/κ = 1 for the quasiclassical S1

CCSFA (solid line), the quasiclassical S2 CCSFA (dashed line), and
the quantum S2 CCSFA (dotted line). The black dots display the result
of the method of Sec. X.

after the laser pulse,

�p
(1)
C = E0Z

2
√

γ 2 + 1κ3

[
πγ 2 − 2(γ 2 + 1) tan−1(γ )

+ 2(γ 2 + 1) tan−1 γ − i√
γ 2 + 1

+ 2(γ 2 + 1)

× tan−1 γ + i√
γ 2 + 1

+ 2γ + π

]
,

�p
(2)
C = E0Zγ 3√

1 + γ 2κ3
, (37)

which in the static regime, γ � 1, is

�p
(1)
C ≈ πZE0

κ3
,

�p
(2)
C = 0, (38)
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FIG. 2. (a) The Coulomb momentum shift vs the Keldysh
parameter γ in the nonadiabatic regime ω = 0.02, Z/κ = 1 with the
quasiclassical S1 CCSFA (solid line), the quasiclassical S2 CCSFA
(dashed line), the quantum S2 CCSFA (dotted line), and for the
ARM theory (dot-dashed line). (b) The ratio of the ionization rate
at the peak of the momentum distribution to the corresponding
ARM-ionization rate vs the Keldysh parameter γ in the nonadiabatic
regime ω = 0.02, Z/κ = 1 for the quasiclassical S1 CCSFA (solid
line), the quasiclassical S2 CCSFA (dashed line), and the quantum S2

CCSFA (dotted line). The black dots display the result of the method
of Sec. X.

and in the nonadiabatic regime, γ � 1, is

�p
(1)
C ≈ πZE0

κ3

(
γ

2
+ 1

4γ
+ 2

π

)
,

�p
(2)
C ≈ γ 2ZE0

κ3
. (39)

In the latter, the electron trajectory x(t) ≈ xe + E0t/ω can be
used taking into account that the drift during the half-cycle
pulse from t = 0 up to T = π/2ω is small compared to the
tunnel exit xe and can be dropped. When �p

(2)
C � �p

(1)
C ,

which according to Eq. (39) is fulfilled at γ � 2, the initial
Coulomb momentum transfer can be separated from further
Coulomb effects. At the same condition, the initial Coulomb
momentum transfer can be separated from the Coulomb
momentum transfer at the laser-driven recollision in the case
of a sinusoidal laser field. Thus, our results related to the
initial Coulomb momentum transfer are valid up to γ � 2 for
a sinusoidal laser field. We emphasize again that we do not
consider the Coulomb effects at the laser-driven recollisions
and the frustrated ionization in this manuscript.

Figures 1(a) and 2(a) show the Coulomb momentum shift
estimated by Eqs. (38) and (39). The Coulomb momentum
shift relative to the characteristic photoelectron momentum
in a laser field, E0/ω, is derived by multiplying the values
in Figs. 1(a) and 2(a) by the factor πZω/κ3. One can
observe that the Coulomb momentum shift almost exactly
corresponds to the S1 CCSFA theory. Physically, this result can
be interpreted as a verification of the simple-man model [40],
where instantaneous tunneling up to the exit xe is followed by
classical propagation in the continuum, where the Coulomb
field of the atomic core induces a momentum shift,

�pC ≈ −
∫ ∞

0
dt∂xV (x(t)). (40)

The latter expression yields Eqs. (38) and (39) when the
electron trajectory x(t) is used with either static or nonadi-
abatic tunnel exit coordinate. In the nonadiabatic regime, the
Coulomb momentum shift is larger than in the quasistatic case
(see Fig. 2) because the nonadiabatic trajectory is close to the
atomic core for a longer time interval.

The approach of S1 CCSFA is physically equivalent to the
ARM theory. The only difference is in how the Coulomb
singularity is treated. While in the ARM theory a rigorous
matching of the electron wave function in the continuum to
the bound state is employed, in the S1 CCSFA, the Coulomb
singularity is avoided by simply using additional SPI for the
coordinate integration. In the next section, we provide in detail
the comparison of S1 CCSFA with ARM.

VI. COMPARISON OF S1 CCSFA WITH ARM THEORY

We provide a comparison of the ARM theory [17] with S1

CCSFA in Figs. 1 and 2, where the most probable momentum
and the corresponding rate are shown. The figures indicate
that the results of S1 CCSFA and ARM for the most probable
momentum as well as for the rate are mostly identical. There
is only a slight difference in the most probable momentum and
in the ionization rate in the nonadiabatic regime at large γ .
To understand why this slight difference arises, let us look at
the details. In the derivation of the ionization amplitude in the
ARM theory, one arrives at the following expression for the
amplitude:

MARM (p) = −i

∫
dt

κca√
2π

× exp[−iS0(b,t) − iS1(b,t) + Sa(b,t)] (41)

(this equation is the 1D analog of Eq. (28) of [17]), where b is
the matching point of the bound and the continuum states, and
the amplitude is approximately independent of the parameter
b. The latter implies that the exponent in the expression fulfills
the SPI condition at b. Using SPI for the time integration yields

MARM (p) ≈ −iκca

√
1

−∂ttS0(b,ts)

× exp[−iS0(b,ts) − iS1(b,ts) + Sa(b,ts)], (42)

with −∂ttS0(b,ts) ≈ κEs .
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On the other side, the SPI over the time and coordinate in
our S1 CCSFA yields

M(p) ≈ icax
(0)
s F

(
t (0)
s

) √
2π√

− det ζ
∣∣
(x(0)

s ,t
(0)
s )

× exp
[−iS0

(
x(0)

s ,t (0)
s

) − iS1
(
x(0)

s ,t (0)
s

)
+ Sa

(
x(0)

s ,t (0)
s

)]
, (43)

where − det ζ |
x

(0)
s ,t

(0)
s

≈ 2E2
s .

For comparison of Eqs. (42) and (43), we use b = x(0)
s as

the ARM amplitude does not depend on the matching point
within the barrier near the condition of the coordinate SPI.

In the further derivation of the final ARM expression in
[17], the factor exp(−Esb

2/2κ) is neglected and, after this
operation, the SFA amplitude, estimated for the typical values
for x(0)

s ∼ √
κ/Es and F (t (0)

s ) ∼ Es , differs from the ARM
amplitude by a constant factor

√
π/e, which is close to unity.

Thus, the reason for a small difference between the ARM
and S1 CCSFA theories is that in the S1 CCSFA, SPI with
respect to the coordinate is applied, which implies that higher-
order derivatives with respect to x are neglected. Meanwhile,
in the ARM theory, a term exp(−Esb

2/2κ) is neglected which
is of the same order. Therefore, the ARM and S1 CCSFA
theories are of the same accuracy.

VII. THE PPT COULOMB-CORRECTION FACTOR
IN THE NONADIABATIC REGIME

We stated in Sec. V that S1 CCSFA provides a Coulomb-
correction factor for the ionization amplitude which coincides
with the PPT theory [37]. Recently, a modification for the
Coulomb-correction factor to the PPT theory was calculated
in the nonadiabatic regime [41]. This factor is absent in
our S1 SFA because it accounts for the effect of frustrated
ionization [42,43], i.e., the capture of low-energy electrons in
the Coulomb potential of the atomic core after switching off
the laser field; meanwhile, we neglect all Coulomb effects far
from the tunnel exit (rescatterings and frustrated ionization).

To confirm that the additional Coulomb-correction factor
of [41] is due to frustrated ionization, one may derive this
factor heuristically, in analogy to the derivation in [35].
In the asymptotic PMD after switching off the laser field,
only electrons which gain sufficient energy in the laser field
can leave the Coulomb potential. This energy gain depends
on the ionization time, εe ∼ A(ti)2/2, with the ionization
time ti , and the laser vector potential of the sinusoidal field
A(t) = E0/ω sin(ωt), and has to be larger than the negative
Coulomb energy: εe > Z/xe = Z/κω. In the latter, we take
into account that the minimum of the asymptotic coordinate
cannot be smaller than the tunnel exit coordinate. From this it
follows that electrons that tunnel close to the peak of the laser
field are captured by the Coulomb potential and will not be
detected. Only electrons with a certain ionization time away
from the peak will be ionized. The reduction factor of the
ionization rate due to the capturing can therefore be estimated
via Eq. (31) at γ � 1,∣∣∣∣M(−A(ti))

M(0)

∣∣∣∣
2

≈
(

2γ

e

)−2Z/κ

, (44)

which coincides with the additional factor derived in [41]. As
our calculations do not include recollisions and the effect of
the frustrated ionization, this factor does not appear in our
calculations.

VIII. S2 CCSFA

The S1 CCSFA considered up to now provides results of
PPT and ARM theories, circumventing the necessity of the
wave-function matching procedure. The coincidence of the
results is due to the fact that the saddle point of the coordinate
SPI is rather far from the atomic core, where the eikonal
wave function for the electron is still valid. In this section,
we account for high-order corrections in the CCSFA approach
to go beyond the known results of PPT and ARM theories.

The S2 CCSFA contains a quasiclassical correction term
(∼1/h̄) as well as quantum correction terms (∼h̄0). One
quantum correction term is in the S2 term of the eikonal, and
the second is in the ionization amplitude due to the S1 term
in the prefactor (determinant), which has been neglected in
S1 CCSFA because of smallness; see Eq. (34). The SFA that
includes only the quasiclassical correction term in the second
order will be called quasiclassical S2 CCSFA, whereas the
CCSFA with all correction terms will be called the quantum
S2 CCSFA.

The second-order corrections to the ionization amplitude
are small and change the momentum distribution only quan-
titatively. The shift of the peak of PMD and the change of
probability at the peak of the momentum distribution due to
these terms are displayed for the quasistatic regime in Fig. 1,
and for the nonadiabatic regime in Fig. 2. In both regimes,
the second-order correction terms do not change the ionization
probability significantly, but increase the Coulomb momentum
shift compared to the S1 CCSFA result.

The three different correction terms have a distinct physical
origin. The second-order terms in the quasiclassical S2

CCSFA decrease the ionization probability and increase the
momentum shift. These changes are due to the decreases of
the effective potential barrier formed by the Coulomb field
of the atomic core and the laser field. In fact, the tunnel exit
coordinate taking into account the Coulomb field can be found
from the relation

−Ip = −E0x − Z

|x| , (45)

which can be solved exactly in x. An expansion of this solution
in E0/Ea gives

xe ≈ Ip

E0

(
1 − 4ZE0

κEa

)
. (46)

The S1 CCSFA contains the simple-man exit xe ≈ Ip/E0,
while in S2 CCSFA the tunnel exit shifts closer to the atomic
core due to the Coulomb correction according to the term of the
order of E0/Ea . This effect increases the Coulomb momentum
shift in the continuum according to Eq. (40).

Due to the Coulomb field effect according to the second-
order quasiclassical corrections, the tunneling probability de-
creases because of larger damping from the tunneling exponent
exp(− ∫ |p(x)|dx), with p(x) = i

√
2(Ip − xE0 + Z/|x|).

The same can be deduced from the SFA formalism. The
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decrease of the ionization probability is mainly due to the next-
to-leading-order E0/Ea corrections in the Coulomb-correction
factor neglected in the S1 CCSFA (the second term in the
bracket),

∣∣∣∣ ca

ca,0
exp

[
ζ1

(
x(0)

s ,t (0)
s

)]∣∣∣∣
2

≈ 1

2

(
4κ3

E0
− 2κx(0)

s

) 2Z
κ

. (47)

From this formula, one can observe that the Coulomb-
correction factor decreases with an increasing saddle point
x(0)

s , which fits the intuitive explanation above.
The quantum correction to S2 increases the tunneling

probability, which can be understood intuitively as a decrease
of the tunneling barrier. In fact, the quantum correction term
−i∂xxS/2 ∼ −ip′(x) in Eq. (10) is equivalent to an additional
term in the effective potential Veff = V − xF (t) − i∂xxS/2,
which decreases the effective potential and consequently
the coordinate of the tunnel exit. From this, it follows that
quantum corrections increase the ionization probability and
the Coulomb momentum shift in the continuum motion.

IX. RELATION TO THE IONIZATION DELAY TIME

Let us inspect the role of the different Coulomb quantum
correction terms in the ionization amplitude: the quantum
term in S2 and the correction term in the determinant due
to high-order terms originating from S1. We observe that
for the Coulomb momentum shift in both regimes, the
quasiclassical S2 and quantum S2 curves are very close to
each other; see Figs. 1(a) and 2(a). This indicates that the two
quantum corrections almost compensate each other. Whereas
the quantum term in S2 increases the momentum shift, the
correction term in the determinant decreases it, yielding to
an approximately net zero change. The role of the quantum
correction due to the determinant term is further clarified
in Fig. 3. The compensation is different in the quasistatic
and nonadiabatic regimes. While in the quasistatic regime
the overall momentum shift is positive (the determinant term
contribution is less important), in the nonadiabatic regime the
net momentum corrections are negative (the determinant term
contribution is more conspicuous).

Physically the momentum shifts can be interpreted as a
delay time at the detector in the attoclock-type setup [20]
with respect to the simple-man model prediction. The quantum
correction term in S2 induces a positive delay time and the
determinant term induces a negative delay time of the same
order in comparison to the simple-man result given by the
quasiclassical S2 CCSFA. We emphasize that the delay time
due to the Coulomb quantum corrections is an additional effect
on top of the Wigner delay time [24] at tunneling ionization
[26]. The latter is not described by CCSFA.

In the more realistic 3D case, the quantum correction in
S2 is vanishing as the term �V (r) = 0 in Eq. (13) for the 3D
Coulomb potential. Then, in the 3D case, the overall delay
time due to Coulomb quantum corrections will be connected
only with the determinant term and, consequently, will be
negative. Moreover, one can show that the time derivatives
of S(x,t) in the determinant are responsible for the negative
delay time, whereas spatial derivatives play a minor role for
this effect. This indicates that the negative delay time due

)(

FIG. 3. (a) The Coulomb momentum shift of the final momentum
vs the laser field in the quasistatic regime of γ = 0.1 via classical S2

CCSFA (dashed line), quantum S2 CCSFA including both quantum
corrections (solid line), and quantum SFA where the quantum
corrections in the exponent are dropped (dotted line). (b) The
Coulomb momentum shift of the final momentum vs γ in the
nonadiabatic regime of ω = 0.02 a.u. via classical S2 CCSFA (dashed
line), quantum S2 CCSFA including both quantum corrections (solid
line), and quantum SFA where quantum corrections in the exponent
are dropped (dotted line).

to Coulomb quantum corrections is not connected with the
spatial uncertainty of the bound state, but is an effect due
to quantum corrections in the continuum state. Furthermore,
one observes from Fig. 3 that the delay time effect increases
in the near-threshold regime (large E0/Ea), whereas in the
deep-tunneling regime, it is not significant. These are in line
with the specific properties of the tunneling ionization delay
time [26].

X. COMPARISON WITH THE HEURISTIC
QUASICLASSICAL METHOD

Finally, we discuss the relation of the results of our
systematic Sn CCSFA with the heuristic quasiclassical ap-
proach (HQA) of Ref. [30] for a nonperturbative treatment of
Coulomb field effects during the under-the-barrier motion in
strong-field ionization.

Briefly recalling HQA, we begin with the ionization
probability expressed via the quasiclassical propagator,

M(p) = i

∫
dxf dxdt exp(−ipxf )G(xf ,x,tf ,t)

× xF (t)
φ0(x,t)√

2π
, (48)
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with the quasiclassical Green’s function,

G(xf ,x,tf ,t) =
√

i∂xf ,x S̃c

2π
exp(iS̃c), (49)

and the quasiclassical action, evaluated along the classical
trajectory corresponding to the most probable electron,

S̃c =
∫ tf

t

dt

[
ẋ(t)2

2
+ xF (t) − V (x)

]
. (50)

The xf integral in Eq. (48) can be calculated via SPI, yielding

M(p) = i√
2π

∫
dxdt exp(−ipxf + iS̃c)xF (t)φ(x,t),

(51)

where ∂xf ,x S̃c/∂
2
xf

S̃c ≈ 1 was used. The quasiclassical action
fulfills the Hamilton-Jacobi equation:

−∂t S̃c = (∂xS̃c)2

2
− xF (t) + V (x). (52)

The saddle-point equations that occur when the x,t integral in
Eq. (51) is evaluated are

∂xS̃c = iκ − (Z + κ)i

κx
, (53)

−∂t S̃c = −κ2/2 + i
F ′(t)
F (t)

, (54)

which also define the initial momentum and energy of the
ionizing electron. These two equations are inserted into the
Hamilton-Jacobi equation yielding a new defining equation
for the saddle points,

2iκxsF
′(ts)

F (ts)
+ 2κx2

s F (ts) + κ2 − 2κ3xs + Z2 + 2κZ

κxs

= 0.

(55)

The latter can be simplified in the limit of F (ts) � κ3:

xs ≈
√

κ

F (ts)
. (56)

The under-the-barrier trajectory is derived solving Newton
equations in the laser and Coulomb fields numerically for
different ts , with the initial coordinate and momentum as a
function of the saddle time ts according to Eqs. (56) and (53).
Since we are interested in the peak of the final momentum
distribution, the most probable trajectory has to be found,
corresponding to a specific ts . This is accomplished via the
additional conditions defining the tunnel exit.

First, for the most probable trajectory, the coordinate
should become real at the tunnel exit Im{x(te)} = 0, and
second, the electron velocity along the tunneling direction
should vanish, ẋ(te) = 0. With these boundary conditions,
the Coulomb-corrected exit x(te) is then deduced from the
solutions of the Newton equations and also the asymptotic
final momentum p = ẋ(tf ) is derived.

An argument can be made for the most probable trajectory
as to why the initial electron velocity along the field direction
should be vanishing for any γ . First of all, this is the case in
SFA with the short-range atomic potential [44]. The Coulomb

atomic potential is only a perturbation for the tunneling barrier.
In the multiphoton regime additionally this perturbed barrier
is oscillating. In this picture, there is no significant physical
difference between the Coulomb free case and the case of
Coulomb atomic potential. Therefore, one may heuristically
apply this assumption also to the case when the Coulomb
potential is included.

It is true that different integration contours can be chosen
without changing the final electron momentum. For different
integration contours, the trajectory of the electron far from the
exit is the same, while in close vicinity of the exit, there are
still small deviations. Our choice of the contour is based on
the physical condition that the electron momentum along the
tunneling direction should be vanishing at the tunnel exit. In
this way, the most probable trajectory is determined.

The results of HQA are displayed as dots in Figs. 1 and 2.
They are in accordance with the classical S2 CCSFA results.
For strong fields, i.e., larger Es/Ea , HQA gives slightly larger
momentum shifts and ionization probabilities. This is due to
the fact that in the exact treatment of the Coulomb potential
in HQA, the tunneling barrier is smaller than the barrier in the
quasiclassical S2 CCSFA.

Further, we want to note that in the quasiclassical treatments
presented here, i.e., in the quasiclassical S0, S1, and S2

SFAs as well as in the HQA, the saddle points in time
and in coordinate for the most probable momentum fulfill
Re{ts(pm)} = 0 and Im{xs(pm)} = 0 in all considered regimes.
This indicates that in a quasiclassical description, tunneling
happens instantaneously and there exists neither a static
nor a nonadiabatic tunnel-ionization-induced time delay with
respect to the laser field maximum.

XI. CONCLUSION

We have investigated the role of high-order corrections in
the eikonal CCSFA. There are quasiclassical and quantum
second-order corrections to CCSFA. The second-order terms
in the quasiclassical S2 CCSFA decrease the ionization
probability and increase the momentum shift. These changes
are due to the decreases of the effective tunneling potential
barrier of ionization when the Coulomb field of the atomic
core is accounted for perturbatively.

There are two types of second-order quantum correction
terms which originate either from the S2 in the eikonal, or
the correction term in the prefactor due to high-order terms
stemming from S1. The first term is specific for the 1D
problem and absent in the 3D theory. The quantum term in
S2 increases the momentum shift, and the correction term
in the prefactor decreases it, yielding to a compensation.
However, the compensation is different in the quasistatic and
nonadiabatic regimes. While in the quasistatic regime the
overall momentum shift is positive, in the nonadiabatic regime
the net momentum corrections are negative.

Relating the momentum shift to the ionization delay time
at the detector as in the attoclock setup and taking into account
that in the 3D case the quantum correction in S2 is not present,
we may conclude that in the 3D case, the variation of the delay
time due to the Coulomb field effect will be negative due to
the solely determinant correction terms. The fact that time
derivatives in the determinant are responsible for the negative
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delay time points out that it can be related to the Wigner delay
time. Further, one observes that the delay time effect increases
in the near-threshold regime, whereas in the deep-tunneling
regime it is not significant. This property is characteristic for
the tunneling Wigner delay time.

Our approach for CCSFA in the first-order approximation
coincides with the ARM theory and demonstrates a simple
method to cope with the Coulomb singularity and circumvent
the matching procedure of the ARM theory by means of the
saddle-point integration of the amplitude not only by time but
also by coordinate.

The comparison of our heuristic quasiclassical approach
[30] for treating exactly the Coulomb effects for the

electron under-the-barrier dynamics during tunneling ioniza-
tion with the quasiclassical second-order CCSFA shows that
the heuristic approach gives slightly larger momentum shifts
and ionization probabilities. This stems from a more accurate
description of the tunneling barrier in the quasiclassical
heuristic method.
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S. Zamith, T. Marchenko et al., Science (NY) 331, 61 (2011).

[14] S. V. Popruzhenko, G. G. Paulus, and D. Bauer, Phys. Rev. A
77, 053409 (2008).

[15] S. V. Popruzhenko and D. Bauer, J. Mod. Opt. 55, 2573 (2008).
[16] J. I. Gersten and M. H. Mittleman, Phys. Rev. A 12, 1840 (1975).
[17] L. Torlina and O. Smirnova, Phys. Rev. A 86, 043408 (2012).
[18] L. Torlina, M. Ivanov, Z. B. Walters, and O. Smirnova,

Phys. Rev. A 86, 043409 (2012).
[19] J. Kaushal and O. Smirnova, Phys. Rev. A 88, 013421 (2013).
[20] P. Eckle, A. N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H. G.
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