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Reexamination of the interaction of atoms with a LiF(001) surface
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Pairwise additive potentials for multielectronic atoms interacting with a LiF(001) surface are revisited by
including an improved description of the electron density associated with the different lattice sites, as well as
nonlocal electron density contributions. Within this model, the electron distribution around each ionic site of the
crystal is described by means of a so-called “onion” approach that accounts for the influence of the Madelung
potential. From such densities, binary interatomic potentials are then derived by using well-known nonlocal
functionals. Rumpling and long-range contributions due to projectile polarization and van der Waals forces
are also included. We apply this pairwise additive approximation to evaluate the interaction potential between
closed-shell (He, Ne, Ar, Kr, and Xe) and open-shell (N, S, and Cl) atoms and the LiF surface, analyzing the
relative importance of the different contributions. The performance of the proposed potentials is assessed by
contrasting angular positions of rainbow and supernumerary rainbow maxima produced by fast grazing incidence
with available experimental data. One important result of our model is that both van der Waals contributions and
thermal lattice vibrations play a negligible role for normal energies in the eV range.
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I. INTRODUCTION

In the field of particle-surface interactions, one of the
most remarkable experimental advances of the past decade
corresponds to the observation of grazing incidence fast atom
diffraction (GIFAD or FAD) [1,2], which has emerged as a
powerful surface analysis technique [3–6]. It allows one to
inspect the electronic and morphological characteristics of
crystal surfaces with an exceptional sensitivity, becoming a
useful tool for investigating a wide variety of materials [7–10].

The accuracy of the surface information provided by the
FAD method crucially relies on the theoretical model used to
describe the surface potential. In previous articles [11–13] we
investigated the FAD process for different atoms impinging on
LiF(001) by using a pairwise additive approach to represent
the surface interaction. Pairwise additive potentials are built
as a sum of binary interatomic potentials that describe the
interaction of the atomic projectile with individual ionic
centers of the crystal. For insulator materials, like LiF,
where the electron density is highly localized around the
atomic nuclei, this simple potential model has been shown to
represent a reliable alternative to more complex self-consistent
ab initio calculations [12–17]. However, in most works the
binary potentials were derived by using the local density
approximation (LDA) to evaluate the kinetic and exchange
terms [18]. But the LDA does not include contributions
due to nonlocal electron density terms, which might play
an important role, especially for open-shell projectiles, with
partially occupied outer shells.

In this article we revisit previous pairwise additive models
[11,17] by incorporating nonlocal contributions of the electron
density, together with the improvement of the description
of the electron density associated with each ionic center of
the insulator. The interaction between rare gases (closed-shell
atoms) (He, Ne, Ar, Kr, and Xe) with fully occupied valence
shells, as well as open-shell atoms (N, S, and Cl) with vacancies
in the outer level, and a LiF(001) surface is studied. In
all the cases, the kinetic, exchange, and correlation terms
of the binary potentials are evaluated from well-established

nonlocal functionals, which depend on first- and second-
order derivatives of the electron density. The electron density
corresponding to each ionic center of the LiF crystal is obtained
from a so-called “onion” model that takes into account the
influence of the whole crystal lattice, i.e., the Madelung
potential [19]. The onion model considers the grid ions dressed
by a potential created by the whole crystal shell by shell.
Long-range contributions associated with polarization and van
der Waals (vdW) forces, produced by the rearrangement of the
atom and surface densities as a result of the mutual interaction,
are determined within a similar pairwise additive scheme.
Furthermore, a surface rumpling with a displacement distance
extracted from ab initio calculations [20] is considered.

With the aim of testing the proposed potential model,
we use it to evaluate angular distributions of fast atoms
grazingly scattered from the LiF surface along low-indexed
crystallographic channels. The collision process is described
within the surface initial-value representation (SIVR) approx-
imation [21–23], which is a semiquantum method that offers
a very good representation of the diffraction spectra, without
requiring the use of convolutions to smooth the theoretical
curves [24]. The validity of the surface potential model is
examined by comparing the angular positions of rainbow and
supernumerary rainbow maxima with available experimental
data. The rainbow peak corresponds to the outermost maxi-
mum of the projectile distribution, which has a classical origin,
while supernumerary rainbows are associated with FAD, being
produced by quantum interference inside the channel. These
deflection angles are extremely sensitive to the corrugation of
the surface potential across the incidence direction, resulting
in a useful magnitude to probe surface interactions.

In addition, since pairwise additive models present a com-
parative advantage in allowing the incorporation of thermal
displacements of crystal atoms with a lower computational
cost, in comparison with ab initio calculations [25], we analyze
the effect of thermal vibrations on FAD spectra.

The article is organized as follows. The constituent parts of
the binary interatomic potentials are summarized in Sec. II. In
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this section we also show the short-range binary potentials
for the different atomic projectiles (He, N, Ne, S, Ar,
Cl, Kr, and Xe) interacting with LiF(001), examining their
asymptotic limits. In Sec. III we derive the corresponding
total atom-surface potentials, including projectile polarization
and vdW contributions. In Sec. IV, angular positions of
rainbow and supernumerary rainbow maxima produced by
projectile incidence along the 〈110〉 and 〈100〉 channels of
the LiF crystal are compared with experimental data in order
to illustrate the soundness of the potential model. In such a
comparison, normal energies, associated with the projectile
motion perpendicular to the axial channel, in the range from
0.2 to 80 eV are considered. In Sec. V we investigate the
influence of thermal vibrations of the crystal on FAD patterns,
while our conclusions are outlined in Sec. VI. Atomic units
(e2 = h̄ = me = 1) are used unless otherwise stated.

II. BINARY INTERACTION MODEL

Within a pairwise additive scheme, the interaction between
an impinging atom and an ionic crystal surface, like LiF(001),
is described as a sum of binary interatomic potentials which
depend on the electron densities corresponding to the atom and
individual ionic centers of the crystal. In this section we will
summarize all steps required to build our binary interatomic
potentials, analyzing separately the asymptotic limits of each
contribution.

A. Ionic centers of the crystal: Onions

With the purpose of determining the electron density
corresponding to each ionic center of the LiF crystal, let us
consider a perfect cubic piece of crystal centered on an active
fluor ion. For this F− anion, immersed in the LiF crystal,
the corresponding multielectronic wave function �F can be
obtained by solving the Schrödinger equation associated with
the Hamiltonian

HF =
10∑
l=1

(
−1

2
∇2

r
l
− ZF

rl

+ V +
G (r

l
)

)
+ 1

2

10∑
k,l = 1
k �= l

1

rkl

, (1)

where r
l
is the position vector of the l electron (l = 1, . . . ,10)

with respect to the F− nuclear charge ZF = 9, rkl = |rk − r
l
| is

the interelectronic distance, and V +
G is the potential created by

the whole crystal grid, excluding the active F− ion. In Eqs. (5)
and (10) of Ref. [19] V +

G was approximated by a radial onion
potential produced by a series of charged shells. But these
discrete charged layers introduce structures in the potential,
which are difficult to handle. Therefore, in this work we fit the
previous grid potential [19] by means of a smooth potential,
here named Madelung potential, defined as

V +
G (r) � V +

M (r) = −1

r
+ e−r/λ
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[
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(
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where VM0 = 0.4600 a.u. represents the proper Madelung
potential at the origin [26] and the parameter λ is chosen to
verify that the spacial integral of V +

M (r) in the range (0, + ∞)
coincides with the one of the grid potential of Ref. [19], finding
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FIG. 1. Crystal potential, as a function of the radial distance r

to an F− site of the crystal lattice. Red thick solid line, Madelung
potential, V +

M , as given by Eq. (2); black thin solid line, radial grid
potential, V +

G , as given by Eq. (5) of Ref. [19]; blue dashed line,
asymptotic limit −1/r of the crystal potential.

λ � 0.3 a/2, with a = 7.60 a.u. being the lattice constant.
In Fig. 1 the potential V +

M (r) is plotted along with the grid
potential of Ref. [19]. Notice that V +

M (r) yields the correct
asymptotic limit at long distances, i.e., V +

M (r) → −1/r as
r → +∞, reproducing the Coulomb potential originated by
an unitary positive charge which renders the Coulomb hole
that the electron leaves behind when it is removed.

In a similar way, the two-electron wave function �Li

corresponding to an active Li+ cation, immersed in the LiF
crystal, can be derived within an onion treatment from the
approximate Hamiltonian

HLi
∼=

2∑
l=1

(
−1

2
∇2

r
l
− ZLi

rl

+ V −
M (rl)

)
+ 1

2

2∑
k,l = 1
k �= l

1

rkl

, (3)

where ZLi = 3 is the Li+ nuclear charge and
V −

M (r) = −V +
M (r).

For convenience, we call these dressed anion and cations
“onions”, denoting them as F−

@ and Li+@, respectively. The
unperturbed electron density associated with each individual
onion (F−

@ or Li+@) is obtained from the square modulus of
the corresponding wave function, �F or �Li, respectively. To
evaluate the electronic wave functions �F and �Li we carried
out full Hartree-Fock (HF) calculations from the Hamiltonians
of Eqs. (1) (with V +

M instead of V +
G ) and (3), respectively, using

the code NRHF by Johnson [27]. The original code was adapted
to incorporate the central potential V ±

M (r) and a grid of about
103 points was used in the numerical calculation.

Binding energies and mean radii derived from the electronic
wave functions �F and �Li of occupied and unoccupied states
are tabulated in Table I. From this table, the binding energy
of the F−

@(2p) is about −15 eV (−0.553 a.u.), agreeing fairly
well with the experimental finding of (−13 ± 0.3) eV for the
center of the surface valence band, measured with respect to
the vacuum level [28]. Also the ionization energies of F−

@(2s)
and Li+@(1s) are near to the experimental values [29], while
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TABLE I. HF bound energies and mean radii for the considered onions. All the values in atomic units.

F−
@(1s) F−

@(2s) F−
@(2p) F−

@(3s) F−
@(3p) F−

@(3d) Li+@(1s) Li+@(2s) Li+@(2p)

Enl − 26.17 − 1.447 − 0.5532 − 0.1593 − 0.0994 − 0.0559 − 2.348 − 0.2249 − 0.1499
〈r〉nl 0.1758 1.033 1.208 4.804 6.703 10.36 0.560 3.413 3.948

the ionization energy of the inner state F−
@(1s) is very close

to the value obtained as the energy of the isolated F−(1s) [30]
minus VM0.

At this point, notice that our onion model was derived by
considering crystal ions placed inside the bulk. An equivalent
calculation for surface ions requires of two changes: The value
of VM0 must be replaced by the surface value 0.442 a.u. and
the number of neighbors used to derive V ±

G must be varied
from 1330 (in the bulk) to 725 (at the surface). However,
these changes do not introduce a substantial variation of the
atom-surface potential (less than 1 eV) and hereafter we will
use the bulk onion model.

B. Binary interatomic potentials

Making use of the electron densities derived within the
onion model (Sec. II A), in this subsection we calculate
the binary interatomic potential between an onion O of the
crystal surface, with O = F−

@ or O = Li+@, and the impinging
atom A, as a function of the internuclear separation R. This
binary potential is here split into two terms: one named
short range that describes the static interaction between the
atomic projectile and the ionic center O by considering their
respective electron distributions as frozen, and the other, called
long range, which takes into account the rearrangement of their
electron densities as a result of the mutual interaction, but in a
perturbative way.

1. The short-range binary potential

The short-range potential that represents the static interac-
tion of a neutral atom A, of nuclear charge ZA and electron
density nA = nA(r) [30], with an onion O, of nuclear charge
ZO (ZF−

@
= 9 and ZLi+@ = 3) and electron density nO = nO(r),

can be approximated as a sum of four terms [31,32]:

V
(short)
AO (R) = Ve(R) + Vk(R) + Vx(R) + Vc(R), (4)

where R is the internuclear vector and Ve, Vk, Vx , and Vc are
the electrostatic, kinetic, exchange, and correlation potentials,
respectively. Due to the spherical symmetry of the interacting
partners, these partial potentials depend only on R = |R|.

As explained in Sec. II A, the electron densities nA and nO

are here obtained from full HF calculations. Then, our task is to
use them to build the partial potentials involved in Eq. (4). The
first term of Eq. (4) represents the well-known electrostatic
interaction, which reads

Ve(R) = ZAZO

R
−

∫
dr′ ZAnO(r)

|r − R| −
∫

dr
ZO nA(r′)
|r′ + R|

+
∫∫

drdr′ nA(r′)nO(r)

|R + r′ − r| , (5)

while the remaining terms (Vk, Vx , and Vc) can be derived as
[32]

Vj (R) = Ej [ntot(R)] − Ej [nO] − Ej [nA], for j = k,x,c,

(6)
by assuming that the total electron density of the atom-onion
system at a given internuclear separation R is given by [32]

ntot(R) = nO(r) + nA(r − R). (7)

In Eq. (6), the functionals Ej [n] for j = k,x,c represent
the kinetic, exchange, and correlation energies, respectively,
depending not only on the local electron density n(r), but also
on nonlocal magnitudes, like the gradient and the Laplacian of
the electron density.

In previous articles [12,13] we used the spin-restricted LDA
to evaluate Ek and Ex (Ec was neglected). In this article we do
a quality leap by introducing nonlocal approximations in terms
of ∇n and ∇2n, which allows us to obtain more accurate values,
but without losing the simplicity of Eq. (6). For the exchange
energy, j = x, we use the well-established spin-dependent
Becke (B) approximation given by Eq. (7) of Ref. [33]:

E(B)
x [n] = cx

∫
dr n(r)4/3[1 + βG(r)], (8)

where

G(r) = g(r)2

1 + γg(r) sinh−1 [g(r)]
, (9)

with

g(r) = |∇rn(r)|/n(r)4/3, (10)

and cx, β, and γ are constants [33]. Accordingly, for the kinetic
term, j = k, we use the Lee-Lee-Parr (LLP) approach given
by Eq. (6) of Ref. [34], which can be considered in a level
equivalent to the B exchange expression (in terms of the density
functional theory it is called “conjointness”):

E
(LLP )
k [n] = ck

∫
dr n(r)5/3[1 + αG(r)], (11)

where ck and α are constants [34].
For the correlation energy, j = c, we use the celebrated

Lee-Yang-Parr (LYP) approximation, given by Eqs. (20) and
(21) of Ref. [35], which are valid for closed- and open-
shell atoms, respectively, also including ∇2n. Hence, our
full approximation for kinetic, exchange, and correlation
terms should be called LLPB3LYP, that means Lee-Lee-
Parr+Becke+3-coefficient-Lee-Yang-Parr [36].

For the two different onions (F−
@ or Li+@) in Table II we

display results for total, kinetic, exchange, and correlation
energies, compared with HF values. For both onions, the
kinetic and exchange energies derived with the functionals
of Eqs. (11) and (8), respectively, are in better agreement
with the corresponding HF results than the ones obtained
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TABLE II. Total Etot, kinetic Ek , exchange Ex , and correlation Ec energies calculated with HF, LDA, LLP [34] [Eq. (11)], B [33] [Eq. (8)],
and LYP [35], respectively, for the two onions. All the values in atomic units.

E
(HF )
tot E

(HF )
k E

(LDA)
k E

(LLP )
k E(HF )

x E(LDA)
x E(B)

x E(LYP )
c

F−
@ − 103.766 99.866 91.151 99.624 − 10.545 − 9.449 − 10.423 − 0.363

Li+@ − 6.3414 7.200 6.507 7.253 − 1.656 − 1.507 − 1.640 − 0.0048

from the LDA. Also the total energies obtained including the
correlation term E(LYP )

c are close to the total HF values. Note
that the correlation energy E(LYP )

c of F−
@ is very similar to the

experimental value for Ne (−0.387 a.u. [35]), indicating that
this onion behaves almost as a dressed Ne atom. In this regard,
it is important to remember that the virial theorem does not
hold for this case because we are not dealing with a central
Coulomb potential since the potential V ±

M was added.
Results of our LLPB3LYP approximation for the short-

range binary potentials corresponding to F−
@ and Li+@ interact-

ing with closed-shell atoms (He, Ne, Ar, Kr, Xe) are displayed
in Fig. 2. In turn, in Fig. 3 we focus on projectiles having
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FIG. 2. Binary interatomic potential, as a function of the inter-
nuclear distance R, for different closed-shell atoms. (a) Absolute
value of F(short)

AO (R), given by Eq. (12), for the interaction of different
closed-shell atoms with F−

@ anions. (b) Analogous to panel (a)
for the interaction with Li+@ cations. In both panels, LLPB3LYP
results for different atom-onion pairs are plotted with different colors.
Projectile dipole polarizabilities, αA, and van der Walls contributions,
C

(6)
AO2R−2, are displayed in the ranges 8 a.u.� R � 10 a.u. and

10 a.u.� R � 12 a.u., respectively, as explained in the text.

open outer shells [N(4S), S(3
P ), and Cl(2

P )], which are fer-
romagnetic atoms corresponding to the so-called unrestricted
spin cases. For these latter projectiles, as well as for He, Ne,
and Kr, there are experimental data of rainbow and/or FAD
maxima available in the literature [13,17]. In Figs. 2 and 3, in
order to analyze straightforwardly the asymptotic limits of the
short-range potentials, results are displayed by means of the
function

F
(short)
AO (R) = V

(short)
AO (R)R(1 + 2R3), (12)

which makes evident the behavior at short and long distances.
At the origin F

(short)
AO (0) = ZAZO , indicating that the internu-

clear atom-onion interaction, given by the first term of Eq. (5),
provides the main contribution to the binary potential V

(short)
AO

for small R values. At large distances, instead, F
(short)
AO (R)

tends as V
(short)
AO (R)2R4, which competes directly with the

polarizability of the impinging atom αA [see Eqs. (13) and
(14) below]. Besides, as in these figures we are plotting the
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FIG. 3. Analogous to Fig. 2 for the binary interaction of open-
shell atoms—N(4S), S(3
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@ anions and
(b) Li+@ cations.
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TABLE III. Dipole polarizability αA, number of active electrons
NA, and C(6) coefficient for the considered atoms (A) [39,40,47] and
atom-onion pairs. All the values in atomic units.

A αA NA C
(6)
A−A C

(6)
A−F−

@
C

(6)
A−Li+@

He 1.38 1.36 1.42 7.02 0.29
N 7.40 2.57 24.2 29.7 1.02
Ne 2.67 3.59 6.20 14.4 0.62
S 19.6 4.24 134. 68.9 2.22
Cl 15.0 4.71 94.6 58.5 1.99
Ar 11.1 5.36 64.2 48.3 1.75
Kr 16.7 6.45 130. 68.8 2.41
Xe 27.3 5.96 261. 96.2 3.11

absolute value of F
(short)
AO (R), its sign must be indicated: At short

distances V
(short)
AO is always positive due to the static and kinetic

contributions, while at large distances V
(short)
AO is negative as

a consequence of the preponderance of the exchange and
correlation energies.

2. The long-range binary potential

By “long-range” binary potential we mean the potential
produced by the rearrangement of the electron densities
of the interacting partners, also known as dispersive force,
which dominates the long-distance behavior of the atom-onion
interaction. Within a perturbative treatment, the long-range
binary potential for the system composed by a target onion O,
with O = F−

@ or O = Li+@, and an incident neutral atom A

can be expanded as a power series of R, reading [37,38]

V
(long)
AO (R) → −C

(4)
AO

R4
− C

(6)
AO

R6
− C

(8)
AO

R8
− · · · , (13)

where R is again the internuclear distance. The coefficient of
first term of Eq. (13) is expressed as

C
(4)
AO = αA

2
, (14)

where αA is the static polarizability of the atom A. This
term is associated with the dipole momentum induced on the
projectile by the target onion O, reflecting the contribution
of the projectile polarization. In Table III we list the values
of the static polarizabilities for the considered projectiles,
as extracted from the bibliography [39,40]. Furthermore, to
compare the contribution of this term with the asymptotic
limit of V

(short)
O , the αA values are also displayed in Figs. 2 and

3 considering the range R = 8–10 a.u. where the dipolar term
results are relevant.

It is also interesting to investigate the following term of the
expansion of Eq. (13), which is governed by the coefficient
C

(6)
AO related to vdW forces. The role of vdW interactions in

surface scattering was study in recent works [41–45], being of
interest to understand FAD experiments involving molecular
projectiles [38]. The value of C

(6)
AO can be estimated by using

the formula of Slater-Kirkwood [46] as

C
(6)
AO = 3

2

αAαO

(
√

αA/NA + √
αO/NO)

, (15)

where αA and αO are the static polarizabilities of the atom and
the onion, respectively, and NA and NO are the numbers of the
corresponding active electrons (i.e., the external ones). Both
magnitudes are well known for atomic projectiles: The atomic
polarizabilities αA are given in Table III, while the NA values
can be calculated from the homonuclear coefficients C

(6)
AA [40]

in the usual way (see Eq. (2) of Ref. [47]). But for onions
the values of αO and NO must be specifically determined, as
explained in the Appendix A.

Using the onion values given by Eqs. (A1) and (A2),
together with the recommended atomic parameters [39,40],
listed in Table III, we obtain the C

(6)
AO values also tabulated in

the same table for the different atom-onion systems. For He
atoms, our C

(6)
AO coefficients are very close to the ones by Celli

et al. [48], obtained by fitting experiments of helium atoms
bound to a LiF surface. Moreover, from the C

(6)
AO values of

Table III we can evaluate the vdW contribution to the function

F
(long)
AO (R) = V

(long)
AO (R)2R4, (16)

which reads C
(6)
AO2R−2, also shown in Figs. 2 and 3 for R �

10 a.u. By comparing this contribution with F
(short)
AO and with

the projectile polarizability, we are able to estimate that vdW
forces affect binary interatomic potentials only at very long
distances, about or larger than 10 a.u.

Finally, before tackling the evaluation of the total atom-
surface potential, it is interesting to use the same potential
model to address the study of the interonion F−

@-F−
@, F−

@-Li+@,
and Li+@-Li+@ potentials, shown in Fig. 4(a). From these
potentials we evaluate the total energy per onion pair at the
bulk [49], which is displayed in Fig. 4(b) as a function of the
nearest-neighbor onion distance so. We can see that the curve
of Fig. 4(b) presents a minimum around so = 3.8 a.u., which

2 3 4 5 6 7
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8
10-4

10-3

10-2

10-1

100

101

(b)

B
ul

k 
en

er
gy

 p
er

 o
ni

on
 p

ai
r (

a.
u.

)

so (a.u.)

F-
@-Li+

@

(a)

Li+
@-Li+

@

F-
@-F-

@

In
te

r-
on

io
n 

re
du

ce
d 

po
te

nt
ia

l (
a.

u.
)

R (a.u.)

FIG. 4. (a) Interonion reduced potential (absolute value), as a
function of the internuclear distance R, for the following onion pairs:
F−

@-F−
@, F−

@-Li+@, Li+@-Li+@. Such reduced potentials were derived
within the proposed potential model by multiplying by R(1 + 2R3)
[analogous to Eq. (12)], after extracting the asymptotic Coulomb
interaction. (b) Energy per onion pair at the bulk, as a function of the
nearest-neighbor internuclear distance so. The vertical arrow indicates
the equilibrium position.
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is in very good agreement with the nearest-neighbor distance
corresponding to the real crystal, i.e., so = a/2.

III. TOTAL ATOM-SURFACE POTENTIAL

By using the short- and long-range binary potentials
introduced in Sec. II, we proceed to build the total atom-surface
potential W (RA) for an atom A interacting with a LiF(001)
surface. It reads

W (RA) = W (short)(RA) + W (long)(RA), (17)

where RA denotes the position of A with respect to origin of
the frame of reference, placed on a given ionic center of the
topmost atomic layer (in our case, an F−

@ site) and W (short)

(W (long)) represents the short- (long-) range contribution to the
total atom-surface potential.

The term W (short)(RA) is expressed as the sum of the binary
short-range potentials given by Eq. (4) as

W (short)(RA) =
∑

i

eiV
(short)
AOi

(ρi), (18)

where ρi = RA − Ri , with Ri being the position vector of
the onion labeled with index i (Oi), and the factor ei describes
the Evjen caging, that is, ei = 1 except for onions placed at the
limiting surface (ei = 1/2), at the arista (ei = 1/4) or at the
vertex (ei = 1/8 ) of the crystal sample. This caging warrants
the Coulomb neutrality of the considered portion of crystal. In
all our calculations, the sum on i includes 11 × 11 × 4 = 484
crystal sites. In addition, we considered a surface rumpling
with an outward (inward) shift of the positions of the topmost
F−

@ (Li+@) onions, relative to the unreconstructed surface, of
0.046 a.u., as extracted from the ab initio calculation of
Ref. [20]. In Fig. 5 we plot the short-range potential W (short)

for the atoms investigated in this work, as a function of the
normal distance to the surface, considering a position on top
of an F− site.

In contrast with the short-range contribution, the long-range
interaction W (long)(RA) cannot be obtained by simply adding
the corresponding binary potentials. The total long-range
potential is here split in two terms:

W (long)(RA) = U (dip)(RA) + U (vdW )(RA), (19)

where U (dip) and U (vdW ) correspond to the dipole and vdW
contributions, which are associated with the first and second
terms of Eq. (13), respectively. We stress that each of these
contributions is not pairwise additive.

The dipole potential U (dip)(RA) depends on the total electric
field produced by the different ionic centers of the crystal,
evaluated at the position of the atom A. It reads

U (dip)(RA) = −αA

2

∣∣∣∣∣
∑

i

Ei(RA)

∣∣∣∣∣
2

, (20)

where

Ei(RA) = fi(ρi)Z
(∞)
Oi

ρ̂i

ρ2
i

(21)

is the electric field produced by the asymptotic charge of
the onion Oi , with Z

(∞)
Oi

= −1 (+1) for Oi = F−
@ (Li+@),

ρ̂i = ρi/ρi , and fi(ρi) is a screening factor that avoids the
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FIG. 5. Absolute value of the short-range atom-surface potential
W (short)(zÂz), as defined by Eq. (18), as a function of the atom-surface
distance zA measured on top of an F− site. Interactions with different
(a) closed-shell and (b) open-shell atoms are displayed with different
colors.

divergence of this electric field at the origin. In this work the
function fi was evaluated, taking into account information
about the physics of adatoms, as explained in Appendix B.
It is noteworthy that the projectile polarization term given
by Eq. (20) strongly affects FAD spectra for incidence along
the 〈110〉 channel [11,13]. But for incidence along the 〈100〉
direction, the alternation of the opposite effective Coulomb
charges of the F−

@ and Li+@ onions along the channel makes the
polarization effect negligible [11,13].

In the case of the vdW contribution U (vdW )(RA), for the
sake of simplicity we evaluate it at a position on top of an F−
site; that is, at RA = zA ẑ, where the versor ẑ is oriented normal
to the surface, aiming towards the vacuum region. In the most
simple model, far from the surface U (vdW )(zA ẑ) can be derived
as the superposition of the binary vdW contributions [second
term of Eq. (13)], produced by a continuous distribution of
onions, reading

U (vdW )(zA ẑ)

→ −
∫ 0

−∞
dzo

∫∫ +∞

−∞
dxodyo

δv

(
C

(6)
AF−

@
+ C

(6)
ALi+@

)
[
(zA − zo)2 + x2

o + y2
o

]3

� − D
(vdW )

(zA − d)3
, (22)
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for zA → +∞, where

D
(vdW ) = π

6
δv

(
C

(6)
AF−

@
+ C

(6)
ALi+@

)
, (23)

δv = 4/a3 is the volume density of each onion, and d is a
reference distance that does not have direct relation with the
equilibrium position.

In relation to Eq. (22), we must mention that it does not
take into account the fact that the different dipoles induced in
the crystal by the projectile interaction screen each other [48].
For this reason, D

(vdW )
values derived from Eq. (23) should be

considered as an upper limit because they are expected to be
higher than those obtained from the approach by Lifshitz et al.
[50,51], which includes the proper screening. Remarkably, we
observe that the z−3

A dependence given by Eq. (22), which
gave rise to the famous potential V9−3 [51], starts to dominate
at distances farther than 10 a.u. This fact makes the influence
of U (vdW ) negligible for normal energies higher than 0.2 eV,
like the ones considered in this article, where closest distances
smaller than 5.3 a.u. are reached by the impinging atoms.

Concerning the importance of the vdW contribution, we
should draw the attention to H projectiles, for which a
completely different situation is observed. In the case of FAD
for H on LiF(001), a non-negligible role of vdW interactions
was recently reported in the low normal energy regime [45].
Such a noticeable vdW effect is compatible with the relatively
high C

(6)
AO values for hydrogen atoms, in comparison with

the corresponding short-range potentials, obtained within our
onion model: C

(6)
HF−

@
= 15.1 a.u. and C

(6)
HLi+@

= 0.47 a.u.

IV. COMPARISON WITH GRAZING INCIDENCE
EXPERIMENTS

With the goal of checking the quality of the proposed
surface potential we use the potential model within the
framework of the SIVR approximation in order to evaluate final
projectile distributions for swift atoms grazingly impinging
on LiF(001) along low-indexed crystallographic channels.
The SIVR approach [21,22] is a semiquantum method that
provides a clear representation of the main physical mecha-
nisms involved in FAD processes, describing them in terms
of classical trajectories through the Feynman path integral
formulation of quantum mechanics [52]. It incorporates an
adequate description of classically forbidden transitions on
the dark side of the rainbow angle, providing reliable FAD
patterns along the whole angular range [21,22].

Under axial incidence conditions [4], like the ones consid-
ered here, the angular distribution of scattered projectiles lays
on an annulus given by ϕ2

f + θ2
f ≈ θ2

i , where θf (θi) is the final
(incident) polar angle, measured with respect to the surface,
and ϕf is the azimuthal exit angle measured with respect to the
incidence direction in the surface plane, as shown in the inset of
Fig. 6. The typical FAD distribution displayed in such an inset
presents maxima symmetrically placed with respect to ϕf =
0, which are associated with rainbow and supernumerary
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FIG. 6. Rainbow deflection angle �rb, as a function of the normal energy E⊥, for closed-shell atoms (Ne and Kr) in the left column and for
open-shell atoms (S and Cl) in the right column. Panels in the upper and lower rows correspond to the incidence directions 〈110〉 and 〈100〉,
respectively. Red solid line, results obtained from the proposed LLPB3LYP model; blue dashed line, values derived from the LLPB model
(neglecting the correlation term); solid symbols, experimental data for different impact energies extracted from Refs. [13,17]. Inset: Depiction
of the FAD processes.

022710-7



J. E. MIRAGLIA AND M. S. GRAVIELLE PHYSICAL REVIEW A 95, 022710 (2017)

rainbow peaks. The outermost maxima of the spectrum are
produced by rainbow scattering, having a classical explanation,
while the inner peaks are related to supernumerary rainbows,
being originated by quantum interference among trajectories
with starting positions placed inside one reduced unit cell of the
crystal surface. Furthermore, for LiF surfaces when the final
projectile distribution is plotted as a function of the deflection
angle �, defined as � = arctan(ϕf /θf ), both the position
and intensity of the peaks become completely governed by
the normal energy E⊥ = E sin2 θi , which is related to the
motion in the plane perpendicular to the incident channel,
with E being the impact energy. The angular positions of
the peaks are strongly affected by the corrugation of the
atom-surface potential across the axial direction, making it
possible to probe the potential model for different distances
to the surface by varying the E⊥ value. Notice that for low
normal energies, both rainbow and supernumerary rainbow
peaks are present in FAD spectra, but when E⊥ increases
supernumerary rainbows start to blur out, and for large
energies only rainbow structures are observed in the projectile
distributions.

To show an overall picture of performance of the proposed
potential model, in Fig. 6 we plot the deflection angle
corresponding to the rainbow maximum, �rb, as a function
of E⊥, for closed-shell (Ne and Kr) and open-shell (S and Cl)
atoms grazingly colliding with LiF(001) along two different
channels: 〈110〉 and 〈100〉. In the figure, �rb values obtained
from the proposed pairwise potential model are compared
with available experimental data [13,17] considering a wide
normal energy range from 0.2 to 80 eV. Note that for high
normal energies, the angular positions of rainbow maxima
derived from the SIVR method agree with those obtained from
classical simulations due to the classical origin of rainbow
scattering. In the SIVR calculations, the atom-surface potential
was evaluated as the sum of a short-range contribution, derived
from the LLPB3LYP approach, and a long-range contribution
accounting for projectile polarization through the dipolar term
given by Eq. (20). The vdW contribution was not included
in the simulations because it was estimated as negligible, as
explained in Sec. III.

From Fig. 6 we observe that for closed-shell projectiles,
our potential model yields rainbow angles in very good accord
with the experimental data in the whole E⊥ range. But for
S and Cl projectiles, both open-shell atoms, the theoretical
�rb values agree with the experimental ones for E⊥ up
to 60 and 30 eV, respectively, running slightly below the
experiments at higher normal energies. This underestimation
of rainbow deflection angles in the high-normal-energy re-
gion is associated with a less corrugated potential energy
surface, which affects projectiles that reach the selvage region,
with maximum approach distances smaller than 2.0 a.u.,
where the density overlapping between the atom and target
ions occurs. In Fig. 6 we also investigate the influence of
the correlation term, usually left out in pairwise potential
models, by plotting �rb values obtained by neglecting the
correlation contribution Ec, that is, by using the LLPB
approximation, instead of the LLPB3LYP one, to represent
the short-range binary interactions. In all the spectra we
found that rainbow deflection angles derived from the LLPB
approach are very close to those obtained with LLPB3LYP,
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FIG. 7. Deflection angles � corresponding to maxima of FAD
distributions, as a function of the normal energy E⊥, for (a)
Ne (closed-shell) and (b) N (open-shell) atoms scattered along
the 〈110〉 direction. In both panels, red solid (blue dashed) line,
SIVR rainbow, and supernumerary rainbow angles derived from
the LLPB3LYP (LLPB) models, including (without including) the
correlation term. Symbols: experimental data for rainbow (circles)
and first (diamonds), second (up triangles), and third (down triangles)
supernumerary rainbow angles, extracted from Refs. [13,53].

indicating a weak effect of the correlation term on rainbow
scattering.

Additionally, in the low-energy region it is possible to
make a more exhaustive analysis of the surface potential by
using FAD patterns. In Fig. 7 angular positions of rainbow
and supernumerary rainbow maxima, obtained from SIVR
simulations for Ne (closed-shell) and N (open-shell) atoms
impinging on LiF(001) along the 〈110〉 direction, are compared
with experimental FAD data [13,53], as a function of E⊥.
These FAD maxima represent a sensitive test of the corrugation
of the potential across the channel. In this regard, we have
chosen the 〈110〉 channel, instead of the 〈100〉 one, because
the former presents a higher corrugation of the potential across
it, producing consequently richer diffraction patterns, with
a larger number of supernumeraries. Notice that the energy
range where supernumerary maxima can be experimentally
resolved depends on the projectile mass [13], being smaller
for Ne than for N impact. For Ne projectiles, the SIVR
approximation, using the proposed pairwise additive potential,
reproduces well the experimental positions of rainbow and
supernumerary rainbow maxima over the whole energy range.
But the experimental data are slightly underestimated when the
correlation term is neglected in the binary potentials. On the
contrary, for N projectiles the inclusion of the correlation term
gives rise to an increase of the deflection angles corresponding
to rainbow and supernumerary rainbow peaks, overestimating
slightly the experimental values, which are better reproduced
when the LLPB model, without correlation, is used in the
calculations. Similar behavior was also observed in FAD
spectra for He projectiles, which were investigated with the
present pairwise potential model in Refs. [21,22].
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FIG. 8. Angular FAD distribution, as a function of the deflection
angle �, for Ne projectiles impinging along the 〈110〉 channel with
E⊥ = 0.3 eV. Blue dashed (red solid) line, SIVR probability derived
from the LLPB3LYP model including (without including) thermal
vibrations.

V. THERMAL VIBRATION EFFECTS

In order to study the influence of the room temperature
on atom-LiF(001) interaction potentials and, consequently,
on FAD spectra, we incorporate thermal vibrations of the
crystal ions in our pairwise additive model. Due to the
comparatively fast velocity of the projectiles we evaluated the
effect of thermal vibrations on FAD distributions by averaging
SIVR probabilities corresponding to 100 fixed instantaneous
configurations of the crystal target. In each of these config-
urations, the more than 50 000 ionic centers that form our
crystal sample were randomly displaced from their equilibrium
positions, remaining then frozen during the evaluation of the
partial angular distribution. The random displacements of the
crystal ions follow Gaussian distributions with full-width-at-
half-maximum (FWHM) amplitudes extracted from Ref. [25],
corresponding to a temperature T = 300 K.

As illustrative example, in Fig. 8 we show the angular
distribution, as a function of the deflection angle �, for
Ne atoms grazingly impinging on LiF(001) along the 〈110〉
channel with a normal energy E⊥ = 0.3 eV. Results for T = 0
and 300 K, obtained without and with the inclusion of thermal
vibrations, respectively, are displayed in the figure. We found
that for T = 300 K thermal vibrations lead to a slight widening
of the supernumerary rainbow peaks, which is in agreement
with previous findings [54–56]. Also the peak intensities
decrease as a consequence of thermal vibrations, with this
effect being more pronounced for rainbow maxima than for
supernumerary rainbows. In contrast, the angular positions of
rainbow and supernumerary rainbow peaks are not affected by
the thermal fluctuations of the target, as expected under FAD
conditions [4].

In the considered scattering processes, the projectile is
mainly sensitive to the shape of the interaction potential
across the axial channel. A key parameter for a general
understanding of FAD patterns is the effective corrugation z,
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FIG. 9. Effective corrugation z of the He-LiF(001) potential
across the 〈110〉 channel, as a function of the normal energy E⊥. Blue
dashed (red solid) line, z values derived from the LLPB3LYP model
including (without including) thermal vibrations, as explained in the
text; green dot-dashed line, effective DFT corrugation from Ref. [20];
symbols, experimentally derived data extracted from Ref. [20].

defined as the normal distance between the minimum and the
maximum of the equipotential surface obtained by averaging
the atom-surface potential along the incidence channel [2,57].
In Fig. 9 we plot the effective corrugation of the He-LiF(001)
potential across the 〈110〉 channel, as a function of the normal
energy. Corrugation values for T = 300 K were derived from
the present LLPB3LYP pairwise additive model by averaging
z results for 100 instantaneous configurations of the crystal
sample, in an analogous fashion to the Ne-LiF(001) case. From
the comparison of the z curve for T = 300 K with the one
corresponding to T = 0 K, where target ions were kept in the
equilibrium lattice sites, we found that the room temperature
does not appreciably change the effective corrugation of the
potential [58]. These curves, almost indistinguishable each
other, run close to both experimentally derived data and ab
initio calculations from density-functional theory (DFT) by
Pruneda [20]. This good agreement represents an additional
evidence of the quality of our potential model in the eV range.

VI. CONCLUSIONS

We have derived a pairwise additive potential for neutral
atoms interacting with a LiF(001) surface by using modern
methods to describe binary potentials in terms of the electron
density. The model incorporates not only nonlocal contribu-
tions of the electron density but also the effect of the ionic
crystal lattice on the electron density around individual ionic
sites of the material, here named onions. For closed-shell (He,
Ne, Ar, Kr, and Xe) and open-shell (N, S, and Cl) atoms, the
short-range and long-range contributions to the corresponding
atom-onion potentials were analyzed as a function of the
internuclear distance, comparing the relative importance of
each term.

The degree of accuracy of the proposed atom-surface po-
tential model was illustrated by contrasting theoretical angular
positions of rainbow maxima with experimental data for axial
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grazing scattering with normal energies ranging from 0.2 to
80 eV. In this energy range the vdW contribution to the surface
potential was found as negligible. For two different incidence
directions—〈110〉 and 〈100〉—and closed-shell projectiles, the
rainbow angles derived from the proposed potential were found
to be in excellent agreement with the experiments in the
whole E⊥ range. For open-shell atoms, instead, an analogous
accord was observed up to intermediate E⊥ values, but in
the high-normal-energy region our theoretical results slightly
underestimate the experiment. In addition, the low-E⊥ region
of the surface potential was deeply probed by comparing
theoretical and experimental angular positions of rainbow and
supernumerary rainbow maxima, which are produced by very
sensitive FAD processes. Experimental data for closed-shell
Ne atoms as well as for open-shell N atoms were fairly
well reproduced by our surface potential. In all the cases the
correlation term was found to introduce a minor correction, its
effect being appreciable for low E⊥ values only. Furthermore,
we explore the contribution of thermal vibrations of the
LiF crystal at room temperature, finding that they play a
negligible role in FAD spectra as well as in the effective
corrugation of the potential. Therefore, we conclude that our
pairwise additive potential model can be used with confidence
for closed-shell atoms in the 0.2- to 80-eV normal energy
range and for open-shell atoms up to intermediate energies.
It is important to point out that such a potential model
presents the advantage of allowing one (i) to include thermal
effects with a low computational effort and (ii) to extract
straightforwardly information about the different interaction
mechanisms. Hence, the present pairwise additive model might
be a useful tool to scrutinize the influence of crystal defects
[59] in a future work.
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APPENDIX A: ONION POLARIZABILITIES

The polarizabilities of the F−
@ and Li+@ onions, namely, αF−

@

and αLi+@ , should slightly differ from the polarizabilities of the
free ions, given by αF− = 10.6 a.u. and αLi+ = 0.188 a.u. for
F− and Li+, respectively [39,60]. Then, we use the fact that
the polarizability is proportional to the volume [61] to estimate
the onion polarizabilities as

αF−
@

� 〈r3〉F−
@

〈r3〉F−
αF− = 8.69 a.u.,

αLi+@ � 〈r3〉Li+@

〈r3〉
Li+

αLi+ = 0.191 a.u., (A1)

where 〈r3〉j is the mean volume of the ion j , with j = F−,
Li+, F−

@, Li+@ [62].
Concerning the number of active electrons of the onion, we

exploit the rule of Ref. [47] that shows that the same number
of active electrons can be applied to an entire isoelectronic

sequence, no matter the charge state, without affecting the
accuracy of Eq. (15). Therefore, from Table III,

NF−
@

= NNe = 3.59,

NLi+@ = NHe = 1.36. (A2)

APPENDIX B: SCREENING FUNCTION DERIVED FROM
ADATOM EIGENENERGIES

In Eq. (21) we have introduced a screening function fi(ρi),
extracted from Ref. [37], which avoids the divergence of the
electric field at the origin. It reads

fi(ρi) = 1 − exp

(
− ρi

μi

)⎡
⎣ 2∑

j=0

1

j !

(
ρi

μi

)j

⎤
⎦, (B1)

where μi is a screening parameter defined as μi =
η(

√
〈r2〉Oi

+
√

〈r2〉A), with 〈r2〉Oi
and 〈r2〉A being the mean

square radii corresponding to the outer shell of the onion and
the atom, respectively, and η is an external factor that is here
calculated from the physics of adatoms as follows.

Atom-surface potentials calculated from Eq. (17) should
support adatoms in front of the LiF surface, that is, atoms
weakly bound to the surface [51]. In the case of physical ab-
sorption from a surface, the binding potential is characterized
by the depth of the attractive well Vb, the ground-state binding
energy Eb, and the equilibrium distance db from the surface, so
that around this position the potential behaves as a harmonic
oscillator. To compare with adatom values, we introduce an
averaged potential, without corrugation (planar), valid at a
large distance d from the surface, as

W (RA) � 1
2W (RF) + 1

2W (RLi) + W (Rhole), (B2)

where RA = RF = (0,0,d) is the position upon the F−
@

onion, RLi = (0,a/2,d) is the one upon Li+@, and Rhole =
(a/4,a/4,d) is the position upon the center of the reduced unit
cell (hole).

For He projectiles, using η = 0.7 and neglecting any vdW
contribution, we found that Vb = 8.0 meV and db = 2.99 Å, in
close agreement with the reported experimental data 8.5 meV
and 2.98 Å, respectively [51]. The so-obtained potential
W (RA) can be fitted with a Morse potential to give a binding
energy Eb = 5 meV that compares quite well with the best
estimated value of 5.9 meV [51]. Similarly, for Ne, using
η = 0.72, we found Vb = 12.7 meV and Eb = 10.9 meV,
while the reported data are 13.5 and 11.7 meV, respectively
[51]. For the remaining rare gases Ar, Kr, and Xe, we use
η = 0.67, 0.64, and 0.62, producing Vb = 69, 93, and 157
meV, comparable with the reported values 70 ± 10, 94.2, and
153 meV, respectively [51]. Therefore, the η value seems to
be rather universal and situates around 0.7, in accordance with
our previous findings [13,17,21]. In this work we used such a
value for our SIVR simulations.
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