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The interaction of two excited hydrogen atoms in metastable states constitutes a theoretically interesting
problem because of the quasidegenerate 2P1/2 levels that are removed from the 2S states only by the Lamb shift.
The total Hamiltonian of the system is composed of the van der Waals Hamiltonian, the Lamb shift, and the
hyperfine effects. The van der Waals shift becomes commensurate with the 2S-2P3/2 fine-structure splitting only
for close approach (R < 100a0, where a0 is the Bohr radius) and one may thus restrict the discussion to the
levels with n = 2 and J = 1/2 to a good approximation. Because each S or P state splits into an F = 1 triplet
and an F = 0 hyperfine singlet (eight states for each atom), the Hamiltonian matrix a priori is of dimension 64.
A careful analysis of the symmetries of the the problem allows one to reduce the dimensionality of the most
involved irreducible submatrix to 12. We determine the Hamiltonian matrices and the leading-order van der Waals
shifts for states that are degenerate under the action of the unperturbed Hamiltonian (Lamb shift plus hyperfine
structure). The leading first- and second-order van der Waals shifts lead to interaction energies proportional to
1/R3 and 1/R6 and are evaluated within the hyperfine manifolds. When both atoms are metastable 2S states,
we find an interaction energy of order Ehχ (a0/R)6, where Eh and L are the Hartree and Lamb shift energies,
respectively, and χ = Eh/L ≈ 6.22 × 106 is their ratio.

DOI: 10.1103/PhysRevA.95.022704

I. INTRODUCTION

Inspired by recent optical measurements of the 2S hyperfine
splitting using an atomic beam [1], we here aim to carry
out an analysis of the hyperfine-resolved 2S-2S system
composed of two hydrogen atoms. In the preceding paper [2]
we analyzed the long-range interaction between two hydrogen
atoms, one of which was in the 1S ground state and the
other one in the metastable 2S state. Here we turn to the
case where both atoms are in an excited state. For that we
use the simplest case at hand, namely, that where both atoms
are in the 2S state. The 2S-2S van der Waals interaction has
been analyzed before in Refs. [3,4], but without any reference
to the resolution of the hyperfine splitting [5]. The entire
problem needs to be treated using degenerate perturbation
theory, because the van der Waals Hamiltonian couples the
reference 2S state to neighboring quasidegenerate 2P states.
The latter are displaced from the former only by the Lamb
shift (in the case of 2P1/2) or by the fine structure (in the case
of 2P3/2). As was noted in Ref. [2], significant modifications
of the long-range interactions between two atoms result from
the presence of quasidegenerate states and the effects lead
to observable consequences. In a more general context, one
may regard our investigations as example cases for a more
general setting, in which two excited atoms interact, while in
metastable states (with quasidegenerate levels nearby).

The present work combines the challenges described in
Ref. [3], where the 2S-2S interaction is studied (but without
taking account of the fine and hyperfine structures), with the
intricacies of the hyperfine correction to the long-range inter-
action of two atoms, which have been studied in Refs. [6–9].
Indeed, it had been anticipated in Ref. [3] that a more detailed
study of the combined hyperfine and van der Waals effects

will be required for the 2S-2S system when a more detailed
understanding is sought. The main limitation of the method
followed here is that we will only consider dipole-dipole
terms in the interatomic interaction, in contrast to Refs. [3,4].
Hence, our analysis only yields reliable results for sufficiently
large interatomic separation. Inspection of the higher-order
multipole terms obtained in Refs. [3,4] clarifies that the dipole-
dipole approximation is already largely valid for interatomic
separations of the order of R = 20a0. [This is true for the
2S-2S system, upon which we focus here. Judging from Fig. 2
in Ref. [4], for higher principal quantum number (n = 4), the
range of relevance of higher-order multipole terms extends
further out, but these cases are beyond the scope of the current
investigation.]

Throughout this article, we work in SI mksA units and
keep all factors of h̄ and c in the formulas. In the choice of
the unit system for this paper, we attempt to optimize the
accessibility of the presentation to two different communities.
The QED community in general uses the natural unit system
with h̄ = c = ε0 = 1 and the electron mass is denoted by m.
The relation e2 = 4πα then allows us to identify the expansion
in the number of quantum electrodynamic corrections with
powers of the fine-structure constant α. This unit system
is used, e.g., in the investigation reported in Ref. [10] on
relativistic corrections to the Casimir-Polder interaction (with
a strong overlap with QED). In the atomic unit system, we
have |e| = h̄ = m = 1 and 4πε0 = 1. The speed of light, in
the atomic unit system, is c = 1/α ≈ 137.036. This system of
units is especially useful for the analysis of purely atomic
properties without radiative effects. As the subject of the
current study lies in between the two mentioned fields of
interest, we choose the SI mksA unit system as the most
appropriate reference frame for our calculations. The formulas
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do not become unnecessarily complex and can be evaluated
with ease for any experimental application.

We organize this paper as follows. The combination of the
orbital and spin electron angular momenta and the nuclear spin
adds up to give the total angular momentum of the hydrogen
atom; the conserved quantities are discussed in Sec. II, together
with the relevant two-atom product wave functions. In Sec. III
we proceed to investigate the Hamiltonian matrices in the
subspaces of the spectrum of the total Hamiltonian into which
it naturally decouples. Namely, the magnetic projection of the
total angular momentum (summed over both atoms) commutes
with the total Hamiltonian and this leads to matrix subspaces
with Fz = +2,1,0,−1,−2. For each one of these five hyperfine
subspaces, we will identify two irreducible subspaces of equal
dimensionality. This property considerably simplifies the
treatment of the problem. Some relevant energy differences for
the 2S hyperfine splitting (with the spectator atom in specific
states, namely, either 2S or 2P ) are analyzed in Sec. IV. A
summary is given and conclusions are drawn in Sec. V.

II. FORMALISM

A. Total Hamiltonian of the system

In order to evaluate the 2S-2S long-range interaction,
including hyperfine effects, one needs to diagonalize the
Hamiltonian

H = HLS,A + HLS,B + Hhfs,A + Hhfs,B + HvdW. (1)

Here HLS is the Lamb shift Hamiltonian, while Hhfs describes
hyperfine effects; these Hamiltonians have to be added for
atoms A and B. They are given as

Hhfs = μ0

4π
μBμNgsgp

∑
i=A,B

[
8π

3
�Si · �Iiδ

3(�ri)

+ 3(�Si · �ri)( �Ii · �ri) − �Si · �Ii�r 2
i

|�ri |5 +
�Li · �Ii

|�ri |3
]
, (2a)

HLS = 4

3
α2mc2

(
h̄

mc

)3

ln(α−2)
∑

i=A,B

δ3(�ri), (2b)

HvdW = αh̄c
xAxB + yAyB − 2zAzB

R3
. (2c)

Here α is the fine-structure constant; m is the electron mass; �ri ,
�pi , and �Li are the position (relative to the respective nucleus),
linear momentum, and orbital angular momentum operators
for electron i; and �Si is the spin operator for electron i and �Ii

is the spin operator for proton i (both are dimensionless).
The electronic and protonic g factors are gs � 2.002 319
and gp � 5.585 695, while μB � 9.274 010 × 10−24 A m2 is
the Bohr magneton and μN � 5.050 784 × 10−27 A m2 is the
nuclear magneton. The subscripts A and B refer to the relative
coordinates within the two atoms, while R is the interatomic
distance. The expression for HLS shifts S states relative to
P states by the Lamb shift, which is given in the Welton
approximation [11], which is convenient within the formalism
used for the evaluation of matrix elements. (The important
property of HLS is that it shifts S states upward in relation to
P states; the prefactor multiplying the Dirac δ can be adjusted

to the observed Lamb shift splitting.) Indeed, for the final
calculation of energy shifts, we will replace

〈2S1/2|HLS |2S1/2〉 − 〈2P1/2|HLS |2P1/2〉

= 4α

3π

α4

8
mc2 ln(α−2) → L, (3)

where L = h1057.845(9) MHz is the classic 2S-2P1/2 Lamb
shift [12]. The Hamiltonian H given in Eq. (1) defines the zero
of the energy to be the hyperfine centroid frequency of the
2P1/2 states. The result for Hhfs in the given form is taken from
Ref. [13]. The Hamiltonians Hhfs,A and Hhfs,B are obtained
from Hhfs by specializing the coordinate �r to be the relative
coordinate (electron-proton) in atoms A and B, respectively,
and correspondingly for HLS,A and HLS,B .

We will focus on the interatomic separation regime where
the van der Waals energy is commensurate with the hyperfine
splitting and Lamb shift energies, but much smaller than
the fine structure (the 2P1/2-2P3/2 splitting and likewise the
2S-2P3/2 splitting). Hence,

EvdW ∼ Ehfs ∼ L 	 EFS. (4)

This is fulfilled for R > 100a0, as can be seen from Eq. (2c)
and will be confirmed later. Hence, we only consider 2S and
2P1/2 states. We will neglect the influence of the 2P3/2 states,
assuming that they are sufficiently displaced. Because the van
der Waals interaction (2c) has nonvanishing diagonal elements
between 2S and 2P states, the interaction energy between the
two 2S atoms can be of order 1/R3.

The z component of the total angular momentum operator
of both atoms is

Fz = Fz,A + Fz,B = Jz,A + Jz,B + Iz,A + Iz,B

= Lz,A + Lz,B + Sz,A + Sz,B + Iz,A + Iz,B

= Lz,A + Lz,B + 1
2σe,z,A + 1

2σe,z,B

+ 1
2σp,z,A + 1

2σp,z,B, (5)

where �J = �L + �S is the total angular momentum of the
electron. Let us investigate if Fz commutes with the total
Hamiltonian H . In Eq. (5) the subscript e denotes the electron,
while p denotes the proton. The following commutators
vanish separately: [Sz,a + Sz,b,HLS] = [Sz,a + Sz,b,HvdW] =
[Iz,a + Iz,b,HLS] = [Iz,a + Iz,b,HvdW] = 0. We then turn to
the nontrivial commutators. For that, it is very useful to notice
that the orbital angular momentum �Li of electron i commutes
with all spherically symmetric functions of the radial position
operator |�ri | of the same electron. This immediately yields
[Lz,a + Lz,b,HLS] = 0. We can also show that

[Sz,a + Sz,b,Hhfs] + [Iz,a + Iz,b,Hhfs] + [Lz,a + Lz,b,Hhfs]

= 0,

[Lz,a + Lz,b,HvdW]

= αh̄c
ih̄

R3
[yAxB + xAyB − yAxB − xAyB] = 0. (6)

The component Fz of the total angular momentum of the
two-atom system [see Eq. (5)] thus commutes with the total
Hamiltonian H . We can classify states according to the
eigenvalues of the operator Fz = Fz,a + Fz,b.
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B. Addition of momenta and total hyperfine quantum number

In order to calculate the matrix elements of the total
Hamiltonian (1), we first need to identify the relevant states of
the two atoms. For each atom, we easily identify the following
quantum numbers within the hyperfine manifolds:

2S1/2(F = 0): � = 0,J = 1
2 ,F = 0 ⇒ gF = 1, (7a)

2S1/2(F = 1): � = 0,J = 1
2 ,F = 1 ⇒ gF = 3, (7b)

2P1/2(F = 0): � = 1,J = 1
2 ,F = 0 ⇒ gF = 1, (7c)

2P1/2(F = 1): � = 1,J = 1
2 ,F = 1 ⇒ gF = 3. (7d)

Here �, J , and F are the electronic orbital angular momentum,
the total (orbital plus spin) electronic angular momentum, and
the total (electronic plus protonic) atomic angular momentum,
while gF = 2F + 1 is the number of states. At this stage, we
remember that we discarded 2P3/2 states from our treatment
because of their relatively large energy separation from 2S1/2

and 2P1/2 states. Thus, we have a total of eight states per atom.
For the system of two atoms, we have 8 × 8 = 64 states. Due to
the conservation of the total hyperfine quantum number Fz =
Fz,a + Fz,b, established above, the 64-dimensional Hilbert
space is decomposed into five subspaces as

Fz = Fz,a + Fz,b = ±2 ⇒ g = 4, (8a)

Fz = Fz,a + Fz,b = ±1 ⇒ g = 16, (8b)

Fz = Fz,a + Fz,b = 0 ⇒ g = 24. (8c)

The most complicated case is the subspace for which Fz = 0, in
which case the Hamiltonian matrix is, a priori, 24 dimensional.

Thus, we have to generate the matrix, diagonalize it, and
choose the eigenvalues that correspond to the unperturbed
(with respect to dipole-dipole interaction) states.

Let us add angular momenta to obtain the single-atom
states of definite hyperfine quantum number. First, we add
the electron spin with its orbital angular momentum to obtain
the J = 1/2 states within the n = 2 manifold of hydrogen.
These are given as∣∣∣∣� = 0,Jz = ±1

2

〉
= |±〉e|� = 0,m = 0〉e = |±〉e|0,0〉e, (9a)

∣∣∣∣� = 1,Jz = ±1

2

〉
= ∓

[
1√
3
|±〉e|1,0〉e −

√
2

3
|∓〉e|1, ± 1〉e

]
.

(9b)

Here |±〉e is the electron spin state and |�,m〉e denotes the
Schrödinger eigenstate (without spin). The principal quantum
is n = 2 throughout. We also remember that the J = 3/2 states
are displaced by the fine-structure shift and therefore far away
in the energy landscape given the scale of energies considered
here. With the help of Clebsch-Gordan coefficients, we add
the nuclear (proton) spin |±〉p to obtain the eight states in the
single-atom hyperfine basis. First, we have for the four S states

|� = 0,F = 0,Fz = 0〉 = −|+〉p|−〉e − |−〉p|+〉e√
2

|0,0〉e,

(10a)

|� = 0,F = 1,Fz = 0〉 = |+〉p|−〉e + |−〉p|+〉e√
2

|0,0〉e,

(10b)

|� = 0,F = 1,Fz = ±1〉 = |±〉p|±〉e|0,0〉e. (10c)

The P states are more complicated,

|� = 1,F = 0,Fz = 0〉 = 1√
3
|+〉p|+〉e|1, − 1〉e − 1√

6
|+〉p|−〉e|1,0〉e + 1√

3
|−〉p|−〉e|1,1〉e − 1√

6
|−〉p|+〉e|1,0〉e, (11a)

|� = 1,F = 1,Fz = 0〉 = − 1√
3
|+〉p|+〉e|1, − 1〉e + 1√

6
|+〉p|−〉e|1,0〉e + 1√

3
|−〉p|−〉e|1,1〉e − 1√

6
|−〉p|+〉e|1,0〉e, (11b)

|� = 1,F = 1,Fz = ±1〉 = ∓ 1√
3
|±〉p[|±〉e|1,0〉e −

√
2|∓〉e|1, ± 1〉e]. (11c)

In the following, we will use the notation |�,F,Fz〉 for the eigenstates of the unperturbed Hamiltonian

H0 = Hhfs,A + Hhfs,B + HLS,A + HLS,B, (12)

within the 2S-2P1/2 manifold. The notation |�,F,Fz〉 is rather
intuitive; the first entry clarifies if we have an S (with � = 0) or
a P state (with � = 1), the second entry specifies if we have a
hyperfine triplet (F = 1) or a hyperfine singlet (F = 0) state,
and the last entry is the magnetic projection of the total angular
momentum.

C. Matrix elements of the total Hamiltonian

We now turn to the computation of the matrix elements of
the total Hamiltonian (1) in the space spanned by the two-atom
states that are product states built from any two states of the
types (10) and (11). We choose a basis in which the Lamb shift
and hyperfine Hamiltonians are diagonal, so the only nontrivial
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task is to determine the matrix elements of the van der Waals
interaction Hamiltonian.

With the definition of the spherical unit vectors [14]

ê+ = − 1√
2

(êx + iêy), (13a)

ê− = 1√
2

(êx − iêy), (13b)

ê0 = êz (13c)

and the states defined by (10) and (11), we obtain the nonzero
matrix elements of the electronic position operator �r as
follows:

〈0,0,0|�r|1,1,0〉 =
√

3a0êz, (14a)

〈0,0,0|�r|1,1, ± 1〉 =
√

3a0ê±, (14b)

〈0,1,0|�r|1,0,0〉 =
√

3a0êz, (14c)

〈0,1, ± 1|�r|1,0,0〉 =
√

3a0(ê±)∗, (14d)

〈0,1, ± 1|�r|1,1, ± 1〉 = ±
√

3a0êz, (14e)

〈0,1, ± 1|�r|1,1,0〉 = ±
√

3a0ê∓, (14f)

〈0,1,0|�r|1,1, ± 1〉 = ∓
√

3a0ê±. (14g)

All the other matrix elements vanish. We define the parameters

H ≡ α4

18
gN

m

mp

mc2 → h59.185 611 4(22) MHz, (15a)

L ≡ α5

6π
ln(α−2)mc2 → h1057.845(9) MHz, (15b)

V ≡ 3αh̄c
a2

0

R3
, (15c)

where the data used after the replacements indicate one-third
of the hyperfine splitting of the 2S state [1] and the classic
Lamb shift [12], respectively. These data are used in all figures
for the plots of the distance-dependent energy levels. Note
that H and L obviously are constants, whereas V depends on
the interatomic separation R. The expectation values of the
hyperfine Hhfs and Lamb shift HLS Hamiltonians (for states of
both atoms A and B) are given as

〈�,F,MF |HLS|�,F,MF 〉 = Lδ�0, (16a)

〈0,1,MF |Hhfs|0,1,MF 〉 = 3
4H, (16b)

〈0,0,0|Hhfs|0,0,0〉 = − 9
4H, (16c)

〈1,1,MF |Hhfs|1,1,MF 〉 = 1
4H, (16d)

〈1,0,0|Hhfs|1,0,0〉 = − 3
4H. (16e)

The hyperfine splitting energy between 2P1/2(F = 1) and
2P1/2(F = 0) states thus amounts to H, while the S-state
splitting is 3H. Additionally, the energies of the S states are
lifted upward by L, irrespective of the hyperfine effects. For
the product state of atoms A and B, we will use the notation

|(�A,FA,Fz,A)A(�B,FB,Fz,B)B〉, (17)

which summarizes the quantum numbers of both atoms. We
anticipate that some of the eigenstates of the combined and

total Hamiltonian (Lamb shift plus hyperfine effects plus van
der Waals Hamiltonian) do not decouple into simple unper-
turbed eigenstates of the form |(�A,FA,Fz,A)A(�B,FB,Fz,B)B〉
but may require the use of superpositions of these states, as
we had already experienced for the (1S; 2S) interaction in
Ref. [2].

III. HAMILTONIAN MATRICES IN THE HYPERFINE
SUBSPACES

A. Manifold Fz = +2

We have already pointed out that the n = 2,J = 1/2
Hilbert space naturally separates into subspaces with fixed
total hyperfine quantum number Fz = Fz,a + Fz,b, according
to Eq. (8). We can identify two irreducible subspaces within
the Fz = +2 manifold. The subspace I is composed of the
states

∣∣φ(I)
1

〉 = |(0,1,1)A(0,1,1)B〉, (18a)∣∣φ(I)
2

〉 = |(1,1,1)A(1,1,1)B〉, (18b)

where the Hamiltonian matrix reads

H
(I)
Fz=+2 =

(
2L + 3

2H −2V
−2V 1

2H

)
. (19)

Subspace II is composed of the states

∣∣φ(II)
1

〉 = |(0,1,1)A(1,1,1)B〉, (20a)

|φ(II)
2 〉 = |(1,1,1)A(0,1,1)B〉, (20b)

where the Hamiltonian matrix reads

H
(II)
Fz=+2 =

(
L + H −2V
−2V L + H

)
. (21)

These subspaces are completely uncoupled. Namely, no state
in subspace I is coupled to a state in subspace II.

The eigenvalues of H
(I)
Fz=+2 are given by

E
(I)
+ = H + L +

√
4V2 + (

1
2H + L

)2
,

= 3
2H + 2L + 4

V2

H + 2L + O(V4), (22a)

E
(I)
− = H + L −

√
4V2 + (

1
2H + L

)2
,

= 1
2H − 4

V2

H + 2L + O(V4), (22b)

with the corresponding eigenvectors

∣∣u(I)
+

〉 = 1√
a2 + b2

(
a
∣∣φ(I)

1

〉 + b
∣∣φ(I)

2

〉)
, (23a)

∣∣u(I)
−

〉 = 1√
a2 + b2

(
b
∣∣φ(I)

1

〉 − a
∣∣φ(I)

2

〉)
. (23b)
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FIG. 1. Evolution of the energy levels within the Fz = +2
hyperfine manifold as a function of interatomic separation. The
eigenstates given in the legend are only asymptotic; for finite
separation these states mix. One has H = 0.055 949L according to
Eq. (15). The unit of energy used for the ordinate axis is the interaction
energy divided by the Planck constant h (left ordinate axis) and given
in hertz. On the right ordinate axis, we use the Lamb shiftL as defined
in Eq. (3) as an alternative unit of frequency. The Born-Oppenheimer
approximation is used in plotting the interaction energy as a function
of the internuclear distance R.

Here the coefficients a and b are given by

a = −2L + H +
√

(2L + H)2 + (4V)2

4V , (24a)

b = 1. (24b)

The eigenenergies of H
(II)
Fz=+2 are given by

E
(II)
± = H ± L ± 2V, (25)

with the corresponding eigenvectors∣∣u(II)
±

〉 = 1√
2

(∣∣φ(II)
1

〉 ± ∣∣φ(II)
2

〉)
. (26)

For V → 0, which corresponds to the large separation limit
R → +∞, these eigenvalues tend toward the (degenerate)
diagonal entries of the matrix H

(II)
Fz=+2.

The eigenstates within the degenerate subspace II expe-
rience a shift of first order in the van der Waals interaction
energy V , because of the degeneracy of the diagonal entries
L + H in Eq. (21); this pattern will be observed for other
subspaces in the following. In Fig. 1 we plot the evolution
of the eigenvalues (22) and (25) with respect to interatomic
separation. The two levels within the subspace II noticeably
experience a far larger interatomic interaction shift from their
asymptotic value L + H, commensurate with the parametric
estimate of the corresponding energy shifts.

B. Manifold Fz = +1

We can identify two irreducible subspaces within the Fz = +1 manifold. Subspace I is composed of the following states, with
either both atoms being in S or both in P states,

∣∣ψ (I)
1

〉 = |(0,0,0)A(0,1,1)B〉, ∣∣ψ (I)
2

〉 = |(0,1,0)A(0,1,1)B〉, ∣∣ψ (I)
3

〉 = |(0,1,1)A(0,0,0)B〉,∣∣ψ (I)
4

〉 = |(0,1,1)A(0,1,0)B〉, ∣∣ψ (I)
5

〉 = |(1,0,0)A(1,1,1)B〉, ∣∣ψ (I)
6

〉 = |(1,1,0)A(1,1,1)B〉,∣∣ψ (I)
7

〉 = |(1,1,1)A(1,0,0)B〉, ∣∣ψ (I)
8

〉 = |(1,1,1)A(1,1,0)B〉,
(27)

and the Hamiltonian matrix reads

H
(I)
Fz=+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2L − 3
2H 0 0 0 0 −2V V −V

0 2L + 3
2H 0 0 −2V 0 −V V

0 0 2L − 3
2H 0 V −V 0 −2V

0 0 0 2L + 3
2H −V V −2V 0

0 −2V V −V − 1
2H 0 0 0

−2V 0 −V V 0 1
2H 0 0

V −V 0 −2V 0 0 − 1
2H 0

−V V −2V 0 0 0 0 1
2H

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

Subspace II is composed of the following states, where one atom is in an S state and the other in a P state,

∣∣ψ (II)
1

〉 = |(0,0,0)A(1,1,1)B〉, ∣∣ψ (II)
2

〉 = |(0,1,0)A(1,1,1)B〉, ∣∣ψ (II)
3

〉 = |(0,1,1)A(1,0,0)B〉,∣∣ψ (II)
4

〉 = |(0,1,1)A(1,1,0)B〉, ∣∣ψ (II)
5

〉 = |(1,0,0)A(0,1,1)B〉, ∣∣ψ (II)
6

〉 = |(1,1,0)A(0,1,1)B〉,∣∣ψ (II)
7

〉 = |(1,1,1)A(0,0,0)B〉, ∣∣ψ (II)
8

〉 = |(1,1,1)A(0,1,0)B〉, (29)
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and the Hamiltonian matrix reads

H
(II)
Fz=+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L − 2H 0 0 0 0 −2V V −V
0 L + H 0 0 −2V 0 −V V
0 0 L 0 V −V 0 −2V
0 0 0 L + H −V V −2V 0

0 −2V V −V L 0 0 0

−2V 0 −V V 0 L + H 0 0

V −V 0 −2V 0 0 L − 2H 0

−V V −2V 0 0 0 0 L + H

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (30)

These two submanifolds are again completely uncoupled, as
a consequence of the selection rules between S and P states.
One observes that within the subspace I, no two degenerate
levels are coupled to each other, resulting in second-order
van der Waals energy shifts. On the other hand, the following
subspaces, within the subspace II, can be identified as being
degenerate with respect to the unperturbed Hamiltonian and
having states coupled by nonvanishing off-diagonal elements.
We first have a subspace spanned by∣∣ψ (A)

1

〉 = ∣∣ψ (II)
1

〉
,

∣∣ψ (A)
2

〉 = ∣∣ψ (II)
7

〉
. (31)

These states are composed of a singlet S and a triplet P state
and hence the diagonal entries in the Hamiltonian matrix are
(− 9

4H + L) + ( 1
4H) = −2H + L. The Hamiltonian matrix

is

H
(A)
Fz=+1 =

(
L − 2H V

V L − 2H

)
. (32)

The eigenvalues are

E
(A)
± = L − 2H ± V, (33)

with the corresponding eigenvectors

∣∣u(A)
±

〉 = 1√
2

(∣∣ψ (A)
1

〉 ± ∣∣ψ (A)
2

〉)
. (34)

Note that the designation of a degenerate subspace, for the
Fz = +1 subspace, does not imply that there are no couplings
to any other states within the manifold; however, the couplings
relating the degenerate states will become dominant for close
approach.

A second degenerate subspace is given as∣∣ψ (B)
1

〉 = ∣∣ψ (II)
3

〉
,

∣∣ψ (B)
2

〉 = ∣∣ψ (II)
5

〉
. (35)

These states are composed of a triplet S and a singlet P state
and hence the diagonal entries in the Hamiltonian matrix are
( 3

4H + L) − ( 3
4H) = L. The Hamiltonian matrix is

H
(B)
Fz=+1 =

(
L V
V L

)
. (36)

The eigenvalues are

E
(B)
± = L ± V, (37)

with the corresponding eigenvectors

|u(B)
± 〉 = 1√

2

(∣∣ψ (B)
1

〉 ± ∣∣ψ (B)
2

)
. (38)

The most complicated degenerate subspace is given by the
vectors

∣∣ψ (C)
1

〉 = ∣∣ψ (II)
2

〉
,

∣∣ψ (C)
2

〉 = ∣∣ψ (II)
4

〉
, (39)∣∣ψ (C)

3

〉 = ∣∣ψ (II)
6

〉
,

∣∣ψ (C)
4

〉 = ∣∣ψ (II)
8

〉
. (40)

The Hamiltonian matrix is

H
(C)
Fz=+1 =

⎛
⎜⎝
L + H 0 0 V

0 L + H V 0
0 V L + H 0
V 0 0 L + H

⎞
⎟⎠, (41)

which again decouples into two 2 × 2 matrices, just like we
saw in the case of HFz=+2. The eigenvalues are

E
(C)
± = H + L ± V, (42)

FIG. 2. Evolution of the S-S and P -P energy levels of the
submanifold I within the Fz = +1 hyperfine manifold as a function
of interatomic separation. The asymptotic eigenstates given in the
legend mix for finite separation. The labeling of the axes is as in
Fig. 1.
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FIG. 3. Evolution of the energy levels of the submanifold II
within the Fz = +1 hyperfine manifold as a function of interatomic
separation. The eigenstates given in the legend are only asymptotic.
The curve for the seventh state in the legend (counted from the top)
has been slightly offset for better readability; in actuality it is virtually
indistinguishable from that for the sixth state in the legend.

where the eigenvectors for |u(C)
±,i〉 (with i = 1,2 because of the

degeneracy of the eigenvalues) are given by

∣∣u(C)
±,1

〉 = 1√
2

(∣∣ψ (C)
1

〉 ± ∣∣ψ (C)
4

)〉
, (43a)

∣∣u(C)
±,2

〉 = 1√
2

(∣∣ψ (C)
2

〉 ± ∣∣ψ (C)
3

)〉
. (43b)

In Figs. 2 and 3 we plot the evolution of the eigenvalues
of the matrices (28) and (30) with respect to interatomic
separation. The larger energy shifts within the subspace II
are noticeable. A feature exhibited by the Fz = +1 manifold
that was not present in the Fz = +2 manifold is that of
level crossings: For sufficiently small interatomic separation
(R < 500a0), the eigenenergies of some of the states from the
submanifolds I and II in fact cross (these crossings would be
visible if one were to superimpose Figs. 2 and 3), while there
are no level crossings between states belonging to the same
submanifold.

C. Manifold Fz = 0

We can identify two irreducible subspaces within the Fz =
0 manifold. The subspace I is composed of states with both
atoms in S or both atoms in P levels

∣∣�(I)
1

〉 = |(0,0,0)A(0,0,0)B〉, ∣∣�(I)
2

〉 = |(0,0,0)A(0,1,0)B〉, ∣∣�(I)
3

〉 = |(0,1, − 1)A(0,1,1)B〉,∣∣�(I)
4

〉 = |(0,1,0)A(0,0,0)B〉, ∣∣�(I)
5

〉 = |(0,1,0)A(0,1,0)B〉, ∣∣�(I)
6

〉 = |(0,1,1)A(0,1, − 1)B〉,∣∣�(I)
7

〉 = |(1,0,0)A(1,0,0)B〉, ∣∣�(I)
8

〉 = |(1,0,0)A(1,1,0)B〉, ∣∣�(I)
9

〉 = |(1,1, − 1)A(1,1,1)B〉,∣∣�(I)
10

〉 = |(1,1,0)A(1,0,0)B〉, ∣∣�(I)
11

〉 = |(1,1,0)A(1,1,0)B〉, ∣∣�(I)
12

〉 = |(1,1,1)A(1,1, − 1)B〉 (44)

and the Hamiltonian matrix reads

H
(I)
Fz=0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2L − 9
2H 0 0 0 0 0 0 0 −V 0 −2V −V

0 2L − 3
2H 0 0 0 0 0 0 V −2V 0 −V

0 0 2L + 3
2H 0 0 0 −V V 2V −V V 0

0 0 0 2L − 3
2H 0 0 0 −2V −V 0 0 V

0 0 0 0 2L + 3
2H 0 −2V 0 V 0 0 V

0 0 0 0 0 2L + 3
2H −V −V 0 V V 2V

0 0 −V 0 −2V −V − 3
2H 0 0 0 0 0

0 0 V −2V 0 −V 0 − 1
2H 0 0 0 0

−V V 2V −V V 0 0 0 1
2H 0 0 0

0 −2V −V 0 0 V 0 0 0 − 1
2H 0 0

−2V 0 V 0 0 V 0 0 0 0 1
2H 0

−V −V 0 V V 2V 0 0 0 0 0 1
2H

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(45)

Subspace II is composed of the S-P and P -S combinations

∣∣�(II)
1

〉 = |(0,0,0)A(1,0,0)B〉, ∣∣�(II)
2

〉 = |(0,0,0)A(1,1,0)B〉, ∣∣�(II)
3

〉 = |(0,1, − 1)A(1,1,1)B〉,∣∣�(II)
4

〉 = |(0,1,0)A(1,0,0)B〉, ∣∣�(II)
5

〉 = |(0,1,0)A(1,1,0)B〉, ∣∣�(II)
6

〉 = |(0,1,1)A(1,1, − 1)B〉,∣∣�(II)
7

〉 = |(1,0,0)A(0,0,0)B〉, ∣∣�(II)
8

〉 = |(1,0,0)A(0,1,0)B〉, ∣∣�(II)
9

〉 = |(1,1, − 1)A(0,1,1)B〉,∣∣�(II)
10

〉 = |(1,1,0)A(0,0,0)B〉, ∣∣�(II)
11

〉 = |(1,1,0)A(0,1,0)B〉, ∣∣�(II)
12

〉 = |(1,1,1)A(0,1, − 1)B〉 (46)
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and the Hamiltonian matrix reads

H
(II)
Fz=0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L − 3H 0 0 0 0 0 0 0 −V 0 −2V −V
0 L − 2H 0 0 0 0 0 0 V −2V 0 −V
0 0 L + H 0 0 0 −V V 2V −V V 0
0 0 0 L 0 0 0 −2V −V 0 0 V
0 0 0 0 L + H 0 −2V 0 V 0 0 V
0 0 0 0 0 L + H −V −V 0 V V 2V
0 0 −V 0 −2V −V L − 3H 0 0 0 0 0
0 0 V −2V 0 −V 0 L 0 0 0 0

−V V 2V −V V 0 0 0 L + H 0 0 0
0 −2V −V 0 0 V 0 0 0 L − 2H 0 0

−2V 0 V 0 0 V 0 0 0 0 L + H 0
−V −V 0 V V 2V 0 0 0 0 0 L + H

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(47)

Again, we notice that within subspace I, no two degenerate
levels are coupled to each other. On the other hand, the
following subspaces, within subspace II, can be identified as
being degenerate with respect to the unperturbed Hamiltonian
and having states coupled by nonvanishing off-diagonal
elements.

The first degenerate subspace is given as∣∣�(A)
1

〉 = ∣∣�(II)
2

〉
,

∣∣�(A)
2

〉 = ∣∣�(II)
10

〉
. (48)

The Hamiltonian matrix reads

H
(A)
Fz=0 =

(
L − 2H −2V
−2V L − 2H

)
. (49)

The eigensystem is given by

E
(A)
± = L − 2H ± 2V, |u(A)

± 〉 = 1√
2

(∣∣�(A)
1

〉 ∓ �
(A)
2

〉)
.

(50)

The second degenerate subspace is∣∣�(B)
1

〉 = ∣∣�(II)
4

〉
,

∣∣�(B)
2

〉 = ∣∣�(II)
8

〉
, (51)

with the Hamiltonian matrix

H
(B)
Fz=0 =

(
L −2V

−2V L

)
(52)

and the eigensystem

E
(B)
± = L ± 2V,

∣∣u(B)
±

〉 = 1√
2

(∣∣�(B)
1

〉 ∓ �
(B)
2

〉)
. (53)

The third degenerate subspace is more complicated and is
spanned by the six state vectors∣∣�(C)

1

〉 = ∣∣�(II)
3

〉
,

∣∣�(C)
2

〉 = ∣∣�(II)
5

〉
, (54a)∣∣�(C)

3

〉 = ∣∣�(II)
6

〉
,

∣∣�(C)
4

〉 = ∣∣�(II)
9

〉
, (54b)∣∣�(C)

5

〉 = ∣∣�(II)
11

〉
,

∣∣�(C)
6

〉 = ∣∣�(II)
12

〉
. (54c)

The six-dimensional submatrix is

H
(C)
Fz=0 =

⎛
⎜⎜⎜⎜⎜⎝

L + H 0 0 2V V 0
0 L + H 0 V 0 V
0 0 L + H 0 V 2V

2V V 0 L + H 0 0
V 0 V 0 L + H 0
0 V 2V 0 0 L + H

⎞
⎟⎟⎟⎟⎟⎠. (55)

The eigenvalues are

E
(C)
±,1 = H + L ± 2V, (56a)

E
(C)
±,2 = H + L ± (

√
3 + 1)V, (56b)

E
(C)
±,3 = H + L ± (

√
3 − 1)V, (56c)

and the eigenvectors are

u
(C)
+,1 = 1

2

(∣∣�(C)
1

〉 − ∣∣�(C)
3

〉 + ∣∣�(C)
4

〉 − ∣∣�(C)
6

〉)
, (57a)

u
(C)
−,1 = 1

2

(∣∣�(C)
1

〉 − ∣∣�(C)
3

〉 − ∣∣�(C)
4

〉 + ∣∣�(C)
6

〉)
, (57b)

u
(C)
+,2 = 1

2
√

3 − √
3

(∣∣�(C)
1

〉 + (
√

3 − 1)
∣∣�(C)

2

〉 + ∣∣�(C)
3

〉 + ∣∣�(C)
4

〉 + (
√

3 − 1)
∣∣�(C)

5

〉 + ∣∣�(C)
6

〉)
, (57c)
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u
(C)
−,2 = 1

2
√

3 − √
3

(∣∣�(C)
1

〉 + (
√

3 − 1)
∣∣�(C)

2

〉 + ∣∣�(C)
3

〉 − ∣∣�(C)
4

〉 − (
√

3 − 1)
∣∣�(C)

5

〉 − ∣∣�(C)
6

〉)
, (57d)

u
(C)
+,3 = 1

2
√

3 + √
3

(∣∣�(C)
1

〉 − (
√

3 + 1)
∣∣�(C)

2

〉 + ∣∣�(C)
3

〉 − ∣∣�(C)
4

〉 + (
√

3 + 1)
∣∣�(C)

5

〉 − ∣∣�(C)
6

〉)
, (57e)

u
(C)
−,3 = 1

2
√

3 + √
3

(∣∣�(C)
1

〉 − (
√

3 + 1)
∣∣�(C)

2

〉 + ∣∣�(C)
3

〉 + ∣∣�(C)
4

〉 − (
√

3 + 1)
∣∣�(C)

5

〉 + ∣∣�(C)
6

〉)
. (57f)

In Figs. 4–8 we plot the evolution of the eigenvalues of
matrices (45) and (47) with respect to interatomic separation.
Notice again that the 12 levels within subspace II noticeably
leave their asymptotic values (of order ∼L) for far larger
separations than the 12 levels within the subspace I, as
predicted above by analyzing the order of the corresponding
energy shifts. A feature exhibited by the Fz = 0 manifold
that was not present in the Fz = +1 manifold is that of
level crossings between levels within the same irreducible
submanifold: For sufficiently small interatomic separations
(R < 1000a0), the eigenenergies of some of the states from
submanifold I cross between themselves and so do some
in manifold II. For better visibility of these intramanifold
crossings, we present them in Figs. 5 and 6, as well as in
Fig. 8. For even smaller interatomic separations (R < 500a0)
we obtain again crossings between levels in manifolds I and II.

As shown in Fig. 4, some levels within submanifold I,
namely, on the one hand, the levels

∣∣�(I)
3

〉 = |(0,1, − 1)A(0,1,1)B〉, (58a)∣∣�(I)
5

〉 = |(0,1,0)A(0,1,0)B〉, (58b)∣∣�(I)
6

〉 = |(0,1,1)A(0,1, − 1)B〉 (58c)

FIG. 4. Evolution of the energy levels of the submanifold I within
the Fz = 0 hyperfine manifold as a function of interatomic separation.
Energetically, the S-S states are above the P -P states. The eigenstates
given in the legend are only asymptotic; for finite separation these
states mix. Some of the curves [namely, the third (from the top), sixth,
and twelfth] have been slightly offset for better readability. Notice
that, for sufficiently close separation (R < 1000a0), we witness some
level crossings between levels within the same submanifold I. The
coefficients α± and β± are determined by second-order perturbation
theory and are given by Eq. (83).

that have asymptotic energy 2L + 3
2H and, on the other hand,

∣∣�(I)
9

〉 = |(1,1, − 1)A(1,1,1)B〉, (59a)∣∣�(I)
11

〉 = |(1,1,0)A(1,1,0)B〉, (59b)∣∣�(I)
12

〉 = |(1,1,1)A(1,1, − 1)B〉 (59c)

that have asymptotic energy + 1
2H, are energetically degen-

erate on the level of the unperturbed Hamiltonian, while
experiencing no first-order van der Waals couplings among
themselves. They still split for close enough interatomic
distance because of higher-order couplings. This fixes the
coefficients α± and β±, according to the analysis carried out
in the following section [see Fig. 4 and Eq. (83)].

IV. HYPERFINE SHIFT IN SPECIFIC SPECTATOR STATES

Of particular importance for hyperfine-structure experi-
ments are energy differences of 2S singlet and triplet hyperfine
sublevels, with the spectator atom in an arbitrary atomic
state. This amounts to the van der Waals energy shift
of the hyperfine lines, i.e., the energy differences of the
triplet level |(0,1,0)A(�B,FB,Fz,B)B〉 and the singlet level
|(0,0,0)A(�B,FB,Fz,B )B〉, for all possible states of atom B. We
will see that the hyperfine frequencies are modified differently
when the spectator atom is in a 2S or a 2P state.

FIG. 5. Evolution of the energy levels of the 2S-2S states within
the Fz = 0 hyperfine manifold (subspace I) as a function of the
interatomic separation (close-up of the upper levels in Fig. 4).
The eigenstates given in the legend are only asymptotic; for finite
separation these states mix. No offsets are used here. Notice that we
witness one level crossing. The coefficients α± and β± are determined
by second-order perturbation theory and are given by Eq. (83).
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FIG. 6. Evolution of the energy levels of the 2P -2P states within
the Fz = 0 hyperfine manifold (subspace I) as a function of inter-
atomic separation (close-up of the lower levels in Fig. 4). Asymptotic
eigenstates used in the legend mix for finite separation. No offsets are
used here. Notice that we witness one level crossing. The coefficients
α± and β± are determined by second-order perturbation theory and
are given by Eq. (83).

Let us first examine the submanifold with Fz = +1. The
following states have the atom A in the singlet hyperfine 2S

FIG. 7. Evolution of the S-P and P -S energy levels within
the Fz = 0 hyperfine manifold (submanifold II) as a function of
interatomic separation. The eigenstates given in the legend are only
asymptotic; for finite separation these states mix. Some of the curves
(namely, for the ninth and twelfth states in the legend, counted from
the top) have been slightly offset for better readability. Notice that,
for sufficiently close separation (R < 1000a0), we witness some level
crossings between levels within the same submanifold II. The first
six states are given in Eq. (57).

FIG. 8. Close-up of the evolution of the energy levels of the
2S-2P and 2P -2S states (submanifold II) within the Fz = 0 hyperfine
manifold as a function of interatomic separation. For the legend, we
use the asymptotic eigenstates for large separation. No offsets are
used here. Notice that we witness four level crossings. The first six
states are given by Eq. (57).

level: ∣∣ψ (I)
1

〉 = |(0,0,0)A(0,1,1)B〉, (60a)∣∣ψ (II)
1

〉 = |(0,0,0)A(1,1,1)B〉, (60b)

while ∣∣ψ (I)
2

〉 = |(0,1,0)A(0,1,1)B〉, (61a)∣∣ψ (II)
2

〉 = |(0,1,0)A(1,1,1)B〉 (61b)

have the atom A in the hyperfine triplet S state. The state of the
spectator atom is preserved in the transitions |ψ (I)

1 〉 → |ψ (I)
2 〉

and |ψ (II)
1 〉 → |ψ (II)

2 〉.
For the states |ψ (II)

1 〉 and |ψ (II)
2 〉, the spectator atom is in

a P state. For both of these states, we can find energetically
degenerate levels that are coupled to the reference state by the
van der Waals interaction. Specifically, |ψ (II)

1 〉 is energetically
degenerate with respect to |ψ (II)

7 〉 = |(1,1,1)A(0,0,0)B〉, with
the off-diagonal element〈

ψ
(II)
1

∣∣HvdW

∣∣ψ (II)
7

〉 = V, (62)

as can be seen in Eqs. (31) and (32). Furthermore,
|ψ (II)

2 〉 is energetically degenerate with respect to |ψ (II)
8 〉 =

|(1,1,1)A(0,1,0)B〉, with the off-diagonal element〈
ψ

(II)
2

∣∣HvdW

∣∣ψ (II)
8

〉 = V, (63)

as can be seen in Eqs. (39) and (41). This implies that a
hyperfine transition or energy difference, with the spectator
atom being in a P state, undergoes a first-order van der Waals
energy shift proportional to V [see Eq. (15c)].
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A close inspection of the matrix (28) reveals that the
levels |ψ (I)

1 〉 and |ψ (I)
2 〉 are not coupled to any energetically

degenerate levels by the van der Waals interaction; hence, their
leading-order shift is of second order in V . From the previous
analysis [2] of the (1S; nS) van der Waals interaction, however,
we know that this observation does not imply that |ψ (I)

1 〉 and
|ψ (I)

2 〉 decouple from any other levels in terms of the eigenstates
of the total Hamiltonian H given in Eq. (1); there may still be
admixtures due to second-order effects in HvdW that involve
energetically degenerate levels, even if these are not coupled
directly to the reference state. In the case of the (1S; nS) van der
Waals interaction, we had constructed an effective Hamiltonian
HvdW[1/(E0 − H )]′HvdW and evaluated its matrix elements in
the basis of degenerate states. The same approach is taken
here, but with the Hamiltonian matrix restricted to the relevant
Fz submanifold of states.

Let us illustrate the procedure. We have the degenerate state∣∣ψ (I)
3

〉 = |(0,1,1)A(0,0,0)B〉, (64)

which is obtained from |ψ (I)
1 〉 by permuting the atoms A and

B, and construct the restricted Hamiltonian matrix

h
(I)
1,3 = lim

ε→0

(〈
ψ

(I)
1

∣∣H (ε)
eff

∣∣ψ (I)
1

〉 〈
ψ

(I)
1

∣∣H (ε)
eff

∣∣ψ (I)
3

〉
〈
ψ

(I)
3

∣∣H (ε)
eff

∣∣ψ (I)
1

〉 〈
ψ

(I)
3

∣∣H (ε)
eff

∣∣ψ (I)
3

〉
)

. (65)

One defines the effective Hamiltonian H
(ε)
eff as follows. Let H1

be the off-diagonal part of H
(I)
Fz=+1, equivalently given by the

expression of H
(I)
Fz=+1 given in Eq. (28) with H → 0 and L →

0. Also, let H0 be the diagonal part of H
(I)
Fz=+1, equivalently

given by the expression of H
(I)
Fz=+1 with V → 0. Then

H
(ε)
eff = H1 ·

(
1

E0,ψ
(I)
1

− H0 + ε

)
· H1, (66)

where the centered dot denotes the matrix multiplication
and the Green’s function matrix [1/(E0,ψ

(I)
1

− H0 + ε)] is
obtained as the inverse of the diagonal matrix 1E0,ψ

(I)
1

− H0 =
1E0,ψ

(I)
3

− H0. Since 〈ψ (I)
1 |H1|ψ (I)

3 〉 = 0, it is not necessary to
use the reduced Green’s function (which excludes degenerate
states); the limit ε → 0 is finite for all elements in h

(I)
1,3. The

matrix h
(I)
1,3 takes the form

h
(I)
1,3 =

⎛
⎜⎜⎝

5

2

V2

L − H + V2

2L − H
2V2

L − H
2V2

L − H
5

2

V2

L − H + V2

2L − H

⎞
⎟⎟⎠,

(67)

with eigenvalues

ε
(I)±
1,3 = 5

2

V2

L − H + V2

2L − H ± 2V2

L − H , (68)

akin to the formula C6 = D6 ± M6 encountered in Ref. [2],
with eigenvectors

∣∣ψ (I)±
1,3

〉 = 1√
2

(∣∣ψ (I)
1

〉 ± ∣∣ψ (I)
3

〉)
. (69)

Note that the eigenvalues ε±
1,3 only refer to the interaction

energy; in order to obtain the eigenvalue of the total Hamilto-
nian H given in Eq. (1), one has to add the unperturbed entry
2L − 3

2H.

For the reference state |ψ (I)
2 〉, we have the degenerate state

|ψ (I)
4 〉 = |(0,1,1)A(0,1,0)B〉 [see Eq. (27)]. The matrix h

(I)
2,4 has

the same structure as (but different elements from) h
(I)
1,3 given

in Eq. (67) and we find [see Eq. (28)]

ε
(I)±
2,4 = 5

2

V2

L + H + V2

2L + H ± 2V2

L + H . (70)

The expression for ε±
2,4 is obtained from ε±

1,3 by a sign change
in H. The eigenvectors are

∣∣ψ (I)±
2,4

〉 = 1√
2

(∣∣ψ (I)
2

〉 ± ∣∣ψ (I)
4

〉)
. (71)

The unperturbed energy for the states |ψ (I)
2 〉 and |ψ (I)

4 〉 is
2L + 3

2H. Hence, in the transition |ψ (I)
1 〉 → |ψ (I)

2 〉, where both
atoms are in S states, one has only second-order van der Waals
shifts. We recall that the transition is |(0,0,0)A(0,1,1)B〉 →
|(0,1,0)A(0,1,1)B〉.

We also need to analyze the space with Fz = 0. The
following states have the atom A in the singlet hyperfine 2S

level,

∣∣�(I)
1

〉 = |(0,0,0)A(0,0,0)B〉, (72a)∣∣�(I)
2

〉 = |(0,0,0)A(0,1,0)B〉, (72b)∣∣�(II)
1

〉 = |(0,0,0)A(1,0,0)B〉, (72c)∣∣�(II)
2

〉 = |(0,0,0)A(1,1,0)B〉, (72d)

while the 2S hyperfine triplet state of atom A is present in the
states

∣∣�(I)
4

〉 = |(0,1,0)A(0,0,0)B〉, (73a)∣∣�(I)
5

〉 = |(0,1,0)A(0,1,0)B〉, (73b)∣∣�(II)
4

〉 = |(0,1,0)A(1,0,0)B〉, (73c)∣∣�(II)
5

〉 = |(0,1,0)A(1,1,0)B〉. (73d)

The transitions in question are |�(I)
1 〉 → |�(I)

4 〉, |�(I)
2 〉 →

|�(I)
5 〉, |�(II)

1 〉 → |�(II)
4 〉, and |�(II)

2 〉 → |�(II)
5 〉. In view of the

results〈
�

(II)
4

∣∣HvdW

∣∣�(II)
8

〉 = 〈
�

(II)
2

∣∣HvdW

∣∣�(II)
10

〉 = −2V (74)

and 〈
�

(II)
5

∣∣HvdW

∣∣�(II)
9

〉 = 〈
�

(II)
5

∣∣HvdW

∣∣�(II)
12

〉 = −2V, (75)

which we obtain from Eq. (47), both transitions |�(II)
1 〉 →

|�(II)
4 〉 and |�(II)

2 〉 → |�(II)
5 〉 undergo first-order van der Waals

shifts. The spectator atom in these cases is in a P state.
By contrast, for the transitions within the submanifold

I, namely, |�(I)
1 〉 → |�(I)

4 〉 and |�(I)
2 〉 → |�(I)

5 〉, the van der
Waals shift only enters in second order. We first ana-
lyze the transition |�(I)

1 〉 → |�(I)
4 〉 = |(0,0,0)A(0,0,0)B〉 →
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|(0,1,0)A(0,0,0)B〉. There is no energetically degenerate state
available for |�(I)

1 〉 and hence one obtains

E
�

(I)
1

= 6V2

2L − 5H+
( V2

2L − H

)
(76)

from Eq. (45). The levels |�(I)
2 〉 and |�(I)

4 〉 are energetically
degenerate with respect to their unperturbed energy 2L − 3

2H,
but there is no direct van der Waals coupling between them.
The matrix H I

2,4 is easily calculated in analogy to hI
1,3 given

in Eq. (67), the difference being that the effective interaction
Hamiltonian (66) needs to be calculated with respect to HFz=0,
not HFz=+1. We find the eigenvalues

E
(I)±
2,4 = V2

L − H + 4V2

2L − H ± V2

−L + H , (77)

with eigenvectors

∣∣�(I)±
2,4

〉 = 1√
2

(∣∣�(I)
2

〉 ± ∣∣�(I)
4

〉)
. (78)

The last state whose van der Waals interaction energy needs to
be analyzed is |�(I)

5 〉. This state forms a degenerate set together
with the states |�(I)

3 〉 and |�(I)
6 〉,

∣∣�(I)
3

〉 = |(0,1, − 1)A(0,1,1)B〉, (79a)∣∣�(I)
5

〉 = |(0,1,0)A(0,1,0)B〉, (79b)∣∣�(I)
6

〉 = |(0,1,1)A(0,1, − 1)B〉, (79c)

which are both composed of two hyperfine triplet S states.
Under the additional approximationH 	 L, one finds through
Eq. (45) the Hamiltonian matrix

H
(I)
3,5,6 ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4V2

L
2V2

L 0

2V2

L
3V2

L
2V2

L

0
2V2

L
4V2

L

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (80)

The energy eigenvalues are

E
(I)(1)
3,5,6 ≈ 7 + √

33

2

V2

L , (81a)

E
(I)(2)
3,5,6 ≈ 4V2

L , (81b)

E
(I)(3)
3,5,6 ≈ 7 − √

33

2

V2

L , (81c)

with eigenvectors

�
(I)(1)
3,5,6 ≈ α−

∣∣�(I)
3

〉 + β−
∣∣�(I)

5

〉 + α−
∣∣�(I)

6

〉
, (82a)

�
(I)(2)
3,5,6 ≈ − 1√

2

∣∣�(I)
3

〉 + 1√
2

∣∣�(I)
6

〉
, (82b)

�
(I)(3)
3,5,6 ≈ α+

∣∣�(I)
3

〉 + β+
∣∣�(I)

5

〉 + α+
∣∣�(I)

6

〉
, (82c)

TABLE I. Energy shifts with the spectator atom in an
S state with F = 1: numerical values of the van der Waals
shift to the energy difference ε

(I)
+ between the symmetric

superpositions (1/
√

2)[|(0,1,0)A(0,1,1)B〉 + |(0,1,1)A(0,1,0)B〉] and
(1/

√
2)[|(0,0,0)A(0,1,1)B〉 + |(0,1,1)A(0,0,0)B〉] and to the energy

difference ε
(I)
− between the antisymmetric superpositions

(1/
√

2)[|(0,1,0)A(0,1,1)B〉 − |(0,1,1)A(0,1,0)B〉] and (1/
√

2)
[|(0,0,0)A(0,1,1)B〉 − |(0,1,1)A(0,0,0)B〉] as a function of the
interatomic separation R. We recall that the asymptotic value of
these energy differences is given by 3H; the unperturbed energies
are 2L ± 3

2H [see the text surrounding Eqs. (69) and (71)]. All
energies are given in units of the hyperfine splitting constant H
defined by (15a).

R ε
(I)
+ ε

(I)
−

∞ 0 0
750a0 − 1.1099×10−2 − 2.1156×10−3

500a0 5.5547×10−1 6.8788×10−2

250a0 3.7979×101 2.5507×101

where we introduced the notation

α± = 2

√
2

33 ± √
33

, (83a)

β± = ∓
√

33 ± 1√
2(33 ± √

33)
. (83b)

The transitions |�(I)
1 〉 → |�(I)

4 〉 and |�(I)
2 〉 → |�(I)

5 〉 thus un-
dergo only second-order van der Waals shifts of order V2/L;
these are the only hyperfine transitions with both atoms in
metastable states.

Finally, we briefly mention the Fz = −1 subspace. The
analysis carried out for the Fz = +1 subspace holds when we
perform the substitutions (see also the Appendix, Sec. 1)∣∣ψ (I)

1

〉 → ∣∣ψ ′(I)
1

〉
,

∣∣ψ (I)
2

〉 → ∣∣ψ ′(I)
4

〉
,

∣∣ψ (I)
3

〉 → ∣∣ψ ′(I)
2

〉
,∣∣ψ (I)

4

〉 → ∣∣ψ ′(I)
3

〉
,

∣∣ψ (I)
5

〉 → ∣∣ψ ′(I)
5

〉
,

∣∣ψ (I)
6

〉 → ∣∣ψ ′(I)
8

〉
,∣∣ψ (I)

7

〉 → ∣∣ψ ′(I)
6

〉
,

∣∣ψ (I)
8

〉 → ∣∣ψ ′(I)
7

〉
. (84)

TABLE II. Energy shifts with the spectator atom in a
P state with F = 1: numerical values of the van der Waals
shift to the energy difference ε

(II)
+ between the symmetric

superpositions (1/
√

2)[|(0,1,0)A(1,1,1)B〉 + |(1,1,1)A(0,1,0)B〉] and
(1/

√
2)[|(0,0,0)A(1,1,1)B〉 + |(1,1,1)A(0,0,0)B〉] and of the energy

difference ε
(II)
− between the antisymmetric superpositions

(1/
√

2)[|(0,1,0)A(1,1,1)B〉 − |(1,1,1)A(0,1,0)B〉] and (1/
√

2)
[|(0,0,0)A(1,1,1)B〉 − |(1,1,1)A(0,0,0)B〉] as a function of the
interatomic separation R. All energies are given in units of the
hyperfine splitting constant H defined by (15a).

R ε
(II)
+ ε

(II)
−

∞ 0 0
750a0 2.6396 2.6396
500a0 1.3276×101 1.3276×101

250a0 1.2510×102 1.2510×102
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TABLE III. Energy shifts with the spectator atom in an
S state with F = 0: numerical values of the van der Waals
shift to the energy difference E

(I)
+ between the symmet-

ric superposition (1/
√

2)[|(0,1,0)A(0,0,0)B〉 + |(0,0,0)A(0,1,0)B〉]
and |(0,0,0)A(0,0,0)B〉 and of the energy difference E

(I)
− be-

tween the antisymmetric superposition (1/
√

2)[|(0,1,0)A(0,0,0)B〉 −
|(0,0,0)A(0,1,0)B〉] and |(0,0,0)A(0,0,0)B〉 as a function of the
interatomic separation R. The energies are given in units of the
hyperfine splitting constant H defined by (15a).

R E
(I)
+ E

(I)
−

∞ 0 0
750a0 − 4.7272×10−2 1.9331×10−2

500a0 − 2.9284 − 1.8165
250a0 2.4319×101 − 2.9082

In Tables I–IV we provide some numerical values for the
modification of the 2S hyperfine splitting, as a function of
interatomic distance. The spectator atom is in an S state
for Tables I and III and in a P state for Tables II and IV.
Tables I and II treat the relevant transitions within the Fz = +1
manifold, while Tables III and IV treat (some of) the relevant
transitions within the Fz = 0 manifold. The relevant transitions
within the Fz = −1 manifold have the same transition energies
as those within the Fz = +1 for all separations and the
corresponding results can thusly be read from Tables I and II,
with the substitutions

|(0,0,0)A(0,1,1)B〉 → |(0,0,0)A(0,1, − 1)B〉, (85a)

|(0,1,0)A(0,1,1)B〉 → |(0,1,0)A(0,1, − 1)B〉, (85b)

|(0,0,0)A(1,1,1)B〉 → |(0,0,0)A(1,1, − 1)B〉, (85c)

|(0,1,0)A(1,1,1)B〉 → |(0,1,0)A(1,1, − 1)B〉. (85d)

V. CONCLUSION

We analyzed the (2S; 2S) interaction at the dipole-dipole
level with respect to degenerate subspaces of the hyperfine-
resolved unperturbed Hamiltonian. Full account was taken of
the manifolds with n = 2 and J = 1/2 (2S and 2P1/2 states),

TABLE IV. Energy shifts with the spectator atom in a
P state with F = 0: numerical values of the van der Waals
shift to the energy difference E

(II)
+ between the symmetric

superpositions (1/
√

2)[|(0,1,0)A(1,0,0)B〉 + |(1,0,0)A(0,1,0)B〉]
and (1/

√
2)[|(0,0,0)A(1,0,0)B〉 + |(1,0,0)A(0,0,0)B〉] and

of the energy difference E
(II)
− beteen the antisymmetric

superpositions (1/
√

2)[|(0,1,0)A(1,0,0)B〉 − |(1,0,0)A(0,1,0)B〉] and
(1/

√
2)[|(0,0,0)A(1,0,0)B〉 − |(1,0,0)A(0,0,0)B〉] as a function of

the interatomic separation R. All energies are given in units of the
hyperfine splitting constant H defined by (15a).

R E
(II)
+ E

(II)
−

∞ 0 0
750a0 − 1.4673 2.1880
500a0 − 2.4855 1.2326×101

250a0 8.2368×101 8.2379×101

FIG. 9. Evolution of the energy levels of the submanifold I
within the Fz = −1 hyperfine manifold as a function of interatomic
separation. The eigenstates given in the legend are only asymptotic;
for finite separation these states mix.

while the fine-structure splitting was supposed to be large
against the van der Waals energy shifts (the 2P3/2 state was
not included in the treatment).

We found that the total Hamiltonian given in Eq. (1)
commutes with the magnetic projection Fz of the total
angular momentum of the two atoms. Hence, we could
separate the manifolds with n = 2 and J = 1/2 into sub-
manifolds with Fz = +2,1,0,−1,−2. In each of these man-
ifolds, we could identify two irreducible submanifolds,
uncoupled to one another because of the usual selection
rules of atomic physics. In each of these submanifolds
the Hamiltonian matrix could readily be evaluated [see
Eqs. (19), (21), (28), (30), (45), (47), (A2), (A4), (A8),
and (A11)]. Several degenerate subspaces with first-order van
der Waals shifts [in the parameter V defined by (15c) and
hence of order 1/R3] could be identified. The corresponding
shifts are of course the relevant ones for large interatomic
separations.

However, it should be noted that those hyperfine transitions
where both atoms are in S states actually undergo only
second-order van der Waals shifts, where the energy shifts
are given by expressions proportional to V2/L, with V being
defined in Eq. (15c). The relevant states and energy shifts
are given in Eqs. (60a), (61a), (68), and (70) (for the Fz = 1
manifold). For the Fz = 0 manifold, we have the states given
in Eqs. (72a), (73a), as well as (72b) and (73b), and the energy
eigenvalues are provided in Eqs. (76), (77), and (81). The
transitions are labeled |�(I)

1 〉 → |�(I)
4 〉 and |�(I)

2 〉 → |�(I)
5 〉 in

Sec. IV. Experimentally, the states with both atoms in an S

level are most interesting, because they are the only ones
that survive for an appreciable time in an atomic beam; P

states (and thus states with P admixtures) decay with typical
lifetimes on the order of 10−8s (see Ref. [15]).

The dipole-dipole interaction results in level crossings (see
Figs. 4–10), which is a feature of the hyperfine-resolved
treatment of the problem. We were able to confirm that,
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FIG. 10. Evolution of the energy levels of the submanifold II
within the Fz = −1 hyperfine manifold as a function of interatomic
separation. The eigenstates given in the legend are only asymptotic;
for finite separation these states mix. The curve for the seventh state
in the legend (counted from the top) has been slightly offset for better
readability; in actuality it is virtually indistinguishable from that for
the sixth state.

in the coarse-structure limit L → 0, F → 0, no such level
crossings are present (as found in Ref. [3]). We note that, in
the hyperfine-resolved problem, there are no level crossings
for the Fz = ±2 manifolds (see Figs. 1 and 11); for the
Fz = ±1 manifolds, only crossings between levels belonging
to different irreducible submanifolds take place (in other
words, the energies of states that are asymptotically of the
2S-2P type on the one hand and of states of the 2S-2S and
2P -2P type on the other cross for R < 500a0; see Figs. 2, 3, 9
and 10), while for the Fz = 0 manifold, both intrasubmanifold
(for R < 1000a0) and intersubmanifold (for R < 500a0) level
crossings take place (see Figs. 4–8).

FIG. 11. Evolution of the energy levels within the Fz = −2
hyperfine manifold as a function of interatomic separation. The
eigenstates given in the legend are only asymptotic; for finite
separation these states mix.

Of particular phenomenological interest are the 2S hyper-
fine singlet to hyperfine triplet transitions with |(0,0,0)A〉 →
|(0,1,0)A〉 with the spectator atom B in a specific state. We
found that all transitions with the spectator atom in a P state
undergo first-order van der Waals shifts (of order 1/R3), while
the shift is of order 1/R6 if the spectator atom is in an S state,
that is, of second order in V . This is due to the fact that 2S-2S

states are not coupled to energetically degenerate states (they
are only coupled to 2P -2P states), while 2S-2P states are
coupled to 2P -2S states with which they are energetically
degenerate. In other words, these different behaviors are
ultimately due to the selection rules. The spectator atom in
a P state, however, decays very fast to the ground state
by one-photon emission, with a lifetime of approximately
1.60 × 10−9 s [15], so, depending on the exact experimental
setup, the large van der Waals interaction energy shifts of
the 2S(F = 0) → 2S(F = 1) hyperfine transition (with the
spectator atom being in a 2P state) do not play a role in
the analysis of atomic beam experiments. Otherwise, we
observe that a spectator atom in a P state induces larger
frequency shifts, comparing, e.g., the shifts in Tables I and II
for R = 750a0 and 500a0.

As shown in Sec. IV, the precise numerical coefficients of
the van der Waals shifts of the hyperfine singlet to hyperfine
triplet transitions |(0,0,0)A〉 → |(0,1,0)A〉 depend on the
symmetry of the wave function superposition of atoms A and B

and cannot be uniquely expressed in terms of a specific state of
the spectator atom B alone; a symmetrization term is required
[see the term prefixed with ± in Eqs. (68), (70), and (77); the
same is true in the Fz = −1 subspace]. For spectroscopy, one
essential piece of information to be derived from the results
given in Eqs. (68), (70), (77), and (81) is that the van der
Waals interaction energy shift for 2S(F = 0) → 2S(F = 1)
hyperfine transitions (with the spectator atom in a metastable
2S state) is of order V2/L, where the parameters are defined
in Eq. (15) [see also the remark in the text following Eq. (83)].
It is straightforward to see from Eq. (15c) that, for interatomic
separation R ∼ 5 × 105a0 � 2.6 × 10−5 m, the van der Waals
shift reaches the experimental accuracy of the 2S hyperfine
frequency measurements [1].

Expressed more conveniently, still in SI mksA units, the
shift is of order

E2S;2S(R) ∼ V2

L ∼ Eh

(
a0

R

)6
Eh

L , (86)

where Eh is the Hartree energy, a0 is the Bohr radius, and
L ∼ α3Eh is the Lamb shift energy [see Eq. (3)].

A quick word is in order about how the present results can
be transposed to hydrogenlike systems such as positronium
and muonium. For positronium, the hierarchy between the
fine structure, Lamb shift, and hyperfine structure is not
the same as that for hydrogen, so the treatment used here,
based on that hierarchy, does not apply. For muonium, on
the other hand, our analysis remains relevant. Given that the
reduced mass for the muonium system is very close to that
of the hydrogen atom, the fine-structure and Lamb-shift-type
splittings are almost identical to those of hydrogen. The
hyperfine splitting is (gs/gN )(mp/mμ) ∼ 3.2 times larger than
that of atomic hydrogen. Finally, given the close proximity of
the reduced masses, muonium has a Bohr radius very close
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to that of hydrogen, so the intensity of the dipole-dipole
interactions will be essentially identical, for equal separations,
between two hydrogen atoms and between two muonium
atoms.

In this work as well as in the preceding paper [2], we
have treated dipole-dipole interactions between atoms sitting
in S states (though, in the present case, we had to treat
the 2P1/2 state on the same footing as 2S, given their
quasidegeneracy). Finally, we should comment on the distance
range for which our calculations remain applicable. We have
used the nonretardation approximation in Eq. (2c). For the
2S-2S interaction via adjacent 2P1/2 states, retardation sets
in when the phase of the atomic oscillation during a virtual
(Lamb shift) transition changes appreciably on the time scale
it takes light to travel the interatomic separation distance R,
i.e., when

R

c
∼ h̄

L . (87)

We have R ∼ h̄c/L when R is on the order of the Lamb shift
wavelength of about 30 cm. The nonretardation approximation
thus is valid over all distance ranges of physical interest, for
the (2S; 2S) system.
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APPENDIX: FURTHER MANIFOLDS

1. Manifold Fz = −1

We can identify two irreducible subspaces within the Fz =
−1 manifold: subspace I composed of the states

∣∣ψ ′(I)
1

〉 = |(0,0,0)A(0,1, − 1)B〉, ∣∣ψ ′(I)
2

〉 = |(0,1, − 1)A(0,0,0)B〉, ∣∣ψ ′(I)
3

〉 = |(0,1, − 1)A(0,1,0)B〉,∣∣ψ ′(I)
4

〉 = |(0,1,0)A(0,1, − 1)B〉, ∣∣ψ ′(I)
5

〉 = |(1,0,0)A(1,1, − 1)B〉, ∣∣ψ ′(I)
6

〉 = |(1,1, − 1)A(1,0,0)B〉,∣∣ψ ′(I)
7

〉 = |(1,1, − 1)A(1,1,0)B〉, ∣∣ψ ′(I)
8

〉 = |(1,1,0)A(1,1, − 1)B〉, (A1)

where the Hamiltonian matrix reads

H
′(I)
Fz=−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2L − 3
2H 0 0 0 0 V V 2V

0 2L − 3
2H 0 0 V 0 2V V

0 0 2L + 3
2H 0 V 2V 0 V

0 0 0 2L + 3
2H 2V V V 0

0 V V 2V − 1
2H 0 0 0

V 0 2V V 0 − 1
2H 0 0

V 2V 0 V 0 0 1
2H 0

2V V V 0 0 0 0 1
2H

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

and subspace II composed of the states

∣∣ψ ′(II)
1

〉 = |(0,0,0)A(1,1, − 1)B〉, ∣∣ψ ′(II)
2

〉 = |(0,1, − 1)A(1,0,0)B〉, ∣∣ψ ′(II)
3

〉 = |(0,1, − 1)A(1,1,0)B〉,∣∣ψ ′(II)
4

〉 = |(0,1,0)A(1,1, − 1)B〉, ∣∣ψ ′(II)
5

〉 = |(1,0,0)A(0,1, − 1)B〉, ∣∣ψ ′(II)
6

〉 = |(1,1, − 1)A(0,0,0)B〉,∣∣ψ ′(II)
7

〉 = |(1,1, − 1)A(0,1,0)B〉, ∣∣ψ ′(II)
8

〉 = |(1,1,0)A(0,1, − 1)B〉, (A3)

where the Hamiltonian matrix reads

H
(II)
Fz=−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L − 2H 0 0 0 0 V V 2V
0 L 0 0 V 0 2V V
0 0 L + H 0 V 2V 0 V
0 0 0 L + H 2V V V 0
0 V V 2V L 0 0 0
V 0 2V V 0 L − 2H 0 0
V 2V 0 V 0 0 L + H 0
2V V V 0 0 0 0 L + H

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)

Surprisingly, the Hamiltonian matrix is a little different from the case with Fz = +1, even if one reorders the basis vectors
accordingly. The energy eigenvalues of course are the same.
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Again within subspace I there are no degenerate subspaces with nonzero coupling, while, in subspace II we can identify
degenerate states coupled to each other. The analysis carried out in Sec. III B applies here if we make the following substitutions:∣∣ψ (II)

1

〉 → ∣∣ψ ′(II)
1

〉
,

∣∣ψ (II)
2

〉 → ∣∣ψ ′(II)
3

〉
,

∣∣ψ (II)
3

〉 → ∣∣ψ ′(II)
4

〉
,∣∣ψ (II)

4

〉 → ∣∣ψ ′(II)
2

〉
,

∣∣ψ (II)
5

〉 → ∣∣ψ ′(II)
5

〉
,

∣∣ψ (II)
6

〉 → ∣∣ψ ′(II)
7

〉
,∣∣ψ (II)

7

〉 → ∣∣ψ ′(II)
8

〉
,

∣∣ψ (II)
8

〉 → ∣∣ψ ′(II)
6

〉
, (A5)

so we need not go over the analysis of degenerate subspaces
again. (Even when making this reordering, many off-diagonal
terms have different signs in H

(II)
Fz=+1 and H

(II)
Fz=−1. However,

only the couplings between nondegenerate states have different
signs, while coupling between degenerate states remain iden-
tical. This latter point means that the analysis of Sec. III B also
applies to H

(II)
Fz=−1.) However, for the sake of completeness

and clarity, in Figs. 9 and 10 we plot the evolution of the
eigenvalues with respect to interatomic separation. Notice
that the evolution of the energy eigenstates is identical to the
eigenstates in the Fz = +1 manifold.

2. Manifold Fz = −2

We can identify two irreducible subspaces within the Fz =
+2 manifold: subspace I composed of the states

∣∣φ′(I)
1

〉 = |(0,1, − 1)A(0,1, − 1)B〉, (A6)∣∣φ′(I)
2

〉 = |(1,1, − 1)A(1,1, − 1)B〉, (A7)

where the Hamiltonian matrix reads

H
(I)
Fz=−2 =

(
2L + 3

2H −2V
−2V 1

2H

)
, (A8)

and subspace II composed of the states∣∣φ′(II)
1

〉 = |(0,1, − 1)A(1,1, − 1)B〉, (A9)∣∣φ′(II)
2

〉 = |(1,1, − 1)A(0,1, − 1)B〉, (A10)

where the Hamiltonian matrix reads

H
(II)
Fz=−2 =

(
L + H −2V
−2V L + H

)
. (A11)

We do not repeat the analysis of the eigensystem and refer the
reader to Sec. III A. The results given there are immediately
transposed to the present case, by the simple substitution
|φi〉 → |φ′

i〉. However, for the sake of completeness and clarity,
in Fig. 11 we still plot the evolution of the eigenvalues with
respect to interatomic separation. Notice that the evolution of
the energy eigenstates is identical to the eigenstates in the
Fz = +2 manifold.
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