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Long-range interactions of hydrogen atoms in excited states.
I. 2S-1S interactions and Dirac-δ perturbations

C. M. Adhikari,1 V. Debierre,1 A. Matveev,2,3 N. Kolachevsky,2,3,4 and U. D. Jentschura1

1Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409-0640, USA
2P. N. Lebedev Physics Institute, Leninsky Prospekt 53, Moscow 119991, Russia

3Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
4Russian Quantum Center, Business-center “Ural”, 100A Novaya Street, Skolkovo, Moscow 143025, Russia

(Received 26 September 2016; published 2 February 2017)

The theory of the long-range interaction of metastable excited atomic states with ground-state atoms is analyzed.
We show that the long-range interaction is essentially modified when quasidegenerate states are available for
virtual transitions. A discrepancy in the literature regarding the van der Waals coefficient C6(2S; 1S) describing
the interaction of metastable atomic hydrogen (2S state) with a ground-state hydrogen atom is resolved. In the the
van der Waals range a0 � R � a0/α, where a0 = h̄/αmc is the Bohr radius and α is the fine-structure constant,
one finds the symmetry-dependent result E2S;1S(R) ≈ (−176.75 ± 27.98)Eh(a0/R)6 (Eh denotes the Hartree
energy). In the Casimir-Polder range a0/α � R � h̄c/L, where L ≡ E(2S1/2) − E(2P1/2) is the Lamb shift
energy, one finds E2S;1S(R) ≈ (−121.50 ± 46.61)Eh(a0/R)6. In the the Lamb shift range R � h̄c/L, we find
an oscillatory tail with a negligible interaction energy below 10−36 Hz. Dirac-δ perturbations to the interaction
are also evaluated and results are given for all asymptotic distance ranges; these effects describe the hyperfine
modification of the interaction or, expressed differently, the shift of the hydrogen 2S hyperfine frequency due to
interactions with neighboring 1S atoms. The 2S hyperfine frequency has recently been measured very accurately
in atomic beam experiments.

DOI: 10.1103/PhysRevA.95.022703

I. INTRODUCTION

The purpose of this paper is twofold. First, we aim to
revisit the calculation of the long-range (van der Waals
and Casimir-Polder) interactions for ground-state hydrogen
interacting with an excited-state atom in a 2S state. Second, we
aim to study the perturbation of the van der Waals interactions
by a Dirac-δ potential perturbing the metastable excited state
that participates in the interaction. Such a Dirac-δ potential can
be due to the electron-nucleus (hyperfine) interaction in one of
the atoms [1] or due to a self-energy radiative correction [2].
Special emphasis is laid on the role of quasidegenerate levels
and on the exchange term, which is due to the possibility of
1S-2S atoms becoming a 2S-1S pair after the exchange of two
virtual photons [3].

It is interesting to notice that two results given in the
literature for the so-called van der Waals coefficient of the
1/R6 nonretarded interaction between 1S and 2S states are
in significant mutual disagreement (numerically, the authors
of Ref. [4] obtain a value of roughly 177 a.u., while a
result of about 57 a.u. has been derived in Refs. [3,5]). We
attempt a thorough analysis of the discrepancy. Two different
methods of calculation were employed in Ref. [4] (direct
sum over virtual atomic states, including the continuum) and
Refs. [3,5] (integration over analytic expressions representing
the polarizability).

The role of the virtual, quasidegenerate 2P states deserves
special attention. For 2S reference states, the 2P1/2 and 2P3/2

levels are displaced only by the Lamb shift and fine struc-
ture, respectively. Significant modifications of the long-range
interactions result from the presence of the quasidegenerate
states.

Recently, precision measurements of the 2S hyperfine
splitting have been carried out using an atomic beam consisting

of a mixture of ground-state 1S hydrogen atoms and metastable
2S atoms [6,7]. To leading order, the van der Waals interaction
shifts all hyperfine-structure components equally. However,
there is a correction to the van der Waals interaction due
to the hyperfine structure (hfs), which depends on the total
(electron plus nucleus) angular momentum quantum number
F . This correction shifts hfs components closer to each other.
This latter effect is analyzed in the current paper; it is of
phenomenological significance because of van der Waals
interactions inside the atomic beam. Again, special attention is
required in the treatment of the quasidegenerate atomic levels.

Let us recall here that the general subject of long-range
interactions of simple atoms is very well known to the
physics community and a few investigations on simple atomic
systems can be found in Refs. [4,5,8–17]. Various aspects of
the problem have been studied in depth: For example, the
importance of multipole mixing effects and of perturbations
by hyperfine effects has been stressed in Refs. [10–13].
Higher-order effects such as dipole-octupole mixing terms
were discussed in detail for hydrogen in Ref. [5] and for helium
in Ref. [16]. The dipole-dipole interaction potential of helium,
including retardation, has been discussed in great detail in
Refs. [18,19], including a number of numerical examples.
More complex alkali-metal dimers have been considered in
Refs. [20,21].

Throughout this article, we work in SI mksA units and keep
all factors of h̄ and c in the formulas. With this choice, we
attempt to enhance the accessibility of the presentation to two
different communities, namely, the quantum electrodynamics
(QED) community, which in general uses the natural unit
system, and the atomic physics community, where the atomic
unit system is canonically employed. In the former, one sets
h̄ = c = ε0 = 1 and the electron mass is denoted as m. The
relation e2 = 4πα then allows us to identify the expansion
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in the number of quantum electrodynamic corrections with
powers of the fine-structure constant α ≈ 1/137.036. This unit
system is used, e.g., in the investigation reported in Ref. [22] on
relativistic corrections to the Casimir-Polder interaction (with
a strong overlap with QED). In the atomic unit system, we
have |e| = h̄ = m = 1 and 4πε0 = 1. The speed of light, in
the atomic unit system, is c = 1/α ≈ 137.036. This system of
units is especially useful for the analysis of purely atomic
properties without radiative effects. As the subject of the
current study lies in between the two mentioned fields of
interest, we choose the SI unit system as the most appropriate
reference frame for our calculations. The formulas do not
become unnecessarily complex and can be evaluated with ease
for any experimental application.

We organize this paper as follows. The problem is somewhat
involved; as such, we attempt to orient ourselves in Sec. II. The
direct term in the 2S-1S interaction is analyzed in Sec. III.
In Sec. III B we study that interaction in the van der Waals
range. The very-large-distance limit is discussed in Sec. III C
(atomic distance larger than the wavelength of the Lamb
shift transition) and the intermediate Casimir-Polder range in
Sec. III D. The mixing term in the 2S-1S interaction is analyzed
in Sec. IV. We then analyze a Dirac-δ-induced (hfs-induced)
modification both for the 2S-1S interaction and for the 1S-1S

interaction in Sec. V. In Sec. VI we numerically evaluate the
shift of the 2S hyperfine frequency due to the long-range
interaction with a ground-state hydrogen atom. A summary
is given and conclusions are drawn in Sec. VII.

II. ORIENTATION

In order to evaluate the van der Waals correction to the
2S-1S hyperfine frequency, one needs to diagonalize the total
Hamiltonian

Htotal = HS + HFS + HLS + Hhfs + HvdW. (1)

Here HS is the Schrödinger Hamiltonian and HFS is the fine-
structure Hamiltonian, which can be approximated as (see
Chap. 34 of Ref. [23])

HFS =
∑

i=A,B

[
− �p 4

i

8m3c2
+ 1

2
α

(
h̄2gs

2m2c

) �Li · �Si

|�ri |3

+ h̄3

8m2c
4παδ(3)(�ri)

]
, (2)

where m is the electron mass, the �pi denote the momenta of
the two atomic electrons relative to their nuclei (i runs over the
atoms A and B), and the �ri = �xi − �Ri denote the coordinates
relative to the nuclei (the electron and nucleus coordinates are
�xi and �Ri , respectively). We restrict the discussion to neutral
hydrogen atoms and thus assume a nuclear charge number of
Z = 1. We will use the following approximation to the Lamb
shift Hamiltonian, which constitutes an effective Hamiltonian
useful in the evaluation of the leading radiative correction to
dynamic processes [24,25]:

HLS =
∑

i=A,B

4

3
α2mc2

(
h̄

mc

)3

ln(α−2)δ(3)(�ri). (3)

We will use this Hamiltonian later in the analysis of the
radiative correction to the long-range interatomic interaction.
The Hamiltonian for the hyperfine interaction [1,26] reads

Hhfs = μ0

4π
μBμNgsgp

∑
i=A,B

[
8π

3
�Si · �Iiδ

(3)(�ri)

+ 3(�Si · r̂i)( �Ii · r̂i) − (�Si · �Ii)

|�ri |3 +
�Li · �μi

h̄|�ri |3
]
. (4)

Here the unit vectors are r̂i = �ri/|�ri |. The spin operator for
the electron i is �Si = �σi/2, while �Ii is the spin operator
for proton i (both spin operators are dimensionless). The
electronic and protonic g factors are gs � 2.002 319 and gp �
5.585 695, while μB � 9.274 010 × 10−24 A m2 is the Bohr
magneton and μN � 5.050 784 × 10−27 A m2 is the nuclear
magneton [27]. It is well known that, for S states, the second
term in the fine-structure Hamiltonian (2) and the second and
third terms in the hyperfine-structure Hamiltonian (4) have
vanishing contributions. For S states, the relevant term in the
hyperfine Hamiltonian therefore is of the Dirac-δ type. Hence,
we put special emphasis on the modifications occasioned by
such Dirac-δ potentials.

The van der Waals energy is normally derived as follows.
One first writes the attractive and repulsive terms that describe
the electron-electron, electron-proton, and proton-proton in-
teractions in the two atoms (excluding the intra-atomic terms).
This leads to the total Coulomb interaction

VC = e2

4πε0

(
1

| �RA − �RB | + 1

|�xA − �xB |

− 1

|�xA − �RB | − 1

|�xB − �RA|

)
. (5)

One then uses the fact that the separation | �RA − �RB | between
the two nuclei (protons) is much larger than that between
a given proton and its respective electron, that is, much
larger than both |�rA| = |�xA − �RA| and |�rB | = |�xB − �RB |. One
then writes �xA − �RB = �rA + ( �RA − �RB) and �xB − �RA = �rB +
( �RB − �RA). Expanding in �rA and �rB , one obtains

HvdW = e2

4πε0

�rA · �rB − 3(�rA · R̂)(�rB · R̂)

R3

= e2

4πε0R3
(δk� − 3R̂kR̂�)rAkrB�, (6)

where �R = �RA − �RB , R = | �R|, and R̂ = �R/R. The indices
k and � corresponding to the Cartesian coordinates are
summed over (Einstein summation convention). The van der
Waals interaction term, for a 2S-1S system, has vanishing
elements in first-order perturbation theory. Both atoms A

and B have to undergo a virtual dipole transition to a P

state for a nonvanishing effect and the leading-order van der
Waals interaction is obtained in second-order perturbation
theory, leading to a 1/R6 interaction energy. The propagator
denominator in the standard Rayleigh-Schrödinger expression
for the second-order energy shift due to HvdW is equal to
the sum of the virtual excitation energies of both atoms [4].
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The close-range asymptotics of the interatomic interaction
energy thus goes as 1/R6 [4]. For an interatomic distance
of R ∼ 30a0, . . . ,100a0 (100 a.u.), the energy shift is on the
order of 10−8, . . . ,10−12 a.u. (Hartree). The hierarchy

〈HvdW〉 � 〈Hhfs〉 � 〈HLS〉 � 〈HFS〉 (7)

is thus fulfilled for R � 30a0. For sufficiently large interatomic
distance, the Dirac δ potential of the hfs acts as a perturbation
and can be treated as such; we will focus on this regime in the
current paper.

For clarity, we should point out that the Hamiltonian (6)
remains valid in the nonretardation approximation. One can
understand retardation as follows: When the phase of the
atomic oscillation during a virtual transition changes appre-
ciably on the time scale it takes light to travel the interatomic
separation distance R, then the retarded form of the van der
Waals interaction has to be used. The criterion for the validity
of the nonretardation approximation thus is

R

c
� h̄

Eh

= a0

αc
(8)

or, more precisely,

a0 = h̄

αmc
� R � h̄

α2mc
= a0

α
, (9)

if we take into account that substantial overlap of the electronic
wave functions is to be avoided.

The retarded interatomic interaction cannot be obtained
on the basis of Eq. (6) alone; one has to use the atom-field
interaction term [see Eq. (85.4) of Ref. [23]]

V (t) = − �E( �RA,t) · �dA(t) − �E( �RB,t) · �dB(t), (10)

where �di = e�ri is the dipole operator for atom i (for atoms
with more than one electron, one has to sum over all the
electrons in the atoms i = A,B). The �RA and �RB are the
positions of the atomic nuclei and �E denotes the operator of
the quantized electric field. An elegant way of deriving the
retarded Casimir-Polder interaction, described in Eq. (85.4)
of Ref. [23], then consists in the matching of the scattering
amplitude obtained from quantum electrodynamics, against
the effective interatomic interaction Hamiltonian. Alternative
derivations use time-ordered perturbation theory [28].

The functional form of the interaction depends on the
distance range. In the van der Waals range (9) of interatomic
distances, the interaction of ground-state atoms is of the usual
R−6 functional form. This remains valid if one atom is in a
metastable excited state. In the so-called Casimir-Polder range

R � h̄

α2mc
, (11)

the interatomic distance is much larger than the wavelength
of an optical transition and the interaction of ground-state
atoms has an R−7 function form. For the long-range interaction
involving excited metastable atoms, however, we have to
distinguish a third range of very large interatomic distances,
the Casimir-Polder II range (or Lamb shift)

R � h̄c

L , (12)

which we would like to refer to as the Lamb shift range.
Here L is the Lamb shift energy. For metastable atoms, the

Casimir-Polder range is bounded from above by the Lamb
shift range and the condition (11) should be modified to read

h̄c

L � R � h̄

α2mc
(13)

(the Casimir-Polder I range). For the 1S-1S interaction, the
interaction energy reaches the Casimir-Polder asymptotic
form, proportional to 1/R7, in both regimes described by
Eqs. (12) and (13). For the 2S-1S interaction, it is only in the
very-long-range regime (12) that we have an R−7 interaction,
with competing oscillatory terms [29–31] proportional to
(L4/R2) cos(LR/h̄c).

A further complication arises. The state with atom A in an
excited state and atom B in the ground state, |2S〉A|1S〉B , is
degenerate with the state |1S〉A|2S〉B with the quantum num-
bers reversed among the atoms. There is no direct first-order
coupling between |2S〉A|1S〉B and |1S〉A|2S〉B due to the van
der Waals interaction (6), but in second order, an off-diagonal
term is obtained that is of the same order-of-magnitude as the
diagonal term, i.e., the term with the same in and out states.
The Hamiltonian matrix in the basis of the degenerate states
|2S〉A|1S〉B and |1S〉A|2S〉B has off-diagonal (exchange) terms
of second order in the van der Waals interaction [3]. The energy
eigenvalues and eigenstates are easily found in the degenerate
basis and are studied in Sec. IV.

III. THE 2S-1S DIRECT INTERACTION

A. Formalism

According to Eq. (85.17) in Chap. 85 of Ref. [23], the
interaction energy between two atoms A and B in states |A〉
and |B〉 is given by

E
(dir)
A;B (R) = Re

ih̄

πc4(4πε0)2

∫ ∞

0
dω αA(ω)αB(ω)e2iωR/c ω4

R2

×
[

1 + 2i
c

ωR
− 5

(
c

ωR

)2

− 6i

(
c

ωR

)3

+ 3

(
c

ωR

)4
]
. (14)

Here the superscript (dir) stands for direct, as we anticipate
that this interaction energy is to be supplemented by the
so-called exchange interaction, to be discussed in Sec. IV. The
integral (14) constitutes the generalization of the second-order
van der Waals shift given by the application of Eq. (6) to
the long-range limit, where retardation sets in. Equation (14)
contains the atom-field interaction at the lowest relevant order
in the elastic scattering case, where the initial and final states
are identical (e.g., all photons emitted are reabsorbed and vice
versa). We here restrict the discussion to the leading effect
in the multipole expansion, given by the dipole polarizability
αi (i = A,B). The designation of the real part of the energy
shift is necessary because the integrand constitutes a complex
rather than real quantity and the poles of the integrand are
displaced from the real axis according to the Feynman pre-
scription. For the dipole polarizability αA(ω) (of atom A), we
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have

αA(ω) = PA(ω) + PA(−ω),

PA(ω) = e2

3
〈ψA|�r 1

H − EA + h̄ω − iε
�r|ψA〉 (15)

= e2

3

∑
n

3∑
i=1

|〈ψA|�r |ψn〉|2

En − EA + h̄ω − iε
,

where H in the propagator denominator denotes the
Schrödinger Hamiltonian of the relevant atom. The ε param-
eter in Eq. (15) ensures that the integration (14) is carried
along the Feynman contour; the limit ε → 0+ is taken after
the integration is carried out. Under appropriate conditions,
which are discussed in detail below, we may perform a Wick
rotation dω → idω in the integral (14). The resulting Wick
(W) rotated expression is the familiar one that is usually taken
as the starting point of the investigations (see, e.g., Ref. [22]),

E
(dir)W
A;B (R) =− h̄

πc4(4πε0)2

∫ ∞

0
dω αA(iω)αB(iω)

× e−2ωR/c ω4

R2

[
1 + 2

(
c

ωR

)
+ 5

(
c

ωR

)2

+ 6

(
c

ωR

)3

+ 3

(
c

ωR

)4
]
. (16)

We do not explicitly indicate the real part on the right-hand
side of this equation, because the polarizability αA(iω) is
manifestly real if we set ε = 0 in Eq. (15), and there are
no poles near the integration contour in Eq. (16) to be
considered. If both atoms are in their |1S〉 ground state, then the
expressions (14) and (16) are equal [E(dir)

1S;1S(R) = E
(dir)W
1S;1S (R)]

and the Wick rotation is permissible.
Let us now study the case |A〉 = |2S〉 and |B〉 = |1S〉 for

atomic hydrogen as a paradigmatic example of a long-range
interaction involving a metastable excited state. In this case,
the Wick rotated integral (16) is not equal to (14) and extra
care is needed (see also Appendix A). The dipole polarizability
α2S can naturally be split into two contributions, the first of
which is due to the quasidegenerate |2P1/2〉 and |2P3/2〉 states
that are displaced from |2S〉 only by the Lamb shift and by the
fine structure, respectively. The second contribution is due to
nP states with principal quantum number n � 3. After doing
the angular algebra for the |2P1/2〉 and |2P3/2〉 states whose
oscillator strengths [32] with respect to 2S are distributed in a
ratio 1

3 : 2
3 , we obtain

α2S(ω) = ᾱ2S(ω) + α̃2S(ω), (17a)

ᾱ2S(ω) = P̄2S(ω) + P̄2S(−ω), (17b)

α̃2S(ω) = P̃2S(ω) + P̃2S(−ω), (17c)

P̄2S(ω) = e2

9

∑
μ

|〈2S|�r |2P (m = μ)〉|2

−L + h̄ω − iε

+ 2e2

9

∑
μ

|〈2S|�r |2P (m = μ)〉|2

F + h̄ω − iε

= 3e2a2
0

(
1

−L + h̄ω − iε
+ 2

F + h̄ω − iε

)
, (17d)

P̃2S(ω) = e2

3

∑
n�3

∑
μ

|〈2S|�r |nP (m = μ)〉|2

En − E2S + h̄ω − iε
. (17e)

The nondegenerate contribution to the 2S polarizability is
denoted by α̃2S (the quasidegenerate 2P levels are excluded).
The quasidegenerate 2P levels are contained in ᾱ2S . All sums
are over the nonrelativistic P states with magnetic projection
quantum numbers μ = −1,0,1. The Lamb shift energy L and
the fine-structure energy F are defined as

E(2S1/2) − E(2P1/2) ≡ L,

E(2P3/2) − E(2S1/2) ≡ F . (18)

The leading-order expressions for L and F read L =
α

6π
α4mc2 ln[α−2] and F = α4mc2/32, respectively [26] [see

also Eq. (3)].

B. van der Waals range a0 � R � a0/α

We investigate the 2S-1S interaction in the van der Waals
regime (9). There is no exponential or oscillatory suppression
of any atomic transition in this regime, but we can approximate

E
(dir)
A;B (R) = Re

ih̄

πc4(4πε0)2

∫ ∞

0
dω αA(ω)αB(ω)e2iωR/c

× ω4

R2

[
1 + 2i

c

ωR
− 5

(
c

ωR

)2

− 6i

(
c

ωR

)3

+ 3

(
c

ωR

)4
]

≈ 3

π

h̄

(4πε0)2R6
Rei

∫ ∞

0
dω αA(ω)αB(ω). (19)

The functional form therefore is of the van der Waals type

E
(dir)
A;B (R) ≈ −D6(A; B)

R6
, (20)

with the van der Waals coefficient

D6(A; B) = 3

π

h̄

(4πε0)2
Re

(
−i

∫ ∞

0
dω αA(ω)αB(ω)

)
. (21)

For the 2S-1S interaction, this implies that

D6(2S; 1S) = 3

π

h̄

(4πε0)2
Re

(
−i

∫ ∞

0
dω

× [ᾱ2S(ω) + α̃2S(ω)]α1S(ω)

)
(22a)

= D̄6(2S; 1S) + D̃6(2S; 1S). (22b)

For |A〉 = |2S〉 and |B〉 = |1S〉, D6 therefore is the sum
of two contributions D̄6 and D̃6, which correspond to the
degenerate ᾱ2S and nondegenerate α̃2S contributions to the 2S

polarizability, respectively. The degenerate contribution to D6

can be handled analytically. We use the integral identity

− i

π

∫ ∞

−∞
dx

ab

[(a − iε)2 − x2][(b − iε)2 − x2]
−→
ε→0+

1

a + b
,

(23)
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which is valid for a and b real (regardless of their sign).
A change in integration limits to the interval (0,∞) can be
absorbed in a prefactor 2. The result for D̄6(2S; 1S) reads

D̄6(2S; 1S) = 3

π

h̄

(4πε0)2

2e2

3

∑
k

|〈1S|�r |k〉|2

× 2e2

9

∑
μ

|〈2S|�r |2P (m = μ)〉|2

× π

2h̄

(
1

Ek − E1S − L + 2

Ek − E1S + F

)

≈ 3

π

h̄

(4πε0)2

{
2e2

3

∑
k

|〈1S|�r |k〉|2

Ek − E1S

}

×
(

2e2

9

(
27a2

0

)) × 3
π

2h̄

≈ 3

π

h̄e2a2
0

(4πε0)2
{α1S(0)} × (6) × 3

π

2h̄

= 243

2
Eha

6
0, (24)

where we took the limit L → 0, F → 0 at the end of the
calculation. We have used the known result

α1S(0) = 9

2

e2a2
0

Eh

, (25)

where Eh = α2mc2 is the Hartree energy. We can now
give a more thorough analysis of the discrepancy of the
results for the (2S; 1S) van der Waals coefficient reported
in Refs. [3–5]. Namely, the denominator a + b in Eq. (23)
just corresponds to the sum of the excitation energies of the
two atoms in the calculation of the van der Waals coefficient;
the contribution of a virtual P state in one of the atoms
is seen to be nonvanishing even if it is displaced from the
reference state only by an infinitesimal shift a = L, F → 0.
By contrast, if one takes the limit L, F → 0 too early, i.e.,
before evaluating the integral (23), then in Eq. (17b), one
obtains ᾱ2S(ω) = 0, because the two terms P̄2S(±ω) just
cancel each other. Alternatively, expressed more concisely,
because of the exact energetic degeneracy of the 2S and 2P

states in the nonrelativistic theory, the virtual 2P states are
excluded from the sum over virtual states in the nonrelativistic
expression of the polarizability, which leads to the erroneous
result reported in Refs. [3,5]. Only if the formulation of the
nonrelativistic expression of the polarizability is enhanced by
the fine-structure and Lamb shift denominators, as in Eq. (17),
can we obtain the missing contribution D̄6(2S; 1S) given in
Eq. (24). The contribution of the quasidegenerate levels is more
obvious in the sum-over-states approach chosen in Ref. [4],
where according to Eq. (23), the sum of the excitation energies
of both atoms enters the propagator denominator [see also
Eqs. (12a) and (12b) of Ref. [4]].

For the nondegenerate contribution, we can perform the
Wick rotation and obtain the following integral representation

D̃6(2S; 1S) = 3

π

h̄

(4πε0)2
Re

(
−i

∫ ∞

0
dω α̃2S(ω)α1S(ω)

)

= 3

π

h̄

(4πε0)2

∫ ∞

0
dω α̃2S(iω)α1S(iω), (26)

which is convenient for a numerical evaluation. Namely,
according to Eq. (15), one can write the corresponding polariz-
abilities as the sum over two matrix elements P (ω) and P (−ω)
of a resolvent operator, where the P matrix elements can be
written in terms of hypergeometric functions. The calculation
of a convenient representation of the polarizability of low-lying
S states [33–35] becomes easier if one uses a coordinate-
space integration based on the Sturmian decomposition of
the radial hydrogen Green’s function in terms of Laguerre
polynomials [36]. After the radial integrals, one evaluates the
sum over the Sturmian integrals in terms of hypergeometric
functions with the help of formulas contained in Ref. [37]. The
result of this calculation for the ground state is

P1S(ω) =−e2a2
0

Eh

[
2t2

3(1 − t)5(1 + t)4
(38t7 + 26t6

+ 19t5 − 19t4 − 12t3 + 12t2 + 3t − 3)

+ 256t9

3(t−1)5(t + 1)5 2F1

(
1,−t,1 − t,

(
1 − t

1 + t

)2)]
,

t =
(

1 + 2h̄ω

α2mc2

)−1/2

, (27a)

where

P1S(ω) = e2

3

∑
n�2

∑
μ

|〈1S|�r |nP (m = μ)〉|2

En − E1S + h̄ω − iε
, (27b)

and the sum includes the continuum. We here take the
opportunity to correct a typographical error in Eq. (3a) of
Ref. [38], which led to an inconsistent sign of the term
involving the hypergeometric function. For the 2S state, one
obtains the nondegenerate matrix element

P̃2S(ω) = e2a2
0

Eh

[
16τ 2

3(τ − 1)6(1 + τ )4
(1181τ 8 − 314τ 7

− 16τ 6 − 166τ 5 + 14τ 4 + 138τ 3 − 48τ 2

− 42τ + 21) − 16 384τ 9(4τ 2 − 1)

3(τ − 1)6(τ + 1)6

× 2F1

(
1,−2τ,1 − 2τ,

(
1 − τ

1 + τ

)2)
− 72τ 2

(1 − τ 2)

]
,

τ =
(

1 + 8h̄ω

α2mc2

)−1/2

. (27c)

Indeed, the 2P state is excluded from the sum over states in
Eq. (27c) by the subtraction of the term 72τ 2/(1 − τ 2): One
can verify that the expression (27c) is finite in the limit τ → 1,
which is equivalent to vanishing photon energy ω → 0.

A numerical integration of Eq. (26) then yields the
following value for D̃6(2S; 1S):

D̃6(2S; 1S) = 55.252 266 285Eha
6
0 . (28)

We have verified this result using discrete numerical meth-
ods [39], where the radial Schrödinger equation is evaluated
on a lattice and a discrete pseudospectrum (due to the finite
size of the lattice) represents the continuum spectrum. The
result for D6(2S; 1S) according to Table VI of Ref. [5] reads
56.7999Eha

6
0 , while according to Table 2 of Ref. [3], it is

(56.5 ± 0.5)Eha
6
0 . Both results are not in perfect agreement
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with our result, though numerically close. This observation is
consistent with the derivations outlined in Refs. [3,5], which
suggest that the results reported in the cited investigation
may correspond to the nondegenerate contribution. The total
van der Waals coefficients D6 is obtained as the sum of the
contributions given in Eqs. (24) and (28),

D6(2S; 1S) = D̃6(2S; 1S) + D̄6(2S; 1S)

= 176.752 266 285Eha
6
0, (29)

where we confirm all significant digits of the previously
reported result [4] of 176.752. For the 1S-1S interac-
tion, we confirm the known result [4,40] of D6(1S; 1S) =
6.499 026 705Eha

6
0 and add a few digits of numerical sig-

nificance. In particular, this result shows that the result for
D6(1S; 1S) is numerically close to 13

2 , but not exactly equal
to a rational number. We should add that the numerical
accuracy of the strictly nonrelativistic results given in Eqs. (28)
and (29) extends to all digits indicated. However, reduced-
mass, relativistic, and radiative corrections contribute on the
level of 10−4, . . . ,10−3. For definiteness, we should also
clarify that the electron mass m is used as the mass of the
hydrogen atom, not the reduced mass of the electron-proton
system (see also the discussion in Sec. VI).

An alternative treatment is possible in the present van der
Waals range. There exists an integral identity similar to (23),
namely,

1

π
a′b′

∫ ∞

−∞

dx

(a′2 + x2)(b′2 + x2)
= sgn(a′)sgn(b′)

|a′| + |b′| . (30)

The two integrals (23) and (30) are thus equal for
a + b = a′ + b′ if and only if a′ and b′ are both positive.

Notice from (15) and (22a) that D6(2S; 1S) is given by an
integral of the type (23), namely, by

D6(2S; 1S) ≡ Re − i
4h̄

3π

e4

(4πε0)2

∑
mn

∫ ∞

0
dω

× (Em − E1S)〈1S|�r |m〉 · 〈m|�r |1S〉
[(Em − E1S − iε)2 − (h̄ω)2]

× (En − E2S)〈2S|�r |n〉 · 〈n|�r |2S〉
[(En − E2S − iε)2 − (h̄ω)2]

. (31)

At this point we may not perform the Wick rotation that takes us
from an integral of the type (23) to an integral of the type (30).
Indeed, for n = 2P1/2, we have b = En − E2S = −L < 0 and
the conditions for the equality of (23) and (30) is not fulfilled.
However, as was noticed by Deal and Young in Ref. [4],
any integral of the type (30) is equivalent to an integral of
the type (23) provided we are able to replace the (possibly
negative) quantities a and b by two positive quantities a′ and
b′ so that a + b = a′ + b′. Hence, we can rewrite (31) as

D6(2S; 1S) = Re − i
4h̄

3π

e4

(4πε0)2

∑
mn

∫ ∞

0
dω

×
[
Em − 1

2 (E1S + E2S)
]〈1S|�r |m〉 · 〈m|�r |1S〉[

Em − 1
2 (E1S + E2S) − iε

]2 − (h̄ω)2

×
[
En − 1

2 (E1S + E2S)
]〈2S|�r |n〉 · 〈n|�r |2S〉[

En − 1
2 (E1S + E2S) − iε

]2 − (h̄ω)2
.

(32)

In what follows we will make use of the space-saving notation

E1S2S ≡ 1
2 (E1S + E2S). (33)

Notice that for all single-atom hydrogen eigenstates (except for
1S, which never enters as a virtual state in the expression of
2S polarizabilities), we have Em,En > E1S2S . In other words,
identifying (32) with the model integral (23), we have a and b
positive. Hence the condition for the equality of (23) and (30)
is fulfilled. We then perform the Wick rotation and rewrite (32)
as

D6(2S; 1S) = 4h̄

3π

e4

(4πε0)2

∑
mn

∫ ∞

0
dω

×
[
Em − 1

2 (E1S + E2S)
]〈1S|�r |m〉 · 〈m|�r |1S〉[

Em − 1
2 (E1S + E2S)

]2 + (h̄ω)2

×
[
En − 1

2 (E1S + E2S)
]〈2S|�r |n〉 · 〈n|�r |2S〉[

En − 1
2 (E1S + E2S)

]2 + (h̄ω)2
.

(34)

We introduce the following polarizabilities, which have the
mean energy E1S2S in the propagator denominators:

α1S(2S)(ω) = e2

3

∑
±

〈1S|�r 1

H − E1S2S ± h̄ω
�r|1S〉

= P1S(2S)(ω) + P1S(2S)(−ω), (35a)

α2S(1S)(ω) = e2

3

∑
±

〈2S|�r 1

H − E1S2S ± h̄ω
�r|2S〉

= P2S(1S)(ω) + P2S(1S)(−ω). (35b)

We finally obtain

D6(2S; 1S) = 3

π

h̄

(4πε0)2

∫ ∞

0
dω α1S(2S)(iω)α2S(1S)(iω)

= 176.752 266 285Eha
6
0 . (36)

This matches the value (29) found by the previously followed
method. With such a choice of the reference energies in the
denominators, we have shown that the Wick rotation is made
automatically valid by the inequality Em > E1S2S for the
virtual P states with energies Em. This procedure also results
in the automatic inclusion of the quasidegenerate states.

C. Very large interatomic distance R � h̄c/L
For very large interatomic separations, the classic result is

that of Casimir and Polder [41] and it is given, when both
atoms are in the ground state, by

E
(dir)
1S;1S(R) ≈ − 23

4π

h̄c

(4πε0)2

1

R7
α1S(0)α1S(0), (37)

which can be obtained by the Wick-rotated version (16) of
the integral. When one of the atoms sits in an excited state,
however (here, the 2S state), there is an extra term coming from
the contribution of the pole that is picked up when carrying out
the Wick rotation. The pole corresponds to the 2P1/2 level. We
thus have two competing contributions in the very-long-range
limit, the first being the generalization of Eq. (37) to the 2S-1S
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interaction

E
(dir) I
2S;1S(R) ≈ − 23

4π

h̄c

(4πε0)2

1

R7
α1S(0)α2S(0), (38)

the other being an oscillatory term [29–31] of the functional
form

E
(dir) II
2S;1S (R) ∼ e2

(4πε0)2R2

( L
h̄c

)4

cos

(
2LR

h̄c

)

×
∑

μ

|〈2S|�r |2P (m = μ)〉|2α1S(0). (39)

The term E
(dir) I
2S;1S is the Wick-rotated term (16) in the long-range

limit. The term E
(dir) II
2S;1S is the pole contribution from the 2P1/2

level, which lies lower than the 2S level. In the van der
Waals range (9), both the Wick-rotated and pole contributions
decay as 1/R6. However, in the present large separation
regime (12), we see that the pole term exhibits a long-range
tail proportional to R−2. For the 2S-1S interaction, it is
the ratio LR:h̄c that determines which one of these powers
yields the dominant contribution. Hence, we have a regime
change around R = h̄c/L, with long-range tails extending
beyond such separations. Parametrically, using L ∼ α5mc2

and h̄c/L ∼ a0/α
4, one obtains the estimates

E
(dir) I
2S;1S(R) ∼ Eh

α4(R/a0)7
, (40a)

E
(dir) II
2S;1S (R) ∼ α16 cos(2α4R/a0)Eh

(R/a0)2
. (40b)

Both of these estimates are relevant for R � h̄c/L. The
transition region where EI

2S;1S(R) becomes commensurate
with EII

2S;1S(R) is thus reached for

R ∼ h̄c

L ∼ a0

α4
, EI

2S;1S(R) ∼ EII
2S;1S(R) ∼ α24Eh. (41)

The frequency shift in this region is of the order of 10−36 Hz
and thus far too small to be of any relevance for experiments.
In view of the prefactor L4 in Eq. (39), the same conclusion
is reached as recently found in Ref. [42] for atom-surface
interactions: Namely, for long-range interactions involving the
metastable 2S state, a potentially interesting oscillating long
range is found, but its numerical coefficient is too small to be
of significance.

Our very-long-range regime is given by (12). Expressed in
units of the Hartree energy Eh, the physical values of the Lamb
shift and fine-structure energies are

L = 1.61 × 10−7Eh, (42a)

F = 1.67 × 10−6Eh ≈ 10L. (42b)

The long-range approximation is thus valid in the region

R � h̄c

L = a0

α

Eh

L = 8.206 × 108a0 = 0.0434 m. (43)

According to Eq. (41), the oscillatory tail and the 1/R7

Casimir-Polder term have comparable magnitude as we enter
the very-long-range regime (12), but the oscillatory tail given
in Eq. (40b) could be assumed to dominate for distances

exceeding the Lamb shift transition wavelength. This consid-
eration, though, should be viewed with skepticism. Namely,
in the long-range limit, one has to take into consideration
the fact that the width of the 2P1/2 state is of the same
order of magnitude (α5mc2) as the Lamb shift itself [32].
For R � h̄c/L, the oscillatory tails are thus exponentially
suppressed according to the factor exp[2i(L + i�/2)R)/h̄c] ∼
exp(−2�R/h̄c), where � is the natural energy width of the
2P1/2 state. Still, it is of academic interest to note that the
oscillatory long-range tail exists.

D. Intermediate distance a0/α � R � h̄c/L
It is very interesting indeed to also investigate the inter-

mediate range of interatomic distances, given by (13). The
treatment becomes a little sophisticated. Namely, as far as
virtual transitions with a change in the principal quantum
number are concerned, we are in the Casimir-Polder regime
where the result is given by an R−7 interaction (only the virtual
2P1/2 state gives rise to an oscillatory tail and this occurs,
without any change in the principal quantum number, only for
the 2S-1S interaction). The 2S-1S interaction would therefore
be proportional to R−7 if the 2S polarizability were restricted
to the term α̃2S . However, the frequency range corresponding
to the intermediate-distance range (13) is so low that the
frequency-dependent quasidegenerate polarizability ᾱ2S in the
integral (14) is not exponentially suppressed. We thus have

E
(dir)
2S;1S(R) ≈ Ē

(dir)
2S;1S(R)

= 3
h̄

(4πε0)2
Re

(
i

∫ ∞

0
dω α1S(0)ᾱ2S(ω)

)
. (44)

The static ground-state polarizability α1S(0) is given in
Eq. (25). Furthermore, on the scale of distances in the
intermediate range, we may approximate the Lamb shift and
the fine-structure energy by zero after computing the integrals.
This yields

lim
L→0

Re

(
i

∫ ∞

0
dω

2L
(−L − iε)2 − (h̄ω)2

)
= π

h̄
. (45a)

Due to the different pole structure under the sign change from
the Lamb shift as compared to the fine-structure transition
(−L < 0, but F > 0), it is nontrivial to check that

lim
F→0

Re

(
−i

∫ ∞

0
dω

2F
(F − iε)2 − (h̄ω)2

)
= π

h̄
. (45b)

The result for the asymptotics in the intermediate range thus
reads

Ē
(dir)
2S;1S(R) = − D̄6(2S; 1S)

R6
= −243

2
Eh

(
a0

R

)6

. (46)

The interaction is thus still of the R−6 form, as it is in the
range, but the coefficient is reduced in magnitude as compared
to Eq. (29).

A few words on the precise formulation of the intermediate-
distance range are perhaps in order. Namely, in principle, one
might argue that the intermediate range should be bounded
from above by h̄c/F , instead of h̄c/L, as the former quantity
is smaller than the latter. In the rather narrow window where
h̄c/F < R < h̄c/L, transitions between 2S and 2P3/2 states
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are suppressed while those between 2S and 2P1/2 states are
not. We do not dwell further on the details of this regime,
because an order-of-magnitude estimate of the frequency
shifts, analogous to the one carried out in Sec. III C, reveals that
they do not exceed 10−21 Hz in the discussed distance range.
Mathematically speaking, the inequality R � h̄c/L implies
R � h̄c/F because F and L are apart by only a single order
of magnitude [see Eq. (42)]. The regime h̄c/F < R < h̄c/L
can only be accessed reliably by a numerical calculation (see
Sec. VI).

IV. THE 2S-1S EXCHANGE INTERACTION

A. Formalism

We now consider the 2S-1S exchange interaction. The
states |1S〉A|2S〉B and |2S〉A|1S〉B are energetically degener-
ate, which induces the need for special care in the treatment of
the van der Waals interaction. The general eigenvalue problem
reads

(HS + HvdW)|�〉 = E|�〉, (47)

where HS is the Schrödinger Hamiltonian (sum over both
atoms). In what follows we will attempt to give a somewhat
streamlined derivation of the van der Waals mixing term
resulting from the energetic degeneracy, which confirms the
results obtained in Ref. [3]. The basis states are

|�1〉 = |1S〉A|2S〉B, (48a)

|�2〉 = |2S〉A|1S〉B. (48b)

The first-order perturbations to these wave functions are

|δ�j=1,2〉 =
(

1

E0 − HS

)′
HvdW|�j=1,2〉, (49)

where E0 = E1S + E2S is the unperturbed energy of the
metastable, noninteracting two-atom system. The prime on
the Green’s function indicates that the degenerate states have
been excluded from the sum over virtual states. One calculates
the Hamiltonian matrix with elements

Hij = (〈�i | + 〈δ�i |)(HS + HvdW)(|�j 〉 + |δ�j 〉), (50)

with i,j = 1,2. The result has the structure

H =
(

E0 + X Y

Y E0 + X

)
, (51)

where

X =
∑
mn

′ |〈1S2S|HvdW|mn〉|2

E1S + E2S − (Em + En)
, (52a)

Y =
∑
mn

′ 〈2S1S|HvdW|mn〉〈mn|HvdW|1S2S〉
E1S + E2S − (Em + En)

. (52b)

Again, the prime on the sum denotes the exclusion of the
reference state. This matrix thus assumes the form

H =
(

E0 − D6(2S;1S)
R6 −M6(2S;1S)

R6

−M6(2S;1S)
R6 E0 − D6(2S;1S)

R6

)
, (53)

where we define the two coefficients

D6(2S; 1S) = 2

3

e4

(4πε0)2

∑
mn

′ |〈1S|�r |m〉|2|〈2S|�r |n〉|2

Em + En − (E1S + E2S)
,

(54a)

M6(2S; 1S) = 2

3

e4

(4πε0)2

∑
mn

′ 1

Em + En − (E1S + E2S)

×〈1S|�r |n〉 · 〈n|�r |2S〉〈2S|�r |m〉 · 〈m|�r |1S〉.
(54b)

It can be shown that D6(2S; 1S), as defined by (54a), agrees
with the earlier expression (21). The eigenenergies and
corresponding eigenvectors of matrix (53) are

E± = E0 − D6 ± M6

R6
, (55a)

|ψ±〉 = 1√
2

(|�1〉 ± |�2〉), (55b)

so we obtain a symmetry-dependent van der Waals coefficient

C6 = D6 ± M6, (56)

which is obtained from a direct term and a mixing term,
depending on the sign in the coherent superposition (55b).
Using the integral representation (23), one can bring M6 into
the form (31)

M6(2S; 1S) ≡ Re − i
4h̄

3π

e4

(4πε0)2

∑
mn

∫ ∞

0
dω

× (Em − E1S)〈1S|�r |m〉 · 〈m|�r |2S〉
[(Em − E1S − iε)2 − (h̄ω)2]

× (En − E2S)〈2S|�r |n〉 · 〈n|�r |1S〉
[(En − E2S − iε)2 − (h̄ω)2]

. (57)

Expressed in terms of polarizabilities, one obtains

D6(2S; 1S) = Re
−3ih̄

π (4πε0)2

∫ ∞

0
dω α1S(ω)α2S(ω), (58a)

M6(2S; 1S) = Re
−3ih̄

π (4πε0)2

∫ ∞

0
dω α1S2S(ω)α∗

1S2S(ω),

(58b)

where we define the mixed polarizabilities via

αAB(ω) = e2

3

∑
±

〈A|�r 1

H − EA − iε ± h̄ω
�r|B〉 (59a)

= PAB(ω) + PAB(−ω), (59b)

αAB(ω) = e2

3

∑
±

〈A|�r 1

H − EB − iε ± h̄ω
�r|B〉 (59c)

= PAB(ω) + PAB(−ω). (59d)
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For the (2S; 1S) system, one obtains

P1S2S(ω) = e2a2
0

Eh

512
√

2ν2

729(−1 + ν2)2(−4 + ν2)3

×
[

128 − 272ν2 + 120ν4 + 253ν6

+ 972ν7 + 419ν8 − 1944ν7
2F1 (60)

×
(

1,−ν; 1 − ν;
1 − ν

1 + ν

2 − ν

2 + ν

)]
,

ν = neff

(
1 + 2n2

effh̄ω

α2mc2

)−1/2

.

Here we will typically choose the effective quantum number
neff to be either 1 (which yields P1S2S) or 2 (which yields
P1S2S), as required for input into Eq. (58). Another possibility,
less physically transparent but quite handy for numerical
calculations, is to choose neff such that the reference energy
Eneff = −α2mc2/2n2

eff in the propagator corresponds to the
average (33) of the energies of the n = 1 and n = 2 levels
(see Secs. III B and IV B). The latter choice corresponds to
neff = 2

√
2/5.

Taking retardation into account, the generalization of
Eq. (55) (minus the unperturbed energy E0) to the Casimir-
Polder energy is

E± = Re
i

π

h̄

c4(4πε0)2

∫ ∞

0
dω e2iωR/c ω4

R2

× [α1S(ω)α2S(ω) ± α1S2S(ω)α∗
1S2S(ω)]

×
[
1 + 2i

c

ωR
− 5

(
c

ωR

)2

− 6i

(
c

ωR

)3

+ 3

(
c

ωR

)4
]

= E
(dir)
2S;1S(R) ± E

(mxd)
2S;1S (R). (61)

This result generalizes Eq. (55a) to the Casimir-Polder regime.
It involves the mixed polarizabilities defined in Eq. (59). We
refer to the second summand E

(mxd)
2S;1S as the exchange term.

Diagrammatically, it is obtained from a process in which an
initial |1S〉A|2S〉B atom makes a transition to a |2S〉A|1S〉B
state via the exchange of two photons. As was the case for
the direct 2S-1S interaction term, we can single out three
different distance regimes for the exchange term, which we
now investigate.

B. van der Waals range a0 � R � a0/α

In the van der Waals range (9), we proceed in a similar way
to Sec. III B and have

E
(mxd)
2S;1S (R) ≈ Re

3i

π

h̄

(4πε0)2

1

R6

∫ ∞

0
dω α1S2S(ω)α1S2S(ω)

= Re
3i

π

h̄

(4πε0)2

1

R6

∫ ∞

0
dω α1S2S(ω)

× [α̃1S2S(ω) + ᾱ1S2S(ω)]. (62a)

This can be rewritten as

E
(mxd)
2S;1S (R) = −M6(2S; 1S)

R6
, (62b)

where M6(2S; 1S) = M̃6(2S; 1S) + M̄6(2S; 1S) is the sum of
the nondegenerate M̃6(2S; 1S) and degenerate M̄6(2S; 1S)
contributions to the mixed van der Waals coefficient, with
notation obvious from (62a). As was done before, we can, for
the nondegenerate contribution, perform the Wick rotation. For
the degenerate contribution, we follow the same procedure as
in Sec. III B, centered on the integral identity (23). This yields

E
(mxd)
2S;1S (R) = −

(
−18.630 786 871 + 917 504

19 683

)
Eh

(
a0

R

)6

= −27.983 245 543Eh

(
a0

R

)6

, (63)

where we make use of (60), whence

M6 = 27.983 245 543Eha
6
0, (64)

to be compared to D6 as given by Eq. (36). The two terms in
Eq. (63) correspond to the nondegenerate (−18.630 786 . . .)
and degenerate ( 917 504

19 683 ) contributions, respectively. Their sum
matches the results found in Refs. [3,4].

As was the case for the direct interaction (see Sec. III B),
an alternative treatment exists whereby we make use of the
integral identities (23) and (30). This yields the following
expression for the van der Waals coefficient M6:

M6(2S; 1S) = 3

π

h̄

(4πε0)2

∫ ∞

0
dω|α1S2S(ω)|2, (65)

where the mixed polarizability α1S2S with average reference
energy (33) is defined by

α1S2S(ω) = e2

3

∑
±

〈1S|�r 1

H − E1S2S ± h̄ω
�r|2S〉

= P 1S2S(ω) + P 1S2S(−ω). (66)

A numerical calculation based on Eq. (65) confirms the result
given in Eq. (63).

C. Very large interatomic distance R � h̄c/L
For very large interatomic separations, the paradigm of

Sec. III C applies. In particular, the order-of-magnitude esti-
mates given in Eq. (40) apply to the mixing term as well. We do
not consider here the tiny frequency shifts of order 10−36 Hz
or less in this range any further.

D. Intermediate distance a0/α � R � h̄c/L
In the intermediate range of interatomic distances, the treat-

ment follows that of Sec. III D. Namely, only quasidegenerate
intermediate states contribute non-negligibly to the interaction
and we find

E
(mxd)
2S;1S (R) ≈ − M̄6(2S; 1S)

R6
= −917 504

19 683
Eh

(
a0

R

)6

. (67)

The interaction is thus still of the R−6 form, as it is in the
van der Waals range, but the coefficient (−46.614 032 414) is
different from the one relevant to the van der Waals range,
given in Eq. (63).
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V. DIRAC-δ-INDUCED MODIFICATION OF THE
LONG-RANGE INTERACTION

A. Formalism and notation

In order to analyze the perturbation of the Casimir-Polder
energy by an external potential proportional to a Dirac δ acting
one of the two atoms (say, atom A), we now have to consider
the perturbation of the polarizability of atom A in Eq. (61).
For the perturbation of the Casimir-Polder interaction due
to a Dirac-δ potential, we use this potential in the standard

normalization [43], which results in a unit prefactor in the
energy shift,

δV = αmc2

(
h̄

mc

)3

πδ(3)(�rA),

〈nS|δV |nS〉 = α4mc2

n3
. (68)

We will consider atom A (not B) to be perturbed. The
perturbation of the interaction energy (61) is

δAEA;B(R) = Re
ih̄

πc4

∫ ∞

0
dω

e2iωR/c

(4πε0)2
([δAαA(ω)]αB(ω) ± {[δAαAB(ω)]αAB(ω) + αAB(ω)[δAαAB(ω)]})

× ω4

R2

[
1 + 2i

c

ωR
− 5

(
c

ωR

)2

− 6i

(
c

ωR

)3

+ 3

(
c

ωR

)4]
. (69)

Here δAαA(ω) is the Dirac-δ perturbation of the polarizability of atom A due to the potential δV and δAαAB and δAαAB are the
corrections to the mixed polarizabilities of the type (59). All of these corrections entail both an energy and a wave function
correction. We do not consider atom B to be perturbed in our treatment. We will focus in what follows on the δ corrections to
the Casimir-Polder interaction of the system |A〉 = |2S〉 and |B〉 = |1S〉. As evident from Eq. (69) and expected from Secs. III
and IV, we need to investigate the correction to the direct and exchange terms.

More concretely, in the case of the 2S-1S system, we have

δ2SE2S;1S(R) = Re
ih̄

πc4(4πε0)2

∫ ∞

0
dω e2iωR/c ω4

R2
([δ2Sα2S(ω)]α1S(ω) ± {[δ2Sα1S2S(ω)]α1S2S(ω) + α1S2S(ω)[δ2Sα1S2S(ω)]})

×
[

1 + 2i
c

ωR
− 5

(
c

ωR

)2

− 6i

(
c

ωR

)3

+ 3

(
c

ωR

)4]
, (70)

with the corrections to the various polarizabilities given by

δ2Sα2S(ω) = δ2SP2S(ω) + δ2SP2S(−ω),

δ2SP2S(ω) = e2

3
〈2S|�r 1

(H − E2S − iε + h̄ω)2
�r|2S〉〈2S|δV |2S〉 + 2

3
e2〈2S|�r 1

H − E2S − iε + h̄ω
�r|δ2S〉, (71a)

δ2Sα1S2S(ω) = δ2SP1S2S(ω) + δ2SP1S2S(−ω),

δ2SP1S2S(ω) = e2

3
〈1S|�r 1

(H − E1S − iε + h̄ω)2
�r|δ2S〉, (71b)

δ2Sα1S2S(ω) = δ2SP1S2S(ω) + δ2SP1S2S(−ω),

δ2SP1S2S(ω) = e2

3
〈1S|�r 1

(H − E2S − iε + h̄ω)2
�r|2S〉〈2S|δV |2S〉 + e2

3
〈1S|�r 1

H − E2S − iε + h̄ω
�r|δ2S〉. (71c)

The first term in Eq. (71a) and that in Eq. (71c) are identified as
energy-type corrections, because they describe modifications
to the respective polarizabilities due to the change in the 2S

reference energy. We refer to the corresponding corrections to
the respective polarizabilities as δ2Sα

(E)
2S and δ2Sα

(E)
1S2S .

Notice that (71b) does not feature such a term, as the
reference energy in the denominator of α1S2S is that of the
1S state. The second term in Eq. (71a) and that in Eq. (71c),
as well as the lone term in Eq. (71b), are called wave
function-type corrections, because the corresponding terms
are modifications to the respective polarizabilities due to the
change in the 2S state (and hence wave function). We refer to
the corresponding corrections to the respective polarizabilities
as δ2Sα

(ψ)
2S , δ2Sα

(ψ)
1S2S , and δ2Sα

(ψ)
1S2S . The correction |δ2S〉 to the

|2S〉 state is given by the usual expression

|δ2S〉 = 1

(E2S − H )′
δV |2S〉. (72)

The corresponding wave function is

δψ2S(�r ) = α2

√
2

1√
4π

(
1

a0

)5/2

exp

(
− r

2a0

)

×
[
−a2

0

2r
−

a0
[
3 − 4γE − 4 ln

(
r
a0

)]
4

−
r
[−13 + 4γE + 4 ln

(
r
a0

)]
8

− r2

8a0

]
, (73)
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where γE � 0.577 216 is the Euler-Mascheroni constant.
Finally, the first-order correction to the Hamiltonian due to
δV in the propagator vanishes because the only contributing
states are P states whose probability density vanishes at the
origin. Namely,

〈nS|�r 1

(H − E + h̄ω)′
δV

1

(H − E + h̄ω)′
�r|mS〉 = 0 (74)

regardless of the choice of E and that of the principal quantum
numbers n and m. With (70) and (71) we are equipped for the
investigation of the various distance regimes.

B. Dirac-δ perturbation in the van der Waals range
a0 � R � a0/α

For small separations, the energy shift (69) is approximated
by an R−6 interaction, as was done in Secs. III B and IV B.
We will use intermediate reference energies of the type (33)
in the propagators and thus start from the expressions (36)
and (65) for the direct (D6) and mixed (M6) coefficients, duly
perturbed by the Dirac-δ potential. This allows us to treat
both nondegenerate and quasidegenerate contributions to these
coefficients at once. Both energy and wave function corrections
contribute to δC6 = δD6 ± δM6. This adds complexity on
top of the degenerate-nondegenerate dichotomy and the use
of the intermediate reference energies in the propagator
denominators ensures that we can avoid dealing with the
degenerate and nondegenerate states separately.

We obtain the correction to the D6 and M6 coefficients
either by taking the short-range limit of (69) and using the
mean excitation energy E ¯1S2S or by perturbing the explicit
expressions (36) and (65) by the Dirac δ. In both approaches,
the result is

δD6(2S; 1S) = 3

π

h̄

c4(4πε0)2

∫ ∞

0
dω[δ2Sα1S(2S)(iω)α2S(1S)(iω)

+ α1S(2S)(iω)δ2Sα2S(1S)(iω)] (75)

and

δM6(2S; 1S) = 6

π

h̄

c4(4πε0)2

∫ ∞

0
dω α1S2S(iω)δ2Sα1S2S(iω).

(76)

The Dirac-δ corrections to the polarizabilities (35) and (66)
involve the mean excitation energy (33) in the propagator,

δ2Sα1S(2S)(ω) = δ2SP1S(2S)(ω) + δ2SP1S(2S)(−ω),

δ2SP1S(2S)(ω) = e2

3
〈1S|�r 1

(H − E1S2S + h̄ω)2
�r|1S〉

× 1

2
〈2S|δV |2S〉, (77a)

δ2Sα2S(1S)(ω) = δ2SP2S(1S)(ω) + δ2SP2S(1S)(−ω),

δ2SP2S(1S)(ω) = e2

3
〈2S|�r 1

(H − E1S2S + h̄ω)2
�r|2S〉

× 1

2
〈2S|δV |2S〉

+ 2

3
e2〈2S|�r 1

H − E1S2S + h̄ω
�r|δ2S〉, (77b)

δ2Sα1S2S(ω) = δ2SP1S2S(ω) + δ2SP1S2S(−ω),

δ2SP1S2S(ω) = e2

3
〈1S|�r 1

(H − E1S2S + h̄ω)2
�r|2S〉

× 1

2
〈2S|δV |2S〉

+ e2

3
〈1S|�r 1

H − E1S2S + h̄ω
�r|δ2S〉. (77c)

We recall that the use of the mean energy E1S2S amounts
to making the choice of the intermediate effective quantum
number neff = 2

√
2/5 [see discussion below Eq. (60)]. Again,

we distinguish the energy-type corrections, which correspond
to the first summand in Eq. (77b) and that in Eq. (77c), as well
as the lone term in Eq. (77a). We write them as δ2Sα

(E)
2S(1S),

δ2Sα
(E)
1S2S

, and δ2Sα
(E)
1S(2S), respectively. The wave-function-type

corrections correspond to the second summand in Eq. (77b)
and that in Eq. (77c) and we write them as δ2Sα

(ψ)
2S(1S) and

δ2Sα
(ψ)
1S2S

, respectively.
By a generalization of numerical techniques described

previously [34,35], we find that the numerical value of (75)
is

δD6(2S; 1S) = 367.914 605 710α2a6
0Eh. (78)

By a similar procedure we find the numerical value of (76),

δM6(2S; 1S) = −58.095 351 093α2a6
0Eh. (79)

Details on the calculation of (78) and (79) are given in
Appendix B.

C. Dirac-δ perturbation for intermediate distance
a0/α � R � h̄c/L

As was the case for the unperturbed interaction, it is
very interesting to focus on the intermediate-distance range.
Here again, as far as virtual transitions with a change in
the principal quantum number are concerned, we are deeply
in the Casimir-Polder regime, where the result is given by
an R−7 interaction. However, for virtual transitions to the
quasidegenerate states, the frequency range is so low that
the contribution to the Casimir-Polder integral (69) is not
exponentially suppressed. We therefore obtain

δAEA;B(R) ≈ Re
ih̄

πc4(4πε0)2

∫ ∞

0
dω e2iωR/c ω4

R2

×([δAᾱA(ω)]αB(0) ± {[δAαAB(0)]ᾱAB(ω)

+αAB(0)[δAᾱAB(ω)]})

×
[

1 + 2i
c

ωR
− 5

(
c

ωR

)2

− 6i

(
c

ωR

)3

+ 3

(
c

ωR

)4]
. (80)

The rationale here is that the quasiresonant terms (overlined
α’s) have to be kept in dynamic form (the dependence on ω is
retained), while the complementary terms can be taken in the
static limit.
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We will treat the energy-type and wave-function-type corrections separately. In the present Casimir-Polder range (13), the
energy-type correction to the direct 2S-1S interaction is

δ2SE
(dir)(E)
2S;1S (R) = Re

ih̄α1S(0)

πc4

∫ ∞

0
dω

e2iωR/c

(4πε0)2
δ2Sᾱ

(E)
2S (ω)

ω4

R2

[
1 + 2i

c

ωR
− 5

(
c

ωR

)2

− 6i

(
c

ωR

)3

+ 3

(
c

ωR

)4
]

= −Re
ih̄α1S(0)

πc4(4πε0)2
〈2S|δV |2S〉

∫ ∞

0
dω e2iωR/c ω4

R2

[
∂

∂L
−L

(−L − iε)2 − (h̄ω)2
+ 2

∂

∂F
F

(F − iε)2 − (h̄ω)2

]

×
[

1 + 2i
c

ωR
− 5

(
c

ωR

)2

− 6i

(
c

ωR

)3

+ 3

(
c

ωR

)4
]

e2

3

∑
μ

〈2S|�r |2P (m = μ)〉 · 〈2P (m = μ)|�r |2S〉.

(81)

Because of the pole structure of the integrand, it is not possible to simply set the retardation function

R(ω) = e2iωR/c ω4

R2

[
1 + 2i

c

ωR
− 5

(
c

ωR

)2

− 6i

(
c

ωR

)3

+ 3

(
c

ωR

)4
]

(82)

equal to unity (as was done in Secs. III D and IV D); the residue at the poles of the integrand in Eq. (81) otherwise cannot be
calculated correctly. In the L → 0,F → 0 limit, this gives

δ2SE
(dir)(E)
2S;1S (R) = − 11

6π

α1S(0)

(4πε0)2h̄cR5
〈2S|δV |2S〉e

2

3

∑
μ

〈2S|�r |2P (m = μ)〉 · 〈2P (m = μ)|�r |2S〉. (83)

Note that the individual terms of the retardation function R(ω), when used in Eq. (81), give rise to logarithmic terms proportional
to ln(2FR)/R5 and ln(2LR)/R5; these cancel in the final result. From a similar procedure we obtain the correction to the
exchange 2S-1S interaction as

δ2SE
(mxd)(E)
2S;1S (R) = − 11

6π

α1S2S(0)

(4πε0)2h̄cR5
〈2S|δV |2S〉e

2

3

∑
μ

〈1S|�r |2P (m = μ)〉 · 〈2P (m = μ)|�r |2S〉. (84)

The energy-type correction induces an R−5 interaction (see Appendix A). The wave-function-type corrections, on the other hand,
are treated in exactly the same way as the degenerate D̄6 and M̄6 coefficients of Secs. III D and IV D, respectively. We can make
use of (45a) and (45b) and obtain

δD̄
(ψ)
6 (2S; 1S) = 2

(4πε0)2
α1S(0)

∑
μ

〈2S|�r |2P (m = μ)〉 · 〈2P (m = μ)|�r |δ2S〉 (85)

and

δM̄
(ψ)
6 (2S; 1S) = 1

(4πε0)2

∑
μ

〈1S|�r |2P (m = μ)〉[δα(ψ)
1S2S(0)〈2P (m = μ)|�r |2S〉 + α1S2S(0)〈2P (m = μ)|�r |δ2S〉]. (86)

From Eq. (83) we find that for intermediate distances the energy-type correction to the interaction is given by

δ2SE
(dir)(E)
2S;1S (R) = −891

32

α3

π

(
a0

R

)5

Eh, (87)

while the wave-function correction is

δ2SE
(dir)(ψ)
2S;1S (R) = −81

4
α2

(
a0

R

)6

Eh. (88)

It is thus seen that, in the present intermediate range (13), the dominant contribution comes from the energy-type correction (87).
From (84) we find that for intermediate distances the energy-type correction to the exchange interaction is given by

δ2SE
(mxd)(E)
2S;1S (R) = 630 784

59 049

α3

π

(
a0

R

)5

Eh, (89)

while the wave-function correction is

δ2SE
(mxd)(ψ)
2S;1S (R) = − 8192

19 683

[
95 + 112 ln

(
3

2

)]
α2

(
a0

R

)6

Eh. (90)

022703-12



LONG-RANGE INTERACTIONS OF . . . . I. 2S-1S . . . PHYSICAL REVIEW A 95, 022703 (2017)

As was the case for the direct interaction above, the dominant
contribution comes from the energy-type correction (89).

D. Very-long-range Dirac-δ perturbation R � h̄c/L
For very large interatomic separation, the considerations

from Secs. III C and IV C carry over. Perturbing the Lamb shift
L in Eq. (40) by the Dirac-δ potential (68), one realizes that
the Dirac-δ-induced modification of the long-range interaction
does not exceed (〈2S|δV |2S〉/L) × 10−36 Hz. This shift is too
small to be of conceivable experimental relevance and thus is
not considered any further.

VI. NUMERICAL EXAMPLES: MODIFICATION
TO THE HYPERFINE STRUCTURE AND TRANSITION

FREQUENCIES

In order to estimate the relevance of the current study, let
us recall that, e.g., the hyperfine frequency of a hydrogen
atom in an S state is determined by a Dirac-δ potential
[see Eq. (4) and discussion below]. Hyperfine frequencies
belong to the most accurately measured frequencies today [44–
46]. Consequently, it becomes necessary to investigate small
perturbations to these frequencies caused, e.g., by interactions
with buffer gas atoms or by interactions with other atoms in
the atomic beam (the latter would be an atom of the same
kind as that whose hyperfine frequency is being studied).
The perturbations of hyperfine frequencies due to van der
Waals interactions have been considered in Refs. [10–13,15].
Hyperfine-perturbation coefficients in the van der Waals
range have been given in Table II of Ref. [15] for H-He
and H-Ne. (The hyperfine modification of the long-range
interaction for two hydrogen atoms, however, is not indicated
in Ref. [15]. Also, in Ref. [15], only ground-state interactions
were considered.)

In Eqs. (78), (79), (87), and (89), we had indicated results
for the Dirac-δ-induced perturbation to the van der Waals
interaction, in the close-range limit and in the intermediate
range. These results, which are reproduced for convenience
in Eqs. (95) and (96) below, can be used directly in order to
calculate the modification of the hyperfine frequency under the
influence of the long-range interaction. As explained in Sec. II,
a possible interference term due to the non-Dirac-δ terms in the
hyperfine Hamiltonian [see Eq. (4)], which might be assumed
to influence the virtual P states that are responsible for the
van der Waals interaction, vanishes after doing the angular
Racah algebra [47]. In order to interpolate between the three
asymptotic regimes, a numerical integration of Eq. (69) is
required. The leading asymptotic terms indicated in Eqs. (95)
and (96) contain the essence of the changes in the interaction
in a very concise form and can be used in order to estimate
the effect of the long-range 2S-1S interaction on, e.g., the 2S

hyperfine frequency.
Let us now calculate the van der Waals shift of the hyperfine

frequency of an atom A in a 1S or metastable 2S state due to
its long-range interaction with a ground-state atom B. The first
summand in Hhfs in Eq. (4) is used as the perturbative potential
instead of the standard potential (68). Only the term acting on

TABLE I. Numerical values of the modification δνhfs(1S) to
the frequency splitting between the 1S hyperfine components in
hydrogen, due to the long-range interaction with a 1S atom, as a
function of the interatomic separation.

Distance (Å) δνhfs(1S) (Hz)

20 −3.387 × 101

40 −5.291 × 10−1

80 −8.806 × 10−3

200 −3.019 × 10−5

400 −3.919 × 10−7

800 −4.296 × 10−9

2000 −1.059 × 10−12

20 000 −1.059 × 10−19

atom A is required. One can check that

δHhfs = 2

3
gsgp

m

M
δV (�rA)�SA · �IA, (91)

where M is the proton mass. The splitting between the
two hyperfine components of the 1S1/2 level is given by
1 420 405 751.773(1) Hz [44–46]. This experimental value is
very accurate (up to 10−3 Hz), which indicates that mod-
ifications to it due to long-range interatomic interactions
could be relevant for future experiments and, in particular,
measurable. We can work out how this splitting is affected
by the interaction of the 1S atom with another 1S hydrogen
atom. The corresponding values are given in Table I. Note
that the interaction reduces the energy splitting between the
two hyperfine components of the 1S1/2 level. Likewise, the
splitting between the two hyperfine components of the 2S1/2

level has been measured [7] as 177 556 834.3(6.7) Hz. From
Eqs. (95) and (96) (as well as numerical computations for the
separations that do not clearly find themselves in either the
van der Waals or Casimir-Polder ranges) we can work out how
this splitting is affected by the interaction of the 2S atom with
a 1S hydrogen atom. The corresponding values are given in
Table II. Again, the interaction reduces the energy splitting
between the two hyperfine components of the 2S1/2 level.

From the results of Secs. III and IV we can also deduce
the modifications to the 2S-1S transition frequency due to

TABLE II. Numerical values of the modification δνhfs(2S) to
the frequency splitting between the 2S hyperfine components in
hydrogen, due to the long-range interaction with a 1S atom, as a
function of the interatomic separation. The ∓ sign corresponds to the
± sign in the |1S〉|2S〉 ± |2S〉|1S〉 superposition.

Distance (Å) δνhfs(2S) (Hz)

20 −(3.592 ∓ 0.567) × 102

40 −(5.612 ∓ 0.886) × 100

80 −(8.769 ∓ 1.441) × 10−2

200 −(3.592 ∓ 0.549) × 10−4

400 −(5.635 ∓ 0.781) × 10−6

800 −(9.023 ∓ 0.861) × 10−8

2000 −(2.584 ∓ 1.486) × 10−10

20 000 −(2.406 ∓ 0.973) × 10−15
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TABLE III. Numerical values of the modification δν1S-2S to
the hydrogen 2S-1S transition frequency, due to the long-range
interaction with a 1S atom, as a function of the interatomic separation.
The ± sign corresponds to the ± sign in the |1S〉|2S〉 ± |2S〉|1S〉
superposition.

Distance (Å) δν1S-2S (Hz)

20 −(3.843 ± 0.631) × 108

40 −(6.005 ± 0.987) × 106

80 −(9.365 ± 1.552) × 104

200 −(3.806 ± 0.651) × 102

400 −(5.838 ± 1.069) × 100

800 −(8.776 ± 1.821) × 10−2

2000 −(3.521 ± 1.310) × 10−4

20 000 −(2.820 ± 1.078) × 10−10

long-range interaction with a ground-state hydrogen atom. We
indicate numerical values for various interatomic separations
in the van der Waals and Casimir-Polder (intermediate) ranges
in Table III. The 2S-1S transition has been measured [48] to
be 2 466 061 413 187 035(10) Hz (for the hyperfine centroid).
The experimental accuracy is thus more than sufficient for the
modifications predicted here to be relevant (see Table III). For
the values R = 2000 and 20 000 Å of the distance that we
choose for the Casimir-Polder (intermediate) range (h̄c/L �
R � a0/α), the R−7 contribution due to the P levels that are
nondegenerate with 2S is not quite negligible, in contrast to
larger R. We therefore include the nondegenerate contributions
in the calculation of the numerical value of the frequency
shifts. For definiteness, the value of the mass m used in the
numerical calculations is always chosen as the electron mass,
not the reduced mass of the electron-proton system. If we
were to choose the reduced mass instead, then we would
have to differentiate in the Dirac-δ term given in Eq. (68)
the factor 1/m2, which still goes with the electron mass, and
the reduced mass cubed, which enters the numerator as it is
proportional to the probability density at the origin |ψ(�0)|2. For
definiteness, and in order to facilitate a numerical comparison
of the results to other (conceivably, future) investigations, we
neglect further relativistic and reduced-mass corrections, as
well as quantum electrodynamic radiative corrections. When
applied to hydrogen, these approximations limit the accuracy
of the results given in Tables I–III to a relative accuracy of
about 10−4, . . . ,10−3.

It is also interesting to look at how these results are modified
if we consider the positronium instead of the hydrogen atom
as the system of interest. It can be shown that the plain
(unperturbed) van der Waals interaction energies will be scaled
by a factor of approximately 26 = 64, as a result of the fact
that the reduced mass of positronium is roughly half the
reduced mass of hydrogen [hence the expectation values of
�r operators will scale with a factor of 2, as will the resolvent
operators 1/(H − E)]. The latter scaling factor is due to the
fact that the transition frequencies are only half of those of
the hydrogen atom (e.g., the 2S-1S transition in positronium
has been measured at a value of ≈1.233 × 1015 Hz; see
Ref. [49].) The van der Waals modifications to the 2S-1S

transition frequency in positronium as compared to hydrogen
will exhibit the same scaling. The relative modification of a

positronium transition frequency will thus be 128 times larger
than for hydrogen. Similar scaling arguments show that the
modification to the hyperfine splittings will be scaled by a
factor of 27gs/gp � 45.845 112.

Likewise, the leading effective QED radiative Lamb shift
Hamiltonian for atom A can be obtained as a specialization of
the expression given in Eq. (3) to atom A,

δHrad = 4α

3π
ln(α−2)δV, (92)

where again we express the relevant Hamiltonian in terms of
the standard potential δV defined in Eq. (68). The ratio of the
prefactors as compared to the hyperfine Hamiltonian (91) is

2

π
α ln(α−2)

1

gsgp

mp

m

1

〈�SA · �IA〉 � 7.505 166.

The operator �SA · �IA assumes the numerical value +1/4 for
an F = 1 state and the numerical value −3/4 for an F = 0
state. Hence, for the hyperfine splitting, it can be replaced
by unity. We thus note that the leading logarithmic QED
radiative corrections to the 1S-1S and 2S-1S van der Waals
interactions are larger than the van der Waals modification
of the hyperfine splitting, by a factor of roughly 7.5. The
results given in Tables I and II should be multiplied by this
factor to obtain the leading radiative term. The QED radiative
correction to the van der Waals interaction shifts both hyperfine
components by the same frequency and in the same direction
and thus does not additionally modify the hyperfine splitting.
We also note that the QED radiative correction to the van
der Waals interaction could be interpreted alternatively as a
van der Waals correction to the Lamb shift. However, it is
not the dominant modification of atomic transition frequencies
mediated by long-range atomic interactions. Namely, the main
effect on an atomic transition frequency with a change in the
principal quantum number is caused by the direct van der
Waals effect on the atomic levels, which is given (for the
2S-1S) in Table III.

VII. CONCLUSION

We have studied 2S-1S van der Waals interactions among
hydrogen atoms in detail and carefully differentiate three
distance ranges given in Eqs. (9), (11), and (12). In the
van der Waals range, the interatomic interaction is described
to good accuracy by a functional form −C6(A; B)/R6,
where C6(A; B) = D6(A; B) ± M6(A; B) is the van der Waals
coefficient, which depends on the atomic states |A〉 and
|B〉 of the two atoms. As mentioned above, a paradigmatic
example for an interaction involving metastable atoms is the
2S state of atomic hydrogen. Indeed, for the interaction of
a 2S hydrogen atom with a ground-state atom, the result of
D6(2S; 1S) = 176.752Eha

6
0 has been obtained in Ref. [4].

As discussed, there is an interesting discrepancy with the
results D6(2S; 1S) = 56.8Eha

6
0 [5] and D6(2S; 1S) = (56.5 ±

0.5)Eha
6
0 [3]. We find that the result given in Ref. [4] is the

correct one and trace the likely explanation for the discrepancy
to the rather subtle treatment of the quasidegenerate 2P levels
of the excited atom (see Sec. III B).

In an atomic beam, one typically has a few excited
metastable 2S atoms interacting with a “background” of 1S
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atoms. The 2S atoms are typically of interest, which is why
we have chosen the sequence 2S-1S in order to designate
their interaction in our mathematical formulas (the first atom
mentioned is the one of primary spectroscopic interest). A
typical application would consist in the measurement of the
2S hyperfine interval by optical spectroscopy [6,7].

For the plain interaction of a 2S atom with a ground-state
hydrogen atom, we find for the van der Waals regime (a0 �
R � a0

α
) [see Eqs. (29) and (63)]

E2S;1S(R) ≈ −(176.752 266 ± 27.983 245)Eh

(
a0

R

)6

. (93)

The term with the ± sign depends on the symmetry of the
wave function of the two-atom state, as explained in Sec. IV.
In Eq. (93) we thus confirm the result presented in Ref. [4] but
add a few more significant decimal digits of nominal numerical
accuracy [see Eq. (29)]. In the Casimir-Polder range ( a0

α
�

R � h̄c
L ), we also have an interaction of the R−6 type, with

a coefficient determined by the quasidegenerate states [see
Eqs. (46) and (67)]

E2S;1S(R) ≈ −
(

243

2
± 917 504

19 683

)
Eh

(
a0

R

)6

. (94)

In the Lamb shift range R � h̄c/L, the plain interaction
changes to a superposition of a Casimir-Polder term of the
form 1/R7 and a long-range oscillating term of the type
cos(2LR/h̄c)/R2, while the magnitude of the interaction is
too small to be of conceivable relevance for experiments. For
details, see Secs. III and IV.

For the correction δE2S;1S(R) caused by a Dirac-δ poten-
tial, due to the long-range interaction, the evolution of the
asymptotic behavior is interesting. For the van der Waals
range (a0 � R � a0

α
), our leading-order result is [see Eqs. (78)

and (79)]

δ2SE2S;1S(R) ≈ −(367.914 605 ∓ 58.095 351)α2Eh

(
a0

R

)6

.

(95)

In the Casimir-Polder range ( a0
α

� R � h̄c
L ), the result is [see

Eqs. (87) and (89)]

δ2SE2S;1S(R) ≈ −
(

891

32
∓ 630 784

59 049

)
α3

π
Eh

(
a0

R

)5

, (96)

where the coefficient is exclusively given by the quasidegen-
erate states. In the Lamb shift range R � h̄c/L, the perturbed
interaction also changes to a superposition of a Casimir-Polder
term and a long-range oscillating term, while the overall
perturbation of the interaction is negligibly small. All these
results are derived in Secs. III and IV.

Recently, long-range oscillatory tails of van der Waals inter-
actions have received renewed interest in the literature [29,30].
These oscillatory tails are caused by states with a lower energy
than the excited reference state, in an interaction of excited-
state and ground-state atoms, which can be reached from the

excited state by an allowed dipole transition. As discussed in
this paper, for the 2S-1S interaction, the 2S → 2P1/2 Lamb
shift transition provides for such a transition. However, the
energy shifts typically are proportional to the fourth power of
the transition energy (or wave number of the transition). For
the Lamb shift transition, this transition energy is very low and
in consequence the oscillatory tails are suppressed in the van
der Waals interaction of the 2S-1S system [see Eq. (40)].
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APPENDIX A: MODEL INTEGRALS

In order to illustrate the analytic considerations in Secs. III–
V, we numerically study the model integrals

I (a,η,R) ≡
∫ ∞

0
dx

a

(a − iε)2 + x2

(−η)

(−η − iε)2 + x2

× e−2Rx x4

R2

[
1 + 2

Rx
+ 5

(Rx)2

+ 6

(Rx)3
+ 3

(Rx)4

]
, (A1)

which models the plain Casimir-Polder interaction as well as
wave function-type corrections thereto, and

J (a,η,R) ≡
∫ ∞

0
dx

a

(a − iε)2 + x2

∂

∂η

(−η)

(−η − iε)2 + x2

× e−2Rx x4

R2

[
1 + 2

Rx
+ 5

(Rx)2

+ 6

(Rx)3
+ 3

(Rx)4

]
, (A2)

which models energy-type corrections to the Casimir-Polder
interaction. Our choices for the numerical values of the
parameters are

η = 10−3, (A3a)

a = 1, (A3b)

ε = 10−6. (A3c)

These values are adapted to the investigation of the quasidegen-
erate contributions to the interatomic interaction, where a plays
the role of the energy of a transition between quantum levels
with different principal quantum numbers and η corresponds to
the energy of a transition between quasidegenerate neighbors.
These parameters and arguments are dimensionless. The
transition from the 1/R6 short-range asymptotics to the 1/R7

long-range limit is clearly displayed in Fig. 1, while the
intermediate 1/R5 regime for J is discernible in Fig. 2.
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FIG. 1. Numerical illustration of the model integral (A1) in its
asymptotic regions, for the parameters given in Eq. (A3).

FIG. 2. Same as Fig. 1 for the model integral (A2).

APPENDIX B: DETAILS ON DIRAC-δ CORRECTIONS TO THE VAN DER WAALS INTERACTION

Here we present some details on how the numerical results (78) and (79) were obtained. We recall that for the 2S-1S system,
δD6 is given by

δD6(2S; 1S) = 3

π

h̄

(4πε0)2

∫ ∞

0
dω[δ2Sα1S(2S)(iω)α2S(1S)(iω) + α1S(2S)(iω)δ2Sα2S(1S)(iω)], (B1)

where the corrected polarizabilities read

δ2Sα1S(2S)(ω) = e2

3

∑
±

〈1S|�r 1

(H − E1S2S − iε ± h̄ω)2
�r|1S〉1

2
〈2S|δV |2S〉 ≡ δ2Sα

(E)
1S(2S)(ω), (B2a)

because we perturb only the 2S energy, and

δ2Sα2S(1S)(ω) = e2

3

∑
±

〈2S|�r 1

(H − E1S2S − iε ± h̄ω)2
�r|2S〉1

2
〈2S|δV |2S〉 + 2e2

3

∑
±

〈2S|�r 1

H − E1S2S − iε ± h̄ω
�r|δ2S〉

= δ2Sα
(E)
2S(1S)(ω) + δ2Sα

(ψ)
2S(1S)(ω). (B2b)

Here the (E) superscript refers to the contribution from the energy correction and the (ψ) superscript refers to the contribution
from the wave-function correction. It can be checked that the two summands in

δD
(E)
6 (2S; 1S) = 3

π

h̄

(4πε0)2

∫ ∞

0
dω

[
δ2Sα

(E)
1S(2S)(iω)α2S(1S)(iω) + α1S(2S)(iω)δ2Sα

(E)
2S(1S)(iω)

]
(B3)

contribute equally. This can be traced back to the integral identity (23). The easiest way to compute the energy correction to a
polarizability is to notice that

〈nS|�r 1

(H − E − iε + h̄ω)2
�r|mS〉 =−1

h̄

∂

∂ω
〈nS|�r 1

H − E − iε + h̄ω
�r|mS〉, (B4)

which is just the ω derivative of a typical P matrix element. To see that the summands in the integrand on the right-hand side
of (B3) contribute equally, however, one rather notices that

〈nS|�r 1

(H − E − iε + h̄ω)2
�r|mS〉 = ∂

∂E
〈nS|�r 1

H − E − iε + h̄ω
�r|mS〉 (B5)

and the equality follows from (23). In the end, we obtain

δD
(E)
6 (2S; 1S) =49.733 193 536α2a6

0Eh. (B6)

It is considerably harder to compute the contribution to the van der Waals coefficient from the wave-function correction

δD
(ψ)
6 (2S; 1S) = 3h̄

π (4πε0)2

∫ ∞

0
dωα1S(2S)(iω)δ2Sα

(ψ)
2S(1S)(iω). (B7)
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The first step is to obtain the correction (73) to the 2S wave function, from which we deduce

δP
(ψ)
2S (ω) = e2a2

0

mc2

[
−8

9

τ 2Q(τ )

(1 − τ )7(1 + τ )8
+ 4096τ 9(−2 + τ + 7τ 2)

3(τ − 1)6(1 + τ )5
ln

(
2τ

1 + τ

)
+ 512τ 7(1 + τ 2)

(1 − τ )5(1 + τ )5

× 2F1

(
1,−2τ ; 1 − 2τ ; −1 − τ

1 + τ

)
− 512τ 7R(τ )

9(1 − τ )7(1 + τ )7 2F1

(
1, − 2τ ; 1 − 2τ ;

(
1 − τ

1 + τ

)2)

+ 32 768

3

τ 10(−1 + 4τ 2)

(−1 + τ )2(1 + τ )10

∞∑
k=0

(−1 + τ

1 + τ

)k ∂2 2F1(−k,4; 4; 2
1+τ

)

(2 + k − 2τ )

]
, (B8)

where

Q(τ ) = −123 − 123τ + 801τ 2 + 801τ 3 − 2124τ 4 − 1932τ 5 + 4002τ 6 + 11 234τ 7 + 3661τ 8

− 20 979τ 9 + 2285τ 10 + 9645τ 11 + 26 314τ 12 + 3402τ 13 (B9)

and

R(τ ) = −3 + 113τ 2 − 193τ 4 + 371τ 6 + 96τ 2(1 − τ 2)(1 − 4τ 2) ln

(
2τ

1 + τ

)
. (B10)

Furthermore,

τ =
(

1 + 8h̄ω

α2mc2

)−1/2

. (B11)

We can then easily deduce δ2Sα
(ψ)
2S(1S)(ω) from (B8) via

δ2Sα
(ψ)
2S(1S)(ω) = δ2SP

(ψ)
2S(1S)(ω) + δ2SP

(ψ)
2S(1S)(−ω), (B12)

where δ2SP
(ψ)
2S(1S)(ω) has the same expression as (B8), with τ replaced by

teff =
(

1 + 16h̄ω

5α2mc2

)−1/2

. (B13)

From all of this we obtain

δD
(ψ)
6 (2S; 1S) =318.181 412 174α2a6

0Eh. (B14)

We now recall that for the 2S-1S system, δM6 is given by

δM6(2S; 1S) = 3

π

h̄

(4πε0)2

∫ ∞

0
dω δ2Sα1S2S(iω)α1S2S(iω), (B15)

where the corrected mixed polarizability reads

δ2Sα1S2S(ω) =
∑
±

〈1S|�r 1

(H − E1S2S − iε ± h̄ω)2
�r|2S〉e

2

3

1

2
〈2S|δV |2S〉 + e2

3

∑
±

〈1S|�r 1

H − E1S2S − iε ± h̄ω
�r|δ2S〉

= δ2Sα
(E)
1S2S

(ω) + δ2Sα
(ψ)
1S2S

(ω). (B16)

Here again the (E) subscript refers to the contribution from the energy correction and the (ψ) subscript refers to the contribution
from the wave-function correction. We again compute

δM
(E)
6 (2S; 1S) = 6

π

h̄

(4πε0)2

∫ ∞

0
dω δ2Sα

(E)
1S2S

(iω)α1S2S(iω) (B17)

by using (B4). For that we need

P1S2S(ω) = e2a2
0

Eh

512
√

2t2
eff

729
(−1 + t2

eff

)2(−4 + t2
eff

)3

[
128 − 272t2

eff + 120t4
eff + 253t6

eff + 972t7
eff + 419t8

eff

− 1944t7
eff 2F1

(
1,−teff ; 1 − teff ;

1 − teff

1 + teff

2 − teff

2 + teff

)]
, (B18)

with teff given by (B13). In the end, we obtain

δM
(E)
6 (2S; 1S) =12.556 663 547α2a6

0Eh. (B19)
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Finally, we calculate the wave-function contribution to the mixing coefficient for the Dirac-δ correction

δM
(ψ)
6 (2S; 1S) = 6

π

h̄

(4πε0)2

∫ ∞

0
dωδ2Sα

(ψ)
1S2S

(iω)α1S2S(iω). (B20)

From (73) we deduce

δP
(ψ)
1S2S(ω) = e2a2

0

mc2

[
− 128

√
2τ 2S(τ )

2187(1 − τ 2)4(1 − 4τ 2)3
− 2048

√
2τ 2T (τ )

729(1 − τ )3(1 + τ )2(1 − 4τ 2)2
ln

(
2τ

1 + τ

)

− 2048
√

2τ 2(1 + 2τ 2)U (τ )

729(1 − τ 2)2(1 − 4τ 2)3
ln

(
3τ

1 + τ

)
+ 1024

√
2τ 7(1 + τ 2)

(1 − τ 2)2(1 − 4τ 2)3 2F1

(
1,−2τ ; 1 − 2τ ; −1 − 2τ

1 + 2τ

)

+ 1024
√

2τ 7R(τ )

9(1 − τ 2)4(1 − 4τ 2)3 2F1

(
1, − 2τ ; 1 − 2τ ; −1 − τ

1 + τ

1 − 2τ

1 + 2τ

)

+ 65 536
√

2

3

τ 10

(−1 + τ )(1 + τ )5(1 + 2τ )4

∞∑
k=0

(
−1 − 2τ

1 + 2τ

)k ∂2 2F1(−k,4; 4; 2
1+τ

)

(2 + k − 2τ )

]
, (B21)

with τ given by (B11), and R(τ ) is defined in Eq. (B10). The function S(τ ) is given as

S(τ ) = −157 + 2436τ 2 − 13 326τ 4 + 5832τ 5 + 58 868τ 6 + 225 504τ 7

− 283 245τ 8 + 99 144τ 9 − 431 184τ 10 + 695 952τ 11 + 200 048τ 12, (B22)

while T (τ ) reads

T (τ ) = 2 − 2τ − 15τ 2 + 15τ 3 + 15τ 4 − 15τ 5 + 268τ 6 + 1676τ 7 (B23)

and U (τ ) is

U (τ ) = −2 + 27τ 2 − 129τ 4 + 50τ 6. (B24)

We can then easily deduce δ2Sα
(ψ)
1S2S

(ω) from (B21) via

δ2Sα
(ψ)
1S2S

(ω) = δ2SP
(ψ)
1S2S

(ω) + δ2SP
(ψ)
1S2S

(−ω), (B25)

where again δ2SP
(ψ)
1S2S

(ω) has the same expression as (B21), with τ replaced by teff [see (B13)]. From all of this we obtain

δM
(ψ)
6 (2S; 1S) = − 70.652 014 640α2a6

0Eh. (B26)
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