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Isotopic effects in scattering and kinetics of the atomic cascade
of excited 1~ p and u~d atoms
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The quantum-mechanical calculations of the differential and integrated cross sections of the elastic scattering,
Stark transitions, and Coulomb deexcitation at collisions of excited ©~ p and u~d atoms with hydrogen isotope
atoms in the ground state are performed. The scattering processes are treated in a unified manner in the framework
of the close-coupling approach. The basis used includes both open and closed channels corresponding to all
exotic-atom states with principal quantum numbers from n = 1 up to n,,x = 20. The energy shifts of ns states
due to electron vacuum polarization and finite nuclear size are taken into account. The kinetics of the atomic
cascade of u~ p and u~d atoms are studied in a wide range of relative target densities (¢ = 1078-1) within the
improved version of the extended cascade model, in which the results of the numerical quantum-mechanical
calculations of the cross sections for quantum numbers and kinetic energies of muonic atoms that are of interest
for the detailed cascade calculations, are used as input data. Initial (n, [/, E) distributions of muonic atoms
at the instant of their formation and the target motion are taken into account explicitly in present cascade
calculations. The comparison of the calculated cross sections, the kinetic-energy distributions of muonic atoms
at the instant of their np — 1s radiative transitions, as well as the absolute and relative x-ray yields for both
muonic hydrogen and muonic deuterium reveals the isotopic effects, which, in principal, may be observed
experimentally. The present results are mainly in very good agreement with experimental data available in the

literature.
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I. INTRODUCTION

The muonic and hadronic hydrogen-like atoms
(u=p, u=d, 7~ p, m—d, etc.) are formed in highly excited
states, when a heavy negatively charged particle (u=, 7,
K, etc.) is slowed down in a gaseous or liquid-hydrogen
target and captured on the atomic orbit. After the exotic-atom
formation, its initial distributions in quantum numbers and
kinetic energy are changed during the so-called atomic
cascade through a number of processes: radiative and Stark
transitions, elastic scattering, external Auger effect, Coulomb
deexcitation (CD), weak decay, and strong absorption in the
case of hadronic atoms.

The general features of these exotic atoms are similar to
those of ordinary hydrogen atoms, because their level structure
is mainly determined by the static Coulomb interaction.
However, due to significant differences between exotic particle
and electron masses, the distance scale in the exotic-atom case
is much smaller, while the energy scale is much larger in com-
parison with the usual atomic scale. These scale effects make
it possible to realize the processes of the external Auger effect
and CD and open additional opportunities for the study of the
quantum electrodynamics, weak or strong interactions (in the
case of hadronic atoms), and scattering processes in collisions
between exotic and ordinary hydrogen isotope atoms.

The muonic atoms of hydrogen isotopes are the simplest
of exotic atoms and may be considered as ideal objects
to study the isotopic effects in the lightest exotic atoms.
Their experimental and theoretical investigations serve as the
best probe to study various collisional processes of these
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atoms with ordinary hydrogen isotope atoms or molecules.
A good understanding of isotopic effects in the scattering
and kinetics of the atomic cascade of muonic hydrogen and
deuterium constitutes a very important foundation for pionic
deuterium and muonic tritium predictions. Besides, they are
of particular interest in order to reach the reliable theoretical
description of the scattering and deexcitation cascade in the
case of hadronic atoms. The last is especially important for
the proper analysis of the precise spectroscopic experiments
with pionic [1], kaonic [2], and antiprotonic [3] hydrogen
isotope atoms, aimed at extraction of strong interaction widths
of low-angular-momentum states.

The experimental data, such as x-ray yields, the products
of the strong interaction, the shapes of x-ray lines, and the
kinetic-energy distribution of exotic atoms in their ground
states, are mainly related to the last stage of the atomic cascade.
Therefore, the study of the kinetics of atomic cascade in
hydrogen media provides the only test of both theoretical
approaches used to describe the collisional processes and
cascade models. On the other hand, the realistic theoretical
description of all processes involved in the atomic cascade also
plays a key role to choose optimal experimental conditions and
to improve the quality of the analysis of experimental data.

The first theoretical study of the atomic cascade in exotic
hydrogen-like (7~ p and K~ p) atoms was made by Leon and
Bethe [4] more than fifty years ago. In this paper and later in
more refined models [5,6], beyond radiative transition rates,
only collisional rates of the Stark mixing and the external
Auger effect, calculated respectively in the semiclassical and
Born approximation at a fixed kinetic energy (~1 eV), have
been taken into account to simulate the atomic cascade. In
these cascade calculations the scaling factors for the Stark
mixing and external Auger effect rates were used and, besides,
the kinetic energy was treated as a fit parameter.
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However, the high-energy fractions have been found in
energy distributions of u~p, u~d, and 7~ p atoms in the
different time-of-flight experiments [7-10]. In particular, the
high-energy components have been found in the neutron time-
of-flight experiments (see Ref. [10] and references therein)
with pionic hydrogen and in diffusion experiments [8,9] with
muonic hydrogen and deuterium atoms.

The extended standard cascade model (ESCM) [11,12] in-
troduces a number of improvements compared with the earlier
models: for example, the scattering from molecular hydrogen
at high n is calculated as opposed to the phenomenological
treatment in other cascade models. Cascade calculations in
this model include the evolution of the kinetic energy during
deexcitation cascade. However, the ESCM predictions could
not describe a number of experimental data, in which the
kinetic-energy distribution of an exotic atom at the instant
of its x-ray emission from a specific level in muonic [13,14]
and pionic (e.g., see Ref. [15] and references therein) atoms
or at the time of the charge-exchange reaction (neutron
time-of-flight experiment [10]) is needed for the analysis of
the experimental data.

To interpret and analyze these experimental data, a more so-
phisticated approach based on the reliable and self-consistent
description of all essential collisional processes involved in
the deexcitation cascade is required. The processes of elastic
scattering, Stark transitions, and CD appear to be of significant
importance, because of their considerable influence on the
kinetic-energy distribution of exotic atoms during the atomic
cascade.

The study of the elastic scattering and Stark mixing cross
sections in the exotic-atom—ordinary-hydrogen-atom colli-
sions has been performed within a fully quantum-mechanical
adiabatic approach [16—19] about fifteen years ago. Later, these
cross sections have been also calculated in the framework
of the close-coupling model [20] applying the screening
dipole approximation to describe the exotic-atom—hydrogen-
atom interaction for the low states n = 2-5. However, this
approximation cannot be justified for low-energy scattering
(see Ref. [19]). Thus, the latter approach as well as various
modifications of the semiclassical model [5,6,20] lead to
unreliable results in the low-energy region where only the
lowest partial waves are important.

The theoretical study of the CD also has a long history
(see, e.g., Refs. [21-27]). Nevertheless, in the most important
region n = 2-8 of the principal quantum number, relevant
for the kinetics of the atomic cascade, this process has been
regarded as the least studied until the last decade [28-31].

The present research continues the cycle of our papers
devoted to the detailed theoretical study of the scattering
processes and the kinetics of the atomic cascade in the lightest
exotic hydrogen-like atoms. In particular, in our previous
papers (see, e.g., Refs. [28-31]), the dynamics of collisions
of excited exotic atoms with hydrogen ones has been studied
in the framework of the close-coupling approach.

The present study has at least three main goals: First, to
obtain in the framework of a unified quantum-mechanical ap-
proach the cross sections of elastic scattering, Stark transitions,
and CD in collisions of excited u~d atoms with ordinary
deuterium atoms. Second, to provide a comprehensive set of
differential and integrated cross sections for all collisional
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transitions nl — n'l’ in u~p and pu~d atoms at relative

energies needed for the detailed study of the kinetics of the
deexcitation cascade in the hydrogen isotope targets. Finally,
to investigate isotopic effects in the scattering cross sections
of excited w~p and w~d atoms, calculated on the same
theoretical footing, and in various characteristics of the atomic
cascade, such as absolute and relative x-ray yields, kinetic-
energy distributions of muonic hydrogen and deuterium atoms
at the instant of their radiative transitions, and cascade times.

The paper is organized as follows: The brief description
of the theoretical approach used to describe the scattering
of the excited muonic hydrogen and deuterium atoms in the
hydrogen isotope targets is given in Sec. II. In Secs. IIB
and IIC, we demonstrate the typical examples illustrating
the closed-channel effect and the convergence of calculated
cross sections relative to the extension of the basis and the
number of partial waves taken into account. The isotopic
effect in the scattering cross sections and rates of different
CDs is also represented in Sec. II D. The kinetics of the atomic
cascade of 4~ p and u~d atoms is studied in Sec. III. Here,
the various results calculated in the improved version of the
atomic cascade are presented and compared with the known
experimental data. The conclusions are summarized in Sec. V.

Atomic units are used unless otherwise stated.

II. CROSS SECTIONS OF COLLISIONAL PROCESSES

A. Main features of approach

To study the scattering processes in collisions of (1™ p),y
and (u~d),; atoms in the excited (nl) states (n and [ are the
principal quantum number and orbital angular momentum of
the exotic atom) with ordinary hydrogen or deuterium atoms
in the ground state, the close-coupling approach is applied. In
the framework of this approach, the processes

(/-'L_a)nl + (be_)ls - (,u_a)n’l’ + (be_)ls (])

of the elastic scattering (n’ = n,l’ =1), Stark transitions
(n' =n,l’ #£1), and CD (n’ < n — 1) are treated in a unified
manner. Here, a = b = p in the case of the muonic hydrogen
atom, and a = b = d in the case of the muonic deuterium
atom.

The close-coupling approach was applied earlier by the
authors for the fully quantum-mechanical description of the
scattering processes (1) in collisions of excited exotic (muonic,
pionic, kaonic, and antiprotonic) hydrogen atoms with ordi-
nary hydrogen ones [28-31] and hydrogen molecules [32],
as well as for the collision-induced absorption or annihilation
in the case of hadronic atoms [33,34]. For the benefit of the
reader, the outlines of the applied close-coupling approach are
briefly recalled.

In this paper, as in our previous studies, the target atom
is assumed to be in its ground state during the collision. To
properly take into account the electronic degrees of freedom
in the processes considered, it is necessary to consider the
quantum four-body problem. However, in our case we are
dealing with a collision of two neutral subsystems (atoms of
the muon and ordinary hydrogen). A muonic atom can be
considered as a point dipole with a small dipole moment.
Thus, the polarization of atoms in the collision leads to
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rapidly decreasing van der Waals interaction ~1/RS. Such
an interaction can affect only elastic-scattering cross section.
Due to the smallness of the dipole moment this effect cannot be
significant. Note that even in the case of alpha decay of heavy
nuclei, accounting distortions of the inner electron shell (due
to the interaction of electrons with the charged alpha particle)
has no significant effect on the rate of the alpha decay, as
shown in Refs. [35,36].

Thus, at the present stage of the study of the considered pro-
cesses, we are limited to the “frozen” electron approximation.
Then the four-body scattering problem under consideration is
reduced to the three-body one and can be described by the wave
function \IJéMp (p,R) of the three-body system (u~a),; + A (A
denotes an ordinary hydrogen or deuterium atom). The set of
Jacobi coordinates (R, p) of the system is defined as

RZRA_R/I.(H p=r, —I,. )

Here, R4 and R, are the center-of-mass radius vectors of
hydrogen and exotic atoms; r, and r,, are radius vectors of the
nucleus @ and muon in the laboratory system.

At a fixed total energy E of the system, definite quantum
numbers of the total angular momentum (J,M) and parity
p = (1)L, the exact wave function \IléMp (p,R) satisfies the

time-independent Schrodinger equation,
(H — E)yW;""(p.R) = 0. 3)

The Hamiltonian H, after the separation of the center-of-mass
motion of the total system, can be written in terms of Jacobi
coordinates (2) as

H=-—

M, +hu(p) + V(p.R), “)
where M, = M, M,/(M,, + M,) is the reduced mass
of the system with M,, =m, +m, and M, =m,+my
(my, my, m,, and m, are masses of hydrogen isotopes, muon,
and electron, respectively).

The Hamiltonian /, of the free exotic atom involves the
Coulomb interaction of the nonrelativistic two-body problem
as well as terms leading to the energy shift of ns states relative
to the degenerate n/ states (I # 0) are mainly accounted for by
electron vacuum polarization and nuclear finite-size effects. In
the case of muonic atoms

05 p
)

(nlm|h,nlm) = E, = —

where (p|nlm) = R,;(p)Y1,,(p) is the hydrogen-like wave
function of muonic atoms in the nim state, m, = m,m,/M,,
is its reduced mass, and 8,];;‘31’ is the shift of the Coulomb
energy level due to electron vacuum polarization and nuclear
finite-size effects. In the present study we use 5™ = 202.08
meV and e5*™ = 203.01 meV [37] for muonic hydrogen and
muonic deuterium, respectively. For ns states with n > 3 the
energy shift due to electron vacuum polarization and nuclear
finite-size effects is approximately calculated according to
gll;amb — Sliamb(z/n)3.

The interaction potential V(p,R) in Eq. (4) is obtained
by averaging the sum of two-body Coulomb interactions V;;
(i =a,u” and j = b,e™) between particles of colliding sub-
systems over the ground-state wave function of the hydrogen
isotope atom (for details see Appendix).
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The wave function \IléMp (p,R) of the three-body system
(u~a)u + A is expanded on basis states

(o.Rlnl,L : IM) = Ru(p)V;™ (b, R), (6)

constructed from nonrelativistic hydrogen-like wave functions
(p|nlm) of the muonic atom and

Vi @R =iy (mLAlI M) Y)Y (R). (7)

mh

The substitution of the expansion for \IJéMP ,

WM (p,R) = — ZGZ{P(R) (o.Rnl,L : IM), (8)

nlL

into the Schrodinger equation (3), leads to the set of the
close-coupling second-order differential equations for the

radial channel wave functions Gf,ip (R):

d? L(L+1) GE
(dR2 +ha = T) Gt )

- 2M Z ani)L nlL(R)Gn’l L’(R) (9)
/l L/
where
kny = 2M,(Ecm. + Eni, — Eu) (10)

specify the channel wave numbers; Ec ., E,,;,, and E,; are,
respectively, the relative motion energy and bound energies
of the exotic atom in the entrance and current channels. The
basis used in the present study includes exotic-atom states
corresponding to both open (kﬁl > 0) and closed (kfll < 0,Im
k,; > 0) channels.

The explicit analytical expression for a matrix

Jp _
W m (R) =

of the interaction potential, V (p,R), between the asymptotic
initial |nlL;J) and final |n’l’L’; J) channels is obtained by
integrating over p and R without any additional approxima-
tions. As a result, the matrix elements (11) are reduced to
the finite sum of multipole interactions W, ,/(R) (allowed
by the angular-momentum and parity selection rules) with the
asymptotic behavior

(nl,L: IM|V(p,R'I,L' : IM) (11)

Wt;n’[’,nl(R) 68 Rt (R - 0) (12)

and

Wit mi(R) o exp (—2R)/R™ (R — 00), (13)

where ¢ is a multipolarity, which changes from fp, = |l — |
up to tmax = [ + I’ (for details, see Appendix).

The scattering problem (9)—(11) was solved numerically
by applying the propagator matrix method, developed earlier
(for details see Ref. [28]), at each fixed value of the relative
energy, total angular momentum, and parity. In the frame of this
method, instead of radial channel functions Gn, I (R), we find
their ratios in two nearest points R; and R;+1 (R;+1 = R; + h;
h is the constant integration step), starting from R; = 0.
Then, using the two-point matching conditions, the K matrix,
defined in the subspace of open channels (k> > 0), and thereby
the T matrix [T = —2iK(I —iK)~'] are calculated. The
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method allows us to avoid numerical problems with both the
exponentially growing and exponentially damping functions
and significantly improves the accuracy of the calculated T’
matrix and corresponding cross sections.

The degeneracy-averaged partial-wave differential cross
sections for processes (1) are given by

J
danl»n’l’

— 1 kn’l’ J 2
dQ " 2+1ky ;‘ SO (+) | RN ¢ E))

Here, the partial-wave on-shell scattering amplitudes,

njlm%n,l,m,(ﬂ), for the transition i — f (i and f denote the
quantum numbers of initial |n [ m) and final |n’ I’ m’) states of
the exotic atom, respectively) are determined by the transition

i T .

matrix T, e
ivT 5
hY% knlkn’l’ LL'V

X Ty UM L1 Tm)Y10(Q),  (15)

[l @) = iYL 2L + 1(ImLO| T m)

where the sums go over all values (L, L’,1), satisfying angular-
momentum and parity selection rules; 2 = (6,¢) is the center-
of-mass solid angle.

The partial-wave integrated cross sections for nl — n'l’
transitions are given by

Hewr = 5341 2 T (19
Then the total differential,
Ao swr A danj_m, ,
ey )
and integrated,

Jmax
Ottt = Y Ot (18)

J=0

cross sections are obtained by summing Egs. (14) and (16)
over partial waves from J = 0 up to Jyax until an accuracy
better than 0.01% is reached for all collisional energies.

The quantum-mechanical approach described above was
applied to produce the systematic calculations of differential
and integrated cross sections [Eqs. (14) and (16)—(18)] for
processes (1) in collisions of excited w~p and u~d with
ordinary H and D atoms, respectively. These calculations
were performed by using the basis, which includes all open
and closed channels, associated with the principal quantum
number values from n = 1 up to ny,x = 20. In the case of
(u~p)2s and (=d)ys, for a collision energy below the 2p
threshold, the basis used was even extended up to nyx = 30.
Since the energies of the ns and n/ (I > 1) sublevels are
split (mainly due to electron vacuum polarization), the
cross sections with initial ns and nl (I > 1) states were
calculated separately for relative energies referring to ns
and np thresholds. The results of our systematic calculations
are extremely extensive and were used as input data for the
detailed description of the atomic cascade kinetics.

Here, we present only the key points illustrating both the
convergence of various cross sections (elastic scattering, Stark
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transitions, and CD) with the extension of the basis and the
isotopic effect in the scattering of excited muonic hydrogen and
deuterium. To demonstrate some of our results, the [-averaged
cross sections of n — n’ (n’ < n) transitions, obtained by
summing Eq. (18) over I’ and averaging with the statistical
weight (2/ + 1)/(n2 — 1) over! > 1, are defined as follows:

T 1
O () = o 3 QL Do (19)
nl =10

B. Effect of closed channels in scattering of excited
muonic hydrogen atoms

In real applications of the close-coupling approach the basis
used is always truncated. All the basis states associated with
open channels are usually taken into account. The reliability of
results obtained with this basis is unclear without the further
study of the effect of closed channels. There are no simple
theoretical representations or estimations which allow us to
choose the optimal basis. Hence, the scattering problem has to
be investigated numerically. This study is also necessary from
the viewpoint of practical applications, to produce calculations
within a reasonable computer time.

The extension of the basis set by adding muonic atom states
associated with closed channels alters the effective interaction
at short distances and, as a result, should affect the low-energy
scattering of exotic atoms in the states with small values of
the principal quantum number n. To study the closed-channel
effect and convergence of the close-coupling approach we have
performed a lot of calculations with large basis sets. The key
features of the closed-channel effect in the scattering of the
excited muonic hydrogen are demonstrated in Figs. 1-5.

Figure 1 shows the dependence of the partial-wave cross
section (J = 0) of the elastic 2s-2s scattering on Ej,, which
is the laboratory kinetic energy of muonic atom in its collision
with the target at rest. The calculations were performed for
various basis sets corresponding to nn,x = 8 and different
values of the internal angular momentum [/ < /yox (Imax =
1,3,5,7). At the laboratory kinetic energy Ejp < 0.4 eV
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FIG. 1. The partial-wave elastic cross section for (u~ p),, + H
collision vs the laboratory kinetic energy Ej, calculated for four
variants of the basis corresponding to ny,,x = 8 and different values
Imax Of the internal orbital momentum.
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FIG. 2. The same is in Fig. 1 for the partial-wave cross section of
the Coulomb deexcitation 2s — 1s.

(below the 2p threshold) there are only two open channels
associated with 1s and 2s states of the muonic hydrogen. All
the other channels are closed: the weakly closed 2p channel
and strongly closed channels for n > 2 (here the energy gap
between the open and closed channels is more than a few
hundred electron volts). At collision energies above the 2p
threshold the 2p channel becomes also opened. Thus, the
maximum number of open channels at energies above the
2p threshold is three. In the case J =0 (L =1 and parity
p = 1), the number of channels equals the number of basis
states. Therefore, for the basis with np,x = 8 and [ = 1
or lyn.x =7 one has a 15-channel or 36-channel scattering
problem, respectively.

The effective interaction in the system is very strong and
leads to the formation of a number of bound states below the 2s
threshold. This is confirmed by oscillations of the elastic cross
section 2s-2s in Fig. 1 in accordance with Levinson’s theorem.
The extension of the basis increases the effective interaction
(attraction at short distances) and as a consequence all maxima
and minima in the cross section are shifted to lower energies.
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FIG. 3. The energy dependence of the partial-wave elastic cross
section for (i~ p)ss + H collision calculated with the basis corre-
sponding to different values 7 ,y.
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FIG. 4. The same is in Fig. 3 for the partial-wave cross section of
the Coulomb deexcitation 3s — 2s.

Figure 2 shows the energy dependence of the partial-wave
cross section (J = 0) of the CD 2s — 1s. The calculations
were performed for four variants of the basis corresponding to
nmax = 8 and different values of the internal angular momen-
tum ! < lnax(Imax = 1,4,5,7). Here the number of open and
closed channels is determined by both the collision energy and
the value of ,,x as in the case of the elastic scattering 2s-2s.

Asitis seen in Figs. 1 and 2, the effect of closed channels is
very strong. The cross sections of the elastic scattering 2s-2s
and CD 2s — s are essentially modified with the extension of
the basis. The convergence is very slow. The lowest [ orbitals
are very important but, as a rule, do not lead to a reliable result.
Cross sections calculated by taking into account only ns and np
states differ substantially from those obtained with the further
extension of the basis by including the states with large values
of the internal orbital angular momentum (/ > 2). In particular,
the extension of the basis results in the resonance behavior
of both elastic 2s-2s and Coulomb 2s — 1s cross sections
above Ejy, =~ 20 eV. The position and shape of this resonance
essentially change with the extension of the basis (see Fig. 2).
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FIG. 5. The energy dependence of the integrated cross sections
for (™ p)ss + H collisions calculated with different basis sets: n,,x =
3 (dashed lines) and 7n,,x = 20 (solid lines).
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The results obtained with the basis sets corresponding to I =
6 and 7 are indistinguishable for both elastic scattering and CD
cross sections.

The convergence of the partial-wave (J = 5) cross sections
of the elastic 3s-3s scattering and the CD 3s — 2s of the
muonic hydrogen with the extension of the basis (by increasing
Nmax) 1S demonstrated in Figs. 3 and 4, respectively. Calcu-
lations were done for different basis sets corresponding to
muonic hydrogen states with ny,,, = 3,8, 10, 15,20 and all val-
ues of the internal orbital angular momentum at a given 7.

The closed-channel effect is very noticeable in the case
of the elastic scattering (see Fig. 3). The partial-wave cross
section of the elastic 3s-3s scattering changes with the
extension of the basis from 7n,,x = 3 to ny,,x = 8 about a
few times near its values calculated with the minimal basis
(nmax = 3); however, its energy behavior is conserved. Further
enlargement of the basis set leads to the convergence of
the calculated cross section as shown in Fig. 3 (see curves
corresponding to npy.x = 10 and nyx = 15). Note that the
results of the calculation with a basis set nyx = 20 practically
coincide with those obtained with the basis n,,x = 15 and are
not shown in Fig. 3.

In the case of the CD (see Fig. 4) the effect is much
stronger. The extension of the basis leads to a significant
reduction of the cross section of the CD 3s — 2s (more than
one order of magnitude) and, as in the case of the Coulomb
2s — 1s deexcitation (see Fig. 2), its energy dependence
changes as well. As in the case of the elastic scattering 3s-3s,
the convergence of the partial-wave CD 3s — 2s cross section
is achieved with the basis set corresponding to ny,,x = 15 and
further extension of the basis set to n,,x = 20 1eads to variation
of the cross section less than 1%.

In the examples considered of the elastic 3s-3s scattering
and the CD 3s — 2s at the collision energy above the 3p
threshold (Ej, 2= 0.125 eV) one has 10 open channels. The
number of the closed channels essentially depends on both 71,5
and J values. It is important to note that, with increasing J, the
number of closed channels increases significantly (see Table I).

Figure 5 shows the energy dependence of integrated cross
sections for (1™ p)3s + H collisions. Here we present numer-
ical results for the elastic scattering 3s-3s, Stark transition
3s — 3p, and CD 35 — 2s and 3s — 1s. Calculations were
performed for two variants of the basis used: the minimum
basis set (nmax = 3) and the maximum basis set including
all the muonic atom states associated with n < 20. The
comparison of the results obtained in these two variants shows
that the closed channels strongly affect all cross sections at
collision energies below a few electron volts. In particular, the
cross section of the elastic scattering 3s-3s changes its energy
dependence at low energies with the extension of the basis. A

TABLE I. The maximum number of closed channels in calcula-
tions of elastic 3s-3s scattering and CD 3s — 2s for different basis
sets and J values.

Mmax 3 8 12 20
J=5 0 106 298 754
J =10 0 110 353 959
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much stronger effect is observed in the case of the CD. The
cross sections of 3s — 2s and 3s — 1s CD are reduced more
than an order of magnitude with the extension of the basis at
all energies under consideration.

Our investigation shows that the convergence of cross
sections with the extension of the basis is achieved very
slowly in the lowest partial waves and at low-energy collisions
due to a strong coupling between closed and open channels.
The closed-channel effect is especially significant in the low-
energy scattering of exotic atoms in low-lying excited states
(n = 2-5), because the basis of the open channels is very poor
to produce the reliable results (see, e.g., Fig. 4 in Ref. [28]).

The present as well as our previous studies [28] show that
the energy dependence of the cross sections at low-energy
collisions is very important for the kinetics of the atomic
cascade. Therefore, the cross sections of different processes
in the low-energy region should be calculated by using the
extended basis set, which includes a lot of closed channels.
All our further calculations are performed by using a basis
set of nyax = 20, the use of which allows us to achieve the
convergence of all cross sections in the whole energy range.
The basis set used contains hundreds or even thousands of
states depending on the values of the total angular momentum
of the system. According to the present study, in the case of
the muonic deuterium the convergence is achieved much faster
than in the case of muonic hydrogen. Nevertheless, all calcu-
lations for both muonic hydrogen and muonic deuterium were
performed with the same basis set corresponding to 711,,x = 20.

C. J dependence of different cross sections

Figure 6 shows the J dependence of cross sections for
the elastic 4 f-4 f scattering and Stark 4 f — 41 (I = 0-2)
transitions calculated at the laboratory kinetic energy Ejp, =
1 eV. In these calculations the basis includes all the exotic-atom
states with principal quantum numbers from n = 1 up to 20
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FIG. 6. The partial-wave elastic 4 f-4f and Stark 4f — 4/
(I =0-2) cross sections for (1~ p)as +H collision vs the total
angular momentum J at the laboratory kinetic energy Ej,, = 1 eV.
The calculations were performed with the basis set including all
the exotic-atom states with principal quantum numbers n < 20
(Al = |l; — I4]) for two variants of interaction potentials: #,, = 14
(solid lines) and t,,,x = 1 (dashed lines).
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(note that all channels associated with n > 5 are closed). The
behavior of partial-wave cross sections in the range of the
total angular momentum J < J* (J* =~ 13 at Ej,, = 1 eV) is
quite similar. It is noteworthy that the value of J* grows with
the increase in the principal quantum number (in the entrance
channel) and a collision energy.

The partial-wave cross section of the elastic scattering is,
on average, significantly larger (about one order of magnitude)
than the partial-wave cross sections of Stark transitions
(AL=|l; — ;] > 1).

At higher values of the total angular momentum J > J*
all the partial-wave cross sections rapidly decrease. The rate
of this decrease essentially depends on the Al value. The
partial-wave cross sections of Stark transitions with the Al =1
decrease much slower than the partial-wave cross sections
of the elastic scattering (Al = 0) and Stark transitions with
Al > 2. Such a behavior of partial-wave cross sections is
explained in the case of transitions with Al = 1 by the direct
dipole (t = 1) coupling [see Eq. (13)] between entrance and
final channels, whereas in the Al # 1 case the corresponding
cross sections are mainly determined by the effective dipole
coupling through intermediate states.

This conclusion is confirmed in Fig. 6, where the same cross
sections were calculated for two variants of interaction poten-
tials. In the first variant the matrix of interaction potentials
includes only monopole and dipole terms (f,,x = 1), whereas
in the second variant all the allowed multipoles up to 7, = 14
were taken into account. For transitions with Al = 1 the direct
dipole interaction (¢ = 1) determines the coupling between
initial and final channels and very accurately reproduces the
J dependence of Stark cross sections with A/ = 1. Here the
higher multipoles with # > 2 practically do not change this
cross section (see Fig. 6). In the case of transitions with Al > 2
the direct interaction with ¢ > 2 gives a noticeable contribution
only at small J, whereas the effective dipole coupling
largely determines both the value of the corresponding cross
section and its J dependence at large J values, as shown in
Fig. 6.

The fast decrease of the partial-wave cross sections with the
increase in the total angular momentum at J > J* is a general
feature which is also revealed in partial-wave cross sections
of both elastic scattering (e.g., 4s-4s, 4p-4p, and 4d-4d) and
Stark transitions with a fixed Al for the given n.

Figure 7 shows the J dependence of partial-wave cross
sections for different Coulomb transitions (An =n; —ny =
1-3) in (™ p)a + H collisions. Calculations were performed
with the basis including all the exotic-atom states with n < 20
at the laboratory kinetic energy Ej, = 1 V. The present study
shows that, in contrast to the convergence with respect to Ji,x
observed above in Fig. 6, the partial-wave cross sections of
the CD (see Fig. 7) very sharply decrease at Jy.x = 12 for
4 — 3,4 — 2,and 4 — 1 transitions independently from Al.
Such a behavior of CD cross sections is explained by the effect
of the centrifugal barrier, which prevents partial waves with
Jmax 2 12 (at a given energy Ejp, = 1 eV) from penetrating
into the interaction range, where the process of the CD mainly
occurs.

The fast decrease of partial-wave cross sections (see Figs. 6
and 7) with the increase in the total angular momentum in the
range J > J* is a general property, manifested also in partial-
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FIG. 7. The partial-wave CD cross sections for (u~p)y +H
collisions vs the total angular momentum J calculated at the
laboratory kinetic energy Ej, = 1 eV with the basis including all
the exotic-atom states with n < 20.

wave cross sections of elastic scattering, Stark transitions, and
CD at all the collision energies and for all the excited states of
an exotic atom.

The comparison of the results shown in Figs. 6 and 7 allows
us to explain the different J dependence of partial-wave cross
sections in Fig. 6 at J > J*. In this range of J values the
coupling between open channels corresponding to the CD
and closed channels can be neglected and calculations with
the minimum basis set (nn,x = 4 in the considered example)
allow us to obtain results which are in correspondence with the
extended-basis case. The cross sections of Stark transitions
with Al =1 are largely determined by the direct dipole
coupling and survive for much larger J values in comparison
with processes corresponding to Al # 1. These observations
allow us to significantly reduce the dimension of the system of
close-coupling equations and, as a consequence, the computer
time.

D. Isotopic effect in scattering of excited .~ p and p~d atoms

As far as we know, the calculations of scattering cross
sections for (u~d), + D collisions in the framework of a fully
quantum-mechanical approach have not been done so far and
the isotopic effect in the scattering of the muonic atoms of
hydrogen and deuterium has not been investigated either. In
the present study the cross sections of elastic scattering, Stark
transitions, and CD for both muonic hydrogen and deuterium
were calculated within the same fully quantum-mechanical
approach. Calculations were performed by using basis states
corresponding to nmax = 20 and ! < lpax = #imax — 1. This
allows us to study the isotopic effect in the scattering of the
excited muonic hydrogen and deuterium on the same footing.

Figures 8—10 show the energy dependence of [-averaged
cross sections for (u™ p), + H - (v~ p) + Hand (u=d), +
D — (u~d), + D collisions (n’ < n) with values of the
principal quantum number n = 4, 5, and 8. The comparison
of the results obtained for the muonic hydrogen and deuterium
reveals that the /-averaged cross sections without changing
the principal quantum number differ by not more than
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FIG. 8. The [-averaged cross sections for (u~p), +H —
(u~ p)w + H (solid lines) and (u~d), + D — (u~d),» + D (dashed
lines) collisions (n = 4) vs the laboratory kinetic energy Ej,p.

10%—-15%. At all collision energies these cross sections in
the case of (u~d), + D scattering are slightly more than in the
(u™ p)n + H case.

Unlike the [-averaged cross sections of Stark transitions, a
much stronger isotopic effect is observed in [-averaged cross
sections of CD (n — n’ < n — 1). For a given n value and
fixed An =n —n’ the cross section of CD in the case of
a (u=d), + D collision is always less than in the case of a
(u™ p), + H collision and this difference grows essentially
with increasing An, as shown in Figs. §-10. On the other
hand, the isotopic effect decreases with the increase in the
principal quantum number of the initial state. In particular,
the [-averaged cross sections of the CD 8 — 7 of muonic
hydrogen and deuterium are almost indistinguishable by eye,
while in the case of the [-averaged cross sections of the
CD 5 — 4 and especially 4 — 3 the isotopic effect is very
strong.

The suppression of the cross sections of CD in the case of
the muonic deuterium as compared with the muonic hydrogen
is mainly explained by the weakening of the effective coupling,
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FIG. 9. The same as in Fig. 8 but forn = 5.
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FIG. 10. The same as in Fig. 8 but for n = 8.

an,f’, L'l L(R)Gf,lj/’z,(R) [see Eq. (9)], between open channels

as well as between open and closed channels. At a fixed
energy the ratio of the absolute values of wave numbers of
the scattering problem is determined mainly by the reduced
masses of the system. In the scattering of ud and up atoms
it is equal to |k, (ud)/ku(up)| =~ 1.4. Therefore, in the
case of the muonic deuterium the wave functions of closed
channels are exponentially damped at smaller distances, and
the wave functions of open channels respectively oscillate
much faster. Both these factors lead to a significant weakening
of the effective coupling between different channels and,
as a consequence, a significant suppression of CD cross
sections.

The interplay of various processes in the kinetics of the
atomic cascade is determined by their rates. The rates of
collisional processes in the laboratory frame are defined as
follows:

2Ep
A= (Elap) = @ NLEHDOwi— 1 (Elap) ,
na

(20)

where ¢ = N/Npgp is the relative density of the target in
the units of the liquid hydrogen density, Nypgp = 4.25 X
10?2 atoms/cm® and E, is the laboratory kinetic energy of a
muonic atom. While i decay and radiative transition rates do
not depend on the kinetic energy of the muonic atom, target
density, and temperature, the rates of collisional processes
essentially depend on these physical parameters.
The energy dependence of [-averaged CD rates

2Ea
A3 (Eiab) = @ NLapo,, , (Eiab) =,
M,

2n

for (3 — 2) and (4 — 3) transitions in muonic hydrogen
and deuterium calculated at a liquid hydrogen density (¢ =
1) are shown in Figs. 11 and 12 together with the rates
2% (np — 1s) of radiative transitions (3p — 1s) and (4p —
1s), respectively. A small difference between the radiative rates
of (np — 1s) transitions in muonic hydrogen and deuterium
due to their reduced masses is not visible at the scale of Figs. 11
and 12.
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FIG. 11. The [-averaged Coulomb 3 — 2 deexcitation rates cal-
culated at the liquid hydrogen density (¢ = 1) for muonic hydrogen
(solid line) and deuterium (dashed line) atoms vs the laboratory
kinetic energy E},,. The curves with open circles are from Ref. [26].
The horizontal line shows the rate of the radiative 3p — 1s transition
in both muonic hydrogen and deuterium (see the text).

Here the isotopic effect revealed in cross sections (see
Figs. 8-10) is additionally enhanced by the trivial kinematic
factor associated with the difference of exotic-atom velocities
at a fixed energy in the laboratory system (due to the different
masses of muonic hydrogen and deuterium atoms). The
isotopic effect is very strong and significantly changes the
rates of CD especially in the low-energy region. In particular,
this effect results in decreasing the rate of the CD (5 — 4)
more than four times (see Fig. 9), and the rates of the CD
(3 — 2)and (4 — 3) about an order of magnitude (see Figs. 11
and 12) in the case of the (u~d) atom, as compared with
the case of the (™ p) atom. Comparing the rates of CD
(3 — 2) and (4 — 3), respectively, with radiative transition
rates 3p — 1s) and (4p — 1s), we can conclude that the
acceleration of the muonic hydrogen due to CD should be more
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FIG. 12. The same as in Fig. 11 for Coulomb 4 — 3 deexcitation
rates vs the laboratory kinetic energy Ej,. The curves with open
circles are from Ref. [26]. The horizontal line shows the rate of the
radiative4p — 1s transition in both muonic hydrogen and deuterium.
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significant than in the muonic deuterium case. This isotopic
effect has to lead to the much smaller Doppler broadening of
the K lines in the case of the muonic deuterium in comparison
with the case of the muonic hydrogen. This effect must be
especially noticeable at the relative density above ¢ &~ 1073,

The comparison of the present results with those obtained
in the framework of the asymptotic theory of nonadiabatic
transitions (see Ref. [26] and references therein) is given in
Figs. 11 and 12. Itis seen that the rates of the CD from Ref. [26]
only qualitatively reproduce the isotopic effect, but they are too
small to explain the experimental data (see, e.g., Refs. [10,13]).
It should be noted that all the previous calculations of the
CD were realized within semiclassical or adiabatic approaches
with a two-level approximation which is not suitable for the
treatment of the deeply inelastic process such as CD (see, e.g.,
Refs. [29,38]).

The observed isotopic effect in both cross sections and the
rates of the CD allows us to predict a similar effect in the
pionic deuterium and the muonic tritium. This effect should
lead to a strong weakening of the high-energy components in
the energy spectrum of the pionic deuterium and especially
in the case of the muonic tritium compared with the pionic
and muonic hydrogen atoms, respectively. In particular, the
predicted isotopic effect allows us to explain the significant
suppression of the contributions of high-energy components
originating from CD transitions (4 — 3) and (5 — 3) in
experiments with pionic deuterium [39].

III. KINETICS OF ATOMIC CASCADE

The life history of the exotic atom after its formation is
determined by the complex interplay of collisional and non-
collisional processes. In these processes the initial distributions
on quantum numbers (n,/) and the laboratory kinetic energy
E (at the instant of the exotic-atom formation) change during
the deexcitation cascade until the exotic atom arrives in the
ground state or the weak decay (absorption or annihilation in
the case of hadronic atoms) of the exotic particle occurs.

The theoretical predictions of various characteristics of the
atomic cascade represent an idealized view of what one might
expect in experimental studies, because they are free from
standard experimental problems associated with the energy
resolution, efficiency of the registration, statistics, and so on.
Besides, the model representations used in the analysis of
experimental data may also lead to additional uncertainties.
Hence, the reliable theoretical predictions may be very useful
both for choosing the optimal conditions of experiments
and for improving the results extracted from the analysis of
experimental data.

The evolution of the kinetic energy and (n,l) distributions
of exotic atoms plays a significant role in the competition of
various cascade processes and should be followed up during
the whole atomic cascade. To realize this, the comprehensive
sets of differential and integrated cross sections of collisional
processes involved in the atomic cascade were calculated
(within a framework of the present quantum-mechanical
approach) in the wide range of quantum numbers (n < 8)
and kinetic energies of muonic atoms that are of interest
to reliable cascade calculations. Besides, the realistic model
simulating the kinetics of the atomic cascade was developed.
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It is especially important from the viewpoint of various pre-
cise experiments with muonic [9,13,14,40-45] and hadronic
[1-3,15,39,46-51] hydrogen atoms.

For the collisions of highly excited exotic atoms (n > 8)
with molecular hydrogen the results of the classical-trajectory
Monte Carlo calculations [24] were used. It is important to
note that the isotopic effect revealed in the cross sections for
scattering of muonic atoms in states with n < 9 is virtually
nonexistent in their scattering in highly excited states with
n > 9. The only source of the isotopic effect in the kinetics
of atomic cascade here is a trivial kinematic factor of the
transition from the cross sections of processes to their rates.

A. Cascade model
1. Cascade processes

In the present paper we use as the improved version of the
ESCM originally developed in Ref. [11] and later essentially
improved in Ref. [12] and in recent papers [28,52,53]. The
improvements were mainly achieved due to new theoretical
results for the cross sections of the collisional processes
and initial distributions of muonic atoms in the quantum
numbers and the laboratory kinetic energy at the instant of
their formation. The ESCM includes: radiative transitions,
CD, external Auger effect, and Stark transitions, as well as
the elastic scattering and .~ decay.

The best-known cascade process, beyond the ©~ decay, is
the radiative n;l; — nysly deexcitation described by electro-
dipole transitions, in which the initial and final values of the
internal orbital angular momentum of exotic atoms satisfy
the selection rule Al =|l; —I¢| = 1. The rates of radiative
transitions are calculated with very high accuracy and together
with the u~ decay almost entirely determine the deexcitation
cascade at very low target densities ¢ < 107 In this density
range the information about initial n, /, and E distributions is
practically conserved up to the end of the cascade (see, e.g.,
Ref. [28]).

At higher densities the collisional processes become very
important, because their rates are proportional to the target
density and, as a rule, have a strong energy dependence. The
external Auger effect, elastic scattering, Stark transitions, and
CD are the main collisional processes determining the data
observed or extracted from various experiments.

The external Auger effect does not change the kinetic
energy of the exotic atom, because the transition energy is
practically carried away by the target electron. The Auger
transitions with the minimal An =n; —n; needed for the
ionization of the target are the most probable. The rates of the
external Auger effect reach their maximum at An =1 (the
transition 7 — 6 in the muonic-atom case) and they rapidly
decrease both for n < 7 and An > 1. The cross sections of
the external Auger effect were calculated in the semiclassical
approximation and used through the whole cascade.

Elastic scattering, Stark transitions, and CD significantly
change both the kinetic energy and quantum numbers of
exotic atoms. The Stark transitions affect the population
of nl sublevels and together with elastic scattering, as a
rule, decelerate exotic atoms, thus changing the interplay of
different deexcitation processes during the atomic cascade.
The process of the CD plays a very important role in the

PHYSICAL REVIEW A 95, 022506 (2017)

10°E T T T —rrrrry

L ox ]

1015 ******* -

;****** ******* 3

r *************** __a--%

L 0g5-0" 0 oo |

810’k oo 0 0

(S E 00000002~ 00000029, E

5 E _-700 - ]

e \ - ]
E

<10 3

20 -

107¢ E

-3 Ll Ll | L

10" 5 ] 0 1 2

10 10 10 10

10
Elab (eV)

FIG. 13. The ratio of the external Auger effect and CD rates,
AAveer /3 CD 'y laboratory kinetic energy calculated for 1~ p and u~d
atoms in the 3s state (solid and dashed lines, respectively) and in the
3 p state (open circles and asterisk, respectively).

acceleration of exotic atoms. In this process the energy of
the transition n — n’ < n is converted into the kinetic energy
of the relative motion and shared between colliding objects
(exotic and target atoms).

The competition of the external Auger effect and the CD
significantly depends on both the initial state of the muonic
atom and its kinetic energy. In addition, their interplay differs
for muonic hydrogen and deuterium atoms, due to the isotopic
effect mainly in the CD of these muonic atoms. The energy
dependence of the ratio of the external Auger effect and CD
rates calculated for £~ p and pw~d atoms in 3s, 3 p states and
in 5s, 5p states is shown in Figs. 13 and 14, respectively. As
can be seen, this ratio has a nontrivial energy dependence
which essentially depends on the exotic-atom state. The
competition between these processes significantly affects the
energy distribution of muonic atoms; in particular, appears in
the spectra of muonic atoms at the time of radiative transitions
(see, e.g., Figs. 20 and 21 below).
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FIG. 14. The same as in Fig. 13 but for u~ p and w~d atoms in
the Ss state (solid and dashed lines, respectively) and in the 5p state.
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According to our knowledge, a fully quantum-mechanical
calculations of the cross sections of the charge-exchange
process and the external Auger reaction with the formation
and subsequent decomposition of the intermediate molecular
complex is currently lacking. Estimates of the cross sections
(rates) of these processes (see, e.g., Refs. [26,27,54] and
references therein) allow us to conclude that their role in the
kinetics of atomic cascade is insignificant in comparison with
the direct Coulomb deexcitation and Auger ionization of the
target atom. Thus, the above-mentioned processes are not taken
into account in the present version of the ESCM.

2. Initial distributions and thermal motion of target

The simplest model of the exotic-atom formation, usually
used in cascade calculations, is based on the assumption that
the exotic atoms are formed in states with a fixed principal
quantum number n = ny ~ ,/m, (*14 for muonic hydrogen)
and the statistical / distribution (2/ + 1)/ n(z) (I<nyg—1) of
nol sublevels (see, e.g., Ref. [12] and references therein).
This simple representation of the exotic-atom formation is
not confirmed by more elaborated studies [55-57], in which
the molecular structure of the target was taken into account.
According to these studies, the muonic atoms are formed
in states with a broad distribution in the principal quantum
number, the maximum of which is shifted to lower n =
11 < ny. Besides, the populations of n/ sublevels have a
nonstatistical distribution over / for each value of the principal
quantum number.

In the present cascade model the initial n, [, and E
distributions are assumed to be factorized as in our previous
papers [19,28,53]. The probability densities of initial » and /
distributions (denoted by f,, and f;, respectively) as well as of
the initial kinetic-energy distribution wi,(E) were assumed to
be the same for both muonic hydrogen and deuterium atoms.

Here we use

(1) the Gaussian n distribution

—au(n—ng)?
Jooxe , (22)

centered at ng = 11 (o, = 0.5);
(2) the modified statistical [ distribution

fi o (21 + 1)e~ @D (23)

(o; = 0.08) for each value of the principal quantum number 7;
(3) the two-exponential E distribution

()= = ) 2) e
;i =—exp|—— exp| —— |,
" E P\ TE, E, “P\TE,
where parameters E; = 0.469 eV, E, = 4.822 eV, and x =
0.805 have been determined in Ref. [28] by fitting experimental
data [9] obtained at the target pressure py, = 0.0625 hPa and
room temperature.

In the present study these initial distributions were used
for both muonic hydrogen and deuterium atoms at all target
densities and temperatures.

3. Thermal motion of target and kinematics of binary collision

The thermal motion of the target is very important and
should be taken into account in the realistic description of the
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kinetics of the atomic cascade. There are, at least, three main
reasons to do it in a proper way. First, the cross sections (or
rates) of collisional processes have a strong energy dependence
especially at low energies (see, e.g., Figs. 8-12). Second,
during the atomic cascade the kinetic energy of the exotic
atom may be comparable with the energy of the thermal target
motion. Finally, it is necessary for the exact knowledge about
possible collisional processes and their correct description
nearby ns — nl (I > 1) thresholds.

In the present research, the exact relations between kine-
matic characteristics in the laboratory and center-of-mass
systems before and after the binary collision were obtained
and used in cascade calculations. In contrast to the case of the
target at rest considered in the literature, the energy E. , of the
relative motion before the collision depends on both energies
of colliding subsystems and azimuthal angle x of the collision
in the laboratory system in the following way

1
Ecm = M(M,E + M E — 2/ MM, EE, cos x). (25)

Here, M,, and M, are masses of exotic and target atoms,
M =M, + M,,, and E and E, are kinetic energies of exotic
and target atoms in the laboratory system before the collision.
In the present cascade calculations we assume the uniform
distribution of the azimuthal angle yx. In addition, the thermal
motion of the target is described by a Maxwell distribution,

FE) = — | Bt o (-5) (26)
D=\ ary TP\ Tkt )

where T is the target temperature and k is the Boltzmann
constant.

To obtain the kinetic energy of the muonic atom in the
laboratory system after the collision, we apply the three-
dimensional geometry and the conservation laws of energy
and momentum. As a result, the following formula for the
kinetic energy of the muonic atom in the laboratory system
after the collision is derived:

1

E' = M{MlEém + Mp.a(E + E; — Ec.m.)

+ [Mua(Ec.m. - Et) + Mt(E - Enm)]

X v/ El o /Ecm. cos6}. 27

Here, 6 is the scattering angle in the center-of-mass system,
E. .. =Ecm + A; s is the kinetic energy of the relative
motion after the collision, with A; r = E,, ;, — E, iy being
the difference of the bound energies of muonic atom states
before and after the collision. It is noteworthy that, in the
case of the external Auger effect the released energy is mainly
carried away by the electron and in cascade calculations we
neglect the recoil energy obtained by the muonic atom; hence,
E=F.

4. Simulation of atomic cascade

In the represented model of the atomic cascade the life
history of each muonic atom can be traced from the moment
of its formation until the transition to the ground state or p~
decay. A multistep sequence of randomly selected events,
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which simulate the kinetics of the atomic cascade, can be
schematically described as follows:

(1) At the very beginning of the cascade the initial values
of quantum numbers (n;,/;) and the laboratory kinetic energy
E of the muonic atom are randomly chosen according to their
distributions (22)—(24).

(2) Furthermore, the kinetic energy E, of the target (at a
fixed target temperature) in accordance with Eq. (26) and the
azimuthal angle x of the collision (in the laboratory system) are
randomly chosen and the relative-motion energy E. . (before
the collision) is calculated according to Eq. (25).

(3) The rates of collisional processes for a given E.p
together with the rates of radiative transitions and u decay are
used to calculate their total and relative rates (probabilities) at
values chosen above of n;, [;, E. . for all possible final states.

(4) In accordance with these relative rates, the event
type and the quantum numbers (n,/;) of the final state
are randomly chosen. In the case of collisional process, the
scattering angle is randomly chosen in accordance with the
angular distribution for a given process.

(5) As a result of these random events, one gets the type
of the process, quantum numbers (ny,l) of the final state,
and the new value of the laboratory kinetic energy E’ of
the muonic atom after the collision calculated according to
Eq. (27). These new values (ny, s, E’) are used as initial
ones and the simulation of the atomic cascade continues until
®~ decay occurs or the ground state of the muonic atom is
reached.

The present cascade calculations for muonic hydrogen and
deuterium atoms were performed in the relative density range,
covering eight orders of magnitude (¢ = 10~%-1). To obtain
good statistics, the destiny of the 107 muonic atoms has
been analyzed in cascade calculations for each value of the
target density and temperature. The various characteristics of
the deexcitation cascade in muonic hydrogen and deuterium
were calculated: the absolute and relative x-ray yields of
different Ki (i = «,f,y, etc.) lines, the integrated kinetic-
energy distributions, and mean energies of muonic atoms at the
instant of their radiative np — 1s transitions, cascade times,
and so on. Hereafter, the generally accepted designations
Ka, KB, Ky, and K§ are used for Ki lines corresponding
tothe 2p — 1s,3p — s, 4p — ls, and Sp — 1s radiative
transitions. Their energies are 1.90, 2.25, 2.37, and 2.43 keV in
the u~ p atom and accordingly 2.00, 2.37, 2.50, and 2.56 keV
in the u~d atom.

Some of our results are compared with the available
experimental data on the density dependence of the relative
x-ray yields of K lines [58-61], intensity ratio of Ko and K
lines [58,60,61], and cascade times [9,43,45].

B. Absolute and relative x-ray yields of K lines

The absolute x-ray yield Yi of the specific Ki line is
determined as the intensity of this line per muonic atom
formed. Besides, Y(>6) is a summary absolute x-ray yield
of all K lines corresponding to radiative transitions np — 1s
(n>5), and Yo = Zi Yi (i = «,B, etc.) is a total absolute
yield of all K lines.

The calculated absolute x-ray yields of K«, KB, and Ky
lines as well as the summary absolute yield of K (>§) lines and
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FIG. 15. The density dependence of absolute yields for
Ka, KB, Ky, and K(=§) lines, and Y, calculated for pu™p
(lines) and p~d (lines with triangles) atoms at a target temperature
T =30K.

the total absolute yield Yy for ©~ p and .~ d atoms are shown
in Fig. 15. The calculations were performed in the relative
hydrogen density range ¢ = 1078-1 at a target temperature
T =30K.

As awhole, the absolute K -line yields and the total absolute
yields have a similar dependence on the density both for = p
and for u~d atoms. Their density dependencies reveal a few
general features discussed below.

At the lowest relative densities ¢ < 1077, the deexcitation
cascade in u~p and pu~d atoms are largely determined by
the initial n and / distributions and the rates of radiative
transitions and muon decay. The rate of the muon decay is
applied tobeequal to A, = 4.54 x 10° s~!, which corresponds
to the free muon lifetime 7, = 2.2 x 107% 5. Here the radiative
transitions dominate over other processes, thus leading to
the population of circular states of the muonic atom and
mainly to the radiative transition 2p — 1s at the end of the
cascade. At these densities the np (n > 3) states are populated
much more weakly during the cascade mainly because of
the initial conditions defined in Eqgs. (22) and (23). We
see the corresponding picture in Fig. 15 for both u~p and
w~d atoms. In particular, at ¢ = 1078, the present cascade
calculations predict for ©~ p and pu~d atoms practically the
same absolute yields: Yo = 0.825, Y8 = 0.054, ¥,, = 0.016,
and Y(=6) = 0.070 (here the total absolute yield amounts to
Yiot = 0.965). At this density about 3.5% of all formed muonic
atoms undergo the p decay: 2% of w decay occurs in the 2s
state (both above and below 2s-2p threshold) and accordingly
1.5% of muons decay in states with n > 3.

The absolute Yo and Y yields calculated previously (see
Fig. 6 in Ref. [12]) for muonic hydrogen at the density ¢ =
108 do not agree with the present predictions and are equal to
about 0.95 and 1, respectively. Besides, the so-called radiative
mode of the arrival population of the 2s state (see Eq. 21 in
Ref. [28]) calculated with these absolute yields [12] is obtained
to be ~0.7%, which is almost three times less than the present
prediction of 2%. All these differences can be explained only
by the effect of initial distributions on quantum numbers n
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and [/ (n; = 14 and the [; distribution is statistical) applied in
Ref. [12].

In the wide density range from ¢ = 1078 up to ¢ ~ 2.5 x
1072 the density dependence of the total absolute is very weak.
Contrary to this, the absolute yields of individual Ki lines have
a more complicated density dependence. With the increase
in density above ¢ = 1077 the role of collisional processes
in highly excited states (n > 5) is steadily enhanced, which
leads to the decrease in K«-line yield and simultaneously to
the increase in the absolute yields of the other Ki (i = 8, vy,
etc.) lines, conserving the total absolute yield Y, practically
unchangeable in the limit of a few percent.

The absolute K « yields reach their minimum values Yo =
0.478 at ¢ ~ 2.5 x 1073 for the ™ p atom and Yo = 0.465
at ¢ >~ 3.5 x 1073 for the 1~ d atom. At higher densities the
absolute K« yield rapidly grows and achieves its maximum
value 0.78 at ¢ = 0.13 for the = p atom and at ¢ = 0.18
for the pu~d atom, respectively. The enhancement of the
absolute K«-line yield observed in this density region is
mainly explained by both the external Auger and CD 3 — 2
of muonic atoms.

A further density increase leads to a significant reduction
of both Y and Y. At ¢ = 1 the present calculations predict:
Yo = 0.493 and Yot = 0.510 (for the 4~ p atom) and Yo =
0.616 and Y., = 0.640 (for the w~d atom). Therefore, the
isotopic effect predicted at the liquid-hydrogen density for
Yo and Y,y is about 25%. It would be very useful to check
these predictions in measurements of absolute x-ray yields at
this density for both muonic hydrogen and muonic deuterium
atoms.

A sharp decrease in the absolute yields of the Y« and Yy is
explained by the formation (during the deexcitation cascade)
of a muonic atom (1™ p)as [or (w™d)s] with kinetic energy
below the 2 p threshold and its subsequent CD 2s — 1s. In the
density region ¢ = 0.1-1 both the population of the 2s state
below the 2p threshold and the rate of the CD 2s — 1s in
the case of the 1~ p atom is on average a few times more than
the corresponding values in the case of the ~d atom.

In the present study the collision-induced radiative decay of
the 2s state below the 2p threshold was not considered. This
process will be studied in detail in a separate paper together
with the other decay modes of the 2s state. Note that this
process leads to the increase in Yo and correspondingly in
Yiot-

The density dependence of absolute K -line yields (n > 3)
reveals quite similar behavior with the increase in density,
which may be conventionally divided into three stages and
correspondingly three density regions. In the first region, the
absolute yields slowly increase (about two times) with the
density compared with their initial values at the lowest density
(¢ = 107%). The corresponding density regions are different
for various K(=p) lines: ¢ < 8 x 1073 for the KB line,
¢ <2 x 107 for the Ky line, ¢ < 6 x 107° for the K § line,
etc. In the second region, the absolute yields of K(>=pf) lines
grow very rapidly, achieving their maximum values at different
densities (e.g., ¢ = 3 x 107* for the K8 line, ¢ = 1.2 x 1073
for the Ky line, and ¢ = 1.3 x 1072 for the K8 line). Finally,
in the third region, the absolute yields of the K(=p) lines
practically go to zero with further density increase, excluding
the KB line. Thus, the absolute yields of K (=) lines form a
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family of similar curves with maxima, whose values increase
about two times, whereas n is decreasing.

The physical reason for the maximum formation in absolute
yields of all K lines (Ko, KB, Ky, etc.) has a similar
nature—the interplay between the rates of radiative transitions,
from one side, and the rates of the external Auger effect and
CD, from the other side. All maxima are largely formed by the
increase in rates of external Auger and CD transitions from
the states lying above. At the same time, the absolute yields of
the K(>=p) lines decrease in the third region, because the
summary rate of the external Auger effect and Coulomb
deexcitation from states with n > 3 becomes comparable and
even much greater than the rate of the corresponding radiative
np — ls transition.

The p~d absolute yields differ slightly from the ™ p
absolute yields at densities below 1073, At higher densities
the isotopic effect increases and becomes much stronger in the
absolute yields of the Ky, K, and especially K« lines.

It is noteworthy that the significant contribution to the total
absolute yield comes from K (>48) lines in a wide density range
@ < 3 x 1073, Their summary yield is comparable with Y at
density ¢ < 107® and even about two times more at ¢ < 1074,
This result should be taken into account in the analysis of
experimental data.

The exact kinematics of binary collisions taking into
account the target motion [see Eqs. (25)—(27)] is used explicitly
in the present cascade model. This leads to effects which could
be observed in precision experiments produced at densities
above ~10~2 and essentially a different target temperature. To
illustrate this effect, the absolute x-ray yields of the K« and
KB lines for the u~d atom were calculated at two values of
target temperature 7 = 30 Kand 7' = 300 K (see Fig. 16). One
can see that the absolute yields of both K« and K8 lines differ
essentially at the density above ¢ > 1072 with the increase in
temperature from 7 = 30 K to 7 = 300 K.

The observed temperature effect is explained by the strong
energy dependence of the CD rate shown in Figs. 11. The
increase in target temperature from 7 = 30 K to 7 = 300 K
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FIG. 16. The temperature effect in the density dependence of
the absolute x-ray yields for K« and K g lines in muonic deuterium

calculated at target temperature 7 = 30 K (solid lines) and 7 = 300 K
(dashed lines).
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FIG. 17. The density dependence of the relative K«-line x-ray
yields for u~p (solid line) and p~d (dashed line) atoms. The
experimental data are from Refs. [58-61].

and accordingly the mean kinetic energy of the target of one
order of magnitude makes the process of the CD 3 — 2 less
effective (at a fixed density) than the radiative transition 3p —
1s. As aresult, at a density above ¢ ~ 1072 the absolute yields
of the KB line calculated at T = 300 K increase, whereas the
absolute yields of the K« line decrease in comparison with
their values calculated at the target temperature 7 = 30 K.

The regularities discussed above in absolute x-ray yields of
different K lines should also take place in their relative yields
defined by the ratio Yi/Yo. The present results for 4~ p and
u~d atoms are compared with available experimental data
[58-61].

The density dependence of the relative K « line x-ray yields
for muonic hydrogen and deuterium is shown in Fig. 17. The
calculations were done at the target temperature 7 = 30 K,
which corresponds to experimental conditions [60,61]. It is
noteworthy that the temperature dependence of both absolute
and relative x-ray yields is very weak at the density range
below ¢ ~ 1073, where experimental data [58,59] have been
obtained. As a whole, the theoretical values of relative x-ray
yields of the K« line are in very good agreement with
experimental data [58—61], obtained in the wide density range
from ¢ =3.98 x 1077 up to 1.14 (in the case of the ud
atom). In our opinion, the observed disagreements between
theoretical and experimental results for 1~ p in a few values
of density (e.g.,at ¢ ~ 1.6 x 107% and ¢ ~ 2 x 107>) cannot
be explained by the possible theoretical uncertainties in the
present study. In particular, the experimental value of the
relative Ko line x-ray yield at ¢ ~ 2 x 107> (0.622 [59]) is
obviously much less than the value 0.699 obtained in Ref. [58]
at a very close density ¢ >~ 1.6 x 1073, which, in turn, is in
excellent agreement with the present result 0.690.

The comparison of the relative x-ray yields of K« line
calculated for muonic hydrogen and deuterium reveals the
isotopic effect observed above in absolute yields (see Fig. 15).
At a density below ~1073, the relative yields of the K« line
in the case of u~d atoms are slightly larger than for the
W~ p-atom case, which corresponds with experimental data
[59]. At densities greater than ¢ ~ 3 x 10~3 we observe the
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FIG. 18. The density dependence of relative x-ray yields
of KB, Ky, and K§ lines in muonic hydrogen (solid lines)
and deuterium (dashed lines). The experimental data are from
Refs. [58-61].

opposite picture, viz. the relative x-ray yields of the K« line
in the case of ;t~d atoms are less than in the u~ p-atom case.
Unfortunately, the accuracy of experimental data [60,61] does
not allow us to confirm our predictions in this density range.
In addition, no experimental data exist in the very interesting
density range 0.1 < ¢ < 1.

Figure 18 shows the density dependencies of the relative
x-ray yields of KB, Ky, and K§ lines from muonic hydrogen
and deuterium. The calculations were done at the target
temperature 7 = 30 K. The agreement between the present
theoretical results and experimental data [58-61] is rather
good at practically all densities under consideration. In our
opinion, the observable disagreements between the theoretical
and experimental relative yields of the K8 line in the density
range ¢ ~ 3 x 107> — 3 x 1073 may be explained only by
invoking experimental reasons: the separation of KB, Ky,
and K(=46) lines, the efficiency of their registration, and so
on. It would be very useful to check out these predictions by
remeasuring relative yields in this density range with a much
better accuracy.

Figure 19 shows our results for the density dependence of
Yo/ Y B ratios for muonic hydrogen, R,,,, and deuterium, R 4,
as well as their differences R,, — R,q. This difference serves
as a direct demonstration of the isotopic effect. Comparing R,,,,
with R,,; at densities below 1072, one can see that the ratio R ud
is slightly larger than the up one. Atdensities5 x 1072 < ¢ <
0.8 x 1072 we predict the density dependence of R,.4, which
is systematically less than experimental data [61]. However,
at liquid-hydrogen density, both theoretical prediction and
experimental result are in an excellent agreement.

Our results have a natural explanation. In the case of muonic
deuterium the rate of the CD 3 — 2 is suppressed more
than one order of magnitude in comparison with the muonic
hydrogen (see Fig. 11). This leads to the increase in Y8 and
correspondingly to the decrease in Y« in the case of the (1~ d)
atom as compared with the (x~ p) atom in the density range
above ~1072. It is noteworthy that differences R, — R4
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FIG. 19. The density dependence of the Yo/ Y 8 ratio for muonic
hydrogen (solid line) and deuterium (dashed line), as well as their
differences (dashed-dotted line). The experimental data are from
Refs. [58,60,61].

grow at densities above 1072 and reach their maximum at a
density of about 7 x 107!,

The present study shows that additional measurements of
the yields with much better accuracy in the density region
between 3 x 1075 and 3 x 1072 as well as at densities above
A5 x 1072 are extremely important.

C. Kinetic-energy distribution

In addition to the natural linewidth and the resolution of
the apparatus (response function), the experimental profile
(lineshape) of the np — 1s x-ray lines in muonic and hadronic
hydrogen atoms is determined by the Doppler broadening
due to the motion of the exotic atom at the instant of its
radiative transition. Therefore, the kinetic energy of exotic
atoms, resulting from the complex interplay of various cascade
processes and preceding the x-ray emission, is needed in
the analysis of precision spectroscopic experiments. The
kinetic-energy distribution of the exotic atom changes during
the deexcitation cascade and is very sensitive to the rates of
collisional processes involved in the atomic cascade. Thus,
it may be considered as one of the refined tests of both the
theoretical approaches, applied to describe various scattering
processes, and the models of kinetics of the atomic cascade.

The calculations of the kinetic-energy distributions of
exotic atoms at the time of their radiative np — 1s transitions
in muonic and pionic hydrogen atoms have been performed
previously (see, e.g., Refs. [52,53]) to improve the description
of the Doppler broadening in measured profiles of x-ray lines:
for the u~ p atom [13,14] and for the 7~ p atom (see Ref. [15]
and references therein).

To take into account the Ki line broadening, which
originates from the motion of exotic atoms, the probability
density wg;(E;@,T) of their energy distribution should be
calculated for the given target density and temperature and be
used in the analysis of the experimental lineshape. Here we
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FIG. 20. The kinetic-energy distribution of the ;= p atom at the
instant of the radiative transition 2p — ls calculated at various
relative target densities ¢ (target temperature 7 = 300 K). The kinetic
energies, which muonic atoms acquire after CD transitions n — n’,
are shown by arrows.

represent the distribution function of the probability,

E
Iki(Esp.T) = / oxi(E0.T)E,  (28)
0

that the muonic atom has a kinetic energy less than E at the
instant of the Ki line emission.

The energy distribution at low n can be determined
by measuring the Doppler broadening of K x-ray lines,
since high-energy components lead to a significant Doppler
broadening, which is especially pronounced for the K« line.
The calculated distribution functions Ix.(E;@,T) of u™p
and p~d atoms are shown in Figs. 20 and 21, respectively.
The calculations were performed at the target temperature
T = 300 K and a few values of the relative target density: ¢ =
10~8, 1073, 1073, 1072, and 10~!. The energy distributions
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FIG. 21. The same as in Fig. 20 but for the ©~d atom at the
instant of the radiative 2p — s transition.
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of muonic atoms in Figs. 20 and 21 calculated at a relative
density ¢ = 1078 coincide with the initial energy distribution
of muonic atoms at the time of their formation [see Eq. (24)].
Here we will use the arbitrary choice of 2 eV as the boundary
between low-energy and high-energy fractions in the energy
distributions of muonic atoms.

With the increase in density, the role of Coulomb transitions
grows, and the energy distribution of muonic atoms becomes
more energetic. In particular, in the case of muonic hydrogen,
as shown in Fig. 20, the low-energy fraction of the muonic
hydrogen with kinetic energy less than 2 eV decreases
drastically with the relative density increase from ¢ = 1073
to ¢ = 107!, The probability of this fraction is about 0.87
at a density of ~107% [in correspondence with Eq. (24)]
and strongly decreases with the density growth to about
0.58 at ¢ = 1075, 0.48 at ¢ = 1073, 0.41 at ¢ = 1072, and
0.26 at ¢ = 10~!. At the same time, the probability of the
high-energy fraction with kinetic energy £ > 2 eV becomes
much more pronounced with the increase in density and reveals
noticeable contributions of preceding Coulomb transitions,
eg,7—>6,6>55—>44—-3 and3 — 2.

In the case of the muonic deuterium (see Fig. 21), the
evolution of the kinetic-energy distribution (in the same
density range) is quite different. Here, the present cas-
cade calculations predict practically the similar change of
the probability of the low-energy fraction from 0.87 to 0.64 in
the density range ¢ = 10~3-107>. However, at higher densities
(¢ > 1079), the contributions of Coulomb transitions 6 —
5,5 > 4,4 — 3,and 3 — 2 are much weaker in comparison
with the muonic-hydrogen case. As a result, the probability
of the low-energy fraction is about 0.60 at ¢ = 1073 and
¢ = 107! and constitutes even 0.70 at ¢ = 1072, The strong
isotopic effect observed in the kinetic-energy distributions of
muonic hydrogen and deuterium atoms is mainly explained
by the strong isotopic effect in the cross sections of Coulomb
deexcitation discussed above in the previous section.

As shown in Figs. 20 and 21, the calculated kinetic-energy
distributions have distinctive high-energy components arising
from various Coulomb transitions with An > 1, preceding the
radiative deexcitation2p — 1s. In particular, the contributions
of Coulomb deexcitations 6 — 5 (at 14.6 eV for 4~ p and
15.8 eV for u=d), 5 — 4 (at 26.9 eV for u~p and 29.1
eV for u=d), and 4 — 3 (at 58.2 eV for u~ p and 62.9 eV
for u~d) are revealed in the wide density range ¢ > 107°.
They survive until the deexcitation of muonic atoms to the 2p
state due to successive Auger and radiative transitions between
states lying above. With the density increase, the contributions
of individual CD transitions become much less pronounced
because of the deceleration through elastic scattering and Stark
mixing. Nevertheless, the contribution of the CD transition
4 — 3 is even noticeable at a target density of 107!, It is
noteworthy that the contribution of the CD transition 3 — 2
(at 166.2 eV for ™ p and 179.9 eV for u~d) with the density
increase from ¢ = 107° to @ = 10~! grows from a few percent
up to 55% for (™ p), and only to about 30% for (™= d)2,.

The energy distributions of 1~ p and ™ d atoms, calculated
at the instant of their radiative 3p — 1s transition, are shown
in Fig. 22. The calculations were performed for three values of
the relative target density: ¢ = 0.001, ¢ = 0.01, and ¢ = 0.1.
The target temperature is chosen to be 7 = 300 K.
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FIG. 22. The kinetic-energy distributions of u~ p (thick lines)
and p~d (thin lines) atoms at the instant of their radiative 3p — 1s
transition calculated at a few values of the relative target density ¢
(target temperature 7 = 300 K).

Here the energy distributions of of ©~p and ©~d atoms
calculated at the same density differ significantly. The energy
distributions of (™ p)3, contain quite strong contributions
from preceding (5 — 4), (5§ — 3),andespecially (4 — 3) CD.
For example, the Coulomb deexcitation (4 — 3) at ¢ = 0.01
makes up to about 25% in the case of muonic hydrogen,
whereas in the case of the muonic deuterium it contributes
only about 7%. The predicted probabilities of low-energy
fractions (E < 2eV) at densities ¢ = 0.001, ¢ = 0.01, and
¢ = 0.1 also have very strong differences: 40%, 47%, and
58% for (1™ p)3, and correspondingly 55%, 74%, and 87%
for (u=d)sp.

The strong isotopic effect discovered in the present study
in the scattering and the kinetics of the atomic cascade of
muonic hydrogen and deuterium atoms allows us to explain
the true reason why the kinetic-energy distribution of (7 ~ p)3,
[at the instant of the radiative (3p — 1s) transition], scaled
to the (w~d)3, case, is unable adequately to reproduce the
Doppler-induced width [39]. There are also other reasons that
are not the subject of this study, which do not allow us to justify
the procedure of the scaling of the kinetic-energy distribution.
In the case of the pionic deuterium the rates of the absorption
from ns states and collision-induced absorption [33] as well as
the rates of radiative transitions are larger than in the case of
pionic hydrogen. As a result of these processes, the probability
of the CD in the case of the pionic deuterium, in addition to
the isotopic effect discussed above, becomes also less during
the deexcitation cascade than in the pionic-hydrogen case.

The acceleration of muonic atoms during the cascade is also
illustrated in Fig. 23. Here is shown the density dependence of
the mean kinetic energy,

o0
EKi(QDvT):/ E'ok(E';9,T)dE', (29)
0

of w=p and u~d atoms, calculated at the instant of their
radiative transitions 2p — 1s and 3p — 1s. The calculations
were performed in the relative density range from 107> up
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FIG. 23. The density dependence of the mean kinetic energy of
4~ p (solid lines) and p~d (dashed lines) atoms at the instant of their
radiative transitions 2p — ls and 3p — 1s.

to 1 at room temperature 7 = 300 K. At a given temperature
the mean kinetic energy of the ;«~d atom at the instant of the
2p — lsand 3p — lsradiative transitions is always less than
the mean kinetic energy of the .~ p atom at all densities under
considerations, excluding the lowest density 1078, at which the
mean energy of both muonic hydrogen and deuterium is equal
to 1.32 eV and is in perfect agreement with the experimental
value 1.3 £0.8 eV [9].

In the considered density range the mean kinetic energies
of u~ p and u~d atoms increase steadily from a few electron
volts at a density of 1075 and reach their maxima (respectively
at 3 x 1073 for K8 lines and at 0.12 for K« lines of 1~ p and
W~ d atoms).

In particular, at the density 107> the mean kinetic energies
of both muonic hydrogen and deuterium at the instant of their
emission of K« and K lines are the same and equal to 4.28
and 3.30 eV, respectively. At higher densities, the mean energy
of the (™ p)3p, grows and at the density 3 x 1073 reaches the
maximum value ~17 eV and about a factor of two less, viz.
28 eV, in the case of the (1~d)3, atom.

The most significant increase in mean energy is revealed
for muonic atoms in the 2p state during the emission of the
K« line. Here, in the density range from 3 x 1073 to 0.12 the
mean energy of muonic hydrogen and deuterium rapidly grows
from 17 eV up to 78 eV for 1~ p and from 8 eV up to 53 eV
for u~d atoms, respectively. At the liquid-hydrogen density
the mean kinetic energies of £~ p and p~d atoms before the
radiative 2p — ls transition also have a large difference. In
our calculations we obtain 60 eV and 24 eV for (1™ p),, and
(1~ d)y), respectively. This isotopic effect is mainly explained
by the observed isotopic effect in CD rates of 4 — 3 and
3 — 2 transitions in u~ p and pu~d atoms (see, e.g., Figs. 11
and 12, as well as Figs. 20-22). It is noteworthy that the density
dependence of the mean kinetic energy calculated for ;= p and
w~d atoms is in qualitative agreement with the data [8].

D. Cascade time

The mean time interval between the formation of the
muonic atom and its arrival in the 1s state is determined by the
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cascade time. In the present study we calculate the so-called
prompt cascade time which does not include the lifetime of
the 2s state at kinetic energies both above and below the 2p
threshold. To find the prompt cascade time 7,5 at low target
densities ¢ < 107*, we calculate the probability of the  decay,
Dy~ during the deexcitation cascade (beyond the 2s state):

pu=1—e Tl (30)

Here the probability p,, is defined as the ratio of the number
of the u decay to the total number of formed muonic atoms.
Then the cascade time is given by

1
1—pu'

At a relative target density ¢ = 10~ (target pressure about
8.55 x 1073 hPa), where the deexcitation cascade is purely
radiative, we predict 7/, = 37.9 ns and /%, = 34.3 ns. The
observed ~10% difference is explained by the dependence of
the radiative transition rate on the reduced mass of the muonic
atom. Recall that the reduced mass in the muonic deuterium is
about 5% more than in the muonic-hydrogen case.

At higher density the role of collisional processes increases,
which essentially affects the cascade time. The cascade
time decreases with the increase in target density owing to
collisional processes. In our study, at a fixed density, the rates
of collisional processes in the muonic-hydrogen case are larger
than in the muonic-deuterium case (see, e.g., Figs. 8-12).
Therefore, the cascade time in muonic hydrogen should
become less than in muonic deuterium with the increase in
density.

To illustrate this isotopic effect, in Table II we represent
cascade times in up and ud atoms. The calculations were
performed at a few values of the target pressure p = 8.55 x
1073, 0.6, 1, 4, and 16 hPa and temperature 7 = 293
K, corresponding to experimental conditions [9,43,45]. The
experimental data [9] were obtained in (™ p);, diffusion ex-
periments, whereas the measured cascade times [43,45] were
extracted by fitting time spectra of the muonic hydrogen or
deuterium K (>y) and K« x-rays. These experimental data are
also given in Table II for comparison with the present results.

As a whole, the cascade times calculated for up and ud
atoms are in very good agreement with experimental data

€2y

Tease = T In

TABLEII. The cascade times 7., Of up and ud atoms at various
target pressures p (T = 293 K).

p Tiake(nS) e (nS)
(hPa) Theory Expt. Ref. Theory Expt. Ref.
8.55x 107* 379 343
0.6 27.7 26 £5* [43] 28.1
39 £ 5% [43]
1 241 27.7£3" [45] 274 28.6+1.9" [45]

25.0 & 1.5° [45]
28+8  [9]
155 26+6 [9] 178
16 83 11£5 [9] 89

3.6+ 1.7° [45]

*From K« time spectrum.
"From K (> y) time spectrum.
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[9,43,45]. In particular, the experimental fact [45] that the
cascade time in pud is about 10% more than in up at a given
pressure 1 hPais in correspondence with the present theoretical
calculations of collisional cross sections used in the kinetics
of the atomic cascade.

IV. CONCLUSION

The fully quantum-mechanical description of the scattering
processes—elastic scattering, Stark mixing, and CD—has
been done in the framework of the close-coupling approach
for collisions of excited ;™ p and u~d atoms correspondingly
with ordinary hydrogen and deuterium atoms in their ground
state. The energy shifts between ns and n/ states (n >2, [ >
1), mainly due to electron vacuum polarization, have been
explicitly taken into account in the scattering problem for both
muonic hydrogen and deuterium atoms. The threshold behav-
ior of all cross sections was treated in a proper way. The explicit
analytic expression for the matrix of interaction potentials
has been obtained without any additional approximations. The
propagator matrix method [28] has been used to calculate the
scattering matrix defined in the subspace of the open channels.

The influence of the extension of the basis set (by
including the closed channels) on the partial-wave and total
cross sections of the elastic scattering, Stark transitions, and
Coulomb deexcitation has been studied. It was found that the
convergence of the close-coupling approach in the scattering
problem under consideration is achieved very slowly due to
a strong coupling between the closed and open channels. For
our study, the closed-channel effect is especially significant
in the low-energy scattering of exotic atoms in low-lying
excited states (n = 2-5). Here the convergence of the cross
sections of different processes has been achieved by applying
the extended basis set including all the exotic-atom states with
the principal quantum number up to ny,x = 20. The cross
sections of elastic scattering, Stark transitions, and Coulomb
deexcitation have been calculated reliably both above and
below ns-np thresholds.

The systematic calculations of the integrated and differ-
ential cross sections of elastic scattering, Stark transitions,
and CD have been performed for the ™ p and ™~ d atoms in
excited states (n > 2) and kinetic energies from 0.001 eV up
to Emax needed for the detailed study of the kinetics of the
atomic cascade. All the cross sections have been calculated
by applying the extended basis, which includes all open and
closed channels associated with the exotic-atom states with
the principal quantum number up to ny,x = 20.

The isotopic effect in the scattering of excited w~ p and
u~d atoms has been revealed. At all collision energies the
cross sections of elastic scattering and Stark transitions in
the case of the (u~d), + D scattering are about 10%—15%
more than in the case of (1~ p), + H scattering. In contrast, a
much stronger isotopic effect has been discovered in the cross
sections of Coulomb deexcitation. For a given n and fixed
An = n — n’ the cross sections of the CD (n — n' <n—1)
in the case of the ~d are, as a rule, less than in the case of
the n~ p. This difference grows essentially with the decrease
in n and the increase in An.

The kinetics of the atomic cascade has been investigated for
both 1~ p and ;™ d atoms within the new version of the cascade
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model, which has a number of significant improvements over
the previous cascade models:

(1) the new results of the fully quantum-mechanical
calculations of differential and integrated cross sections for
collisional processes;

(2) the distributions of exotic atoms in quantum numbers
n, I and the kinetic energy at the instant of their formation;

(3) the thermal motion of the target and the exact kinemat-
ics of binary collisions.

The cascade calculations in the muonic hydrogen and
deuterium have been done in the wide density range covering
eight orders of magnitude from 10~8 up to 1.14 (in the units of
the liquid-hydrogen density, N gp = 4.25 x 10?? atom/cm?).
A number of different characteristics of the atomic cascade
have been calculated: absolute and relative x-ray yields,
kinetic-energy distributions, and cascade times.

The main regularities revealed in the density dependence
of the absolute x-ray yields of different K lines have been
discussed. The present cascade calculations predict practically
the same absolute yields of all K lines for both .~ p and u=d
atoms at ¢ < 3 x 1077, In the density range 3 x 1077 < ¢ <
3 x 1073 the absolute yields in the case of the ;~d atom differ
slightly from the case of the ™~ p atom. At higher densities
the isotopic effect becomes much stronger in absolute yields
of Ky, KB, and especially K« lines.

The calculated relative yields in the muonic hydrogen and
deuterium are in good agreement with the experimental data
[58-61] practically at all densities. The observable disagree-
ments between the theoretical and experimental relative yields
of the KB line in the density range ¢ ~ 3 x 107°-3 x 1073
may be explained only by invoking experimental reasons:
the separation of KB, Ky, and K(=§) lines, the efficiency
of their registration, and so on. In our opinion, additional
measurements with much better accuracy and statistics in the
density region between 3 x 107> and 3 x 1072 as well as at
densities above &5 x 1072 are extremely desirable. In addition
to the analysis of experimental data it is necessary to include
other lines [K y and K (=§)] by using our predictions of their
absolute yields.

The calculated kinetic-energy distributions of the muonic
hydrogen and deuterium demonstrate a strong isotopic effect,
which is mainly explained by the strong suppression of
the cross sections of the preceding Coulomb deexcitation
in the muonic deuterium in comparison with the muonic
hydrogen. The calculated density dependence of the mean
kinetic energy of u~p and u~d atoms [at the instant of
their radiative (2p — 1s) and (3p — 1s) transitions] is in
qualitative agreement with experimental data [8]. At all
densities (above 1073) the mean kinetic energy of the u~d
atom is always less than the mean kinetic energy of the ™ p
atom. The predicted density dependence of the mean kinetic
energy of 4~ p and ;™ d atoms [at the instant of their radiative
(2p — ls)and (3p — 1s) transitions] can be used to choose
optimal experimental conditions for experiments similar to
those described in Refs. [8,13] as well as to improve the quality
of the analysis of experimental data.

The isotopic effect in both cross sections and the rates of the
CD allows us to predict a similar effect in the pionic deuterium
and the muonic tritium. In particular, this effect should lead
to a strong weakening of the high-energy components in the
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energy spectrum of the pionic deuterium and especially in
the case of the muonic tritium compared with the pionic and
muonic hydrogen atoms and could be observed in experiments.
In addition, the predicted isotopic effect allows us to explain
the significant suppression of the contributions of high-energy
components originating from CD transitions (4 — 3) and
(5 — 3) in experiments with pionic deuterium [39].

The cascade times calculated for the = p and ©~d atoms
at low target densities ¢ < 107* are in very good agreement
with available experimental data [9,43,45].

We conclude that the present study demonstrates the overall
reliability of the theoretical approach used for the description
of the scattering processes of the excited muonic hydrogen and
deuterium with ordinary hydrogen isotope atoms and provides
a very good understanding of their kinetics. The results form
a good foundation to apply the current theory for the realistic
study of hadronic hydrogen atoms.
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APPENDIX: POTENTIAL MATRIX

Here we present the derivation of the explicit analytic
form for the matrix elements (11) of the interaction potential
V(R,p), which is the result of averaging the four-body
interaction potential V(r,p,R) over the ground-state wave

function of hydrogen atom, «/%Rlx(r):
1 oo
V(R,p) = — / drRL (VR (AD)
47 0

The interaction potential, V(r,p,R), includes the two-body
Coulomb interactions between the particles from two colliding
subsystems:

V(r,o,R) = Va, + Vip + Ve + Ve (A2)

where
Vap = R+ vp —ver| ™", (A3)
Vip = —R—&p —ver| ", (A4)
Vie=I|R—Ep+Er|™", (A5)
Ve = —[R+vp +&x| 7. (A6)

Here the following notations are used:

v=m,/(m,+my), &E=1-—v, (A7)
Ve = me/(me + mb), ée =1- Ve, (AS)

where m,, my, m,, and m, are the masses of hydrogen
isotopes, muon, and electron, respectively.
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Averaging in Eq. (A1) results in

1
V(R,p) =$—{Uu,sp(R,P) —U_t:.R,p)}

e

1
- v_{Uv,v(,(Rvp) —U—¢e.(R.p)}, (A9)

e

where

Uup(R.p) (1+ P )“‘?”'
o 9 == . e
PP IR+ ap|

13 72,\'\Rﬁ+ozp\
=glm(1--2)& —
x—1 20x ) IR+ ap]

This representation of U, g(R,p) allows us to apply the
addition theorem for spherical Bessel functions:

(A10)

e MR+ A7

= (—=D'Y(R)) Y (1)
IRy +ri] MZ K)o

X {Kip12ARD L1 0(Ar)|r, <r,

+ L1 pARDK 1 2(r)lr>r ), (AL

where 7,(x) and K,(x) are the modified spherical Bessel
functions of the first and third kind, respectively.

The matrix element of interaction W,ﬁ, 1. (R) between
the asymptotic initial (n/L; J) and final (n'l’L’; J) channels is
defined by

W, L (R) = / dpdRRoy(0) Ry (p)
x VIMp.R)V(p.RYVIMB.R), (A12)

where the radial hydrogen-like wave functions are given
explicitly by

n—Il—1

20\ 20\!
Ru(p) = an<£> exp(—p/na) Y S,,(n,l)<£) ,

q=0
(A13)

where a is the Bohr radius of the atom and

32 gy 1/2
an:(i) [(n+l)!(n l 1)!] C(ALY)

na 2n

and

1

SanD) = T T i T r ol

(A15)

Furthermore, by substituting the Egs. (A9)-(All) and
(A13)—(A1 5) into Eq. (A12) one can integrate over the angular
variables (R, p). Finally, by applying the angular-momentum
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algebra and integrating over p, one obtains

Tmax

WJ

=0

e

1
X {é_[(_l)t Wl;nl,n’l/(R’VaEe) - Wt;nl,n’l’(RaEvée)]
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L L J

n,’z’n,,,L,(R):(—l)J“*’/i”L/"‘L\/lAlA’IZlf’Z(lOl’O|tO)(L0L’O|tO){l vt }

1
- _[(_l)tWt;nl,n’l’(RaVaVe) - Wt;nl,n/l’(R"i:’ Ve)]}a (A16)

e

where #;,,x is the maximum value of the allowed multipole. Here the next notations are used

n—I—1 myn'—1'—1 m
2n’ : , 2n ? P
Weantwr (R B) = Nopwrr Y Sml(n,l)< ) > Su(n J’)(W) {H, ()T (6 h (@, B)

n+n

m1=0

- hl(-x)-lzhx(xv)‘n,n’(avﬂ)) + Fl(-x)-lévy(-xv)\n,n’(avﬂ)) + ﬁ(x)]j’s(x,)u,,,n/(oz,ﬂ))},

wherex=2R/,3,s=l+l/+m1+m2,I:EZL+1,

1 o0’ \""o2n '
n—l—n/(n—i—n/) (n—i—n’)

X (n+Din—1— DI + )0 =1 — 1),

Notwr =

(A18)
2nn’ aa
)"n,n’(aug) = n+n Fs (A19)
H(x) = (1 = 20)h,(x) + xh;11(x), (A20)
Fi(x) = (1 =2t) fi(x) = x fi1(x). (A21)
The functions /,(x) and f,(x) are given by
2
hi(x) = | — Kiq12(x) (A22)
TX

m2=0 n
(A17)
{
and
T
filx) = ‘/leﬂ/z(x). (A23)
The radial integrals J;’S(x,)\.) are defined as follows:
x/h
I x,h) = / v e f(Ay)dy, (A24)
0
T3S,y = AT (0, (A25)
o0
J30(x,h) = / Y e h,(hy)dy, (A26)
x/A
TS e,) = Ay e, (A27)

and can be calculated analytically by using the power series
for the modified Bessel functions or expressed via incomplete
gamma functions.
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