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We carry out a complete derivation on nonrelativistic energies of atomic Rydberg states, including finite nuclear
mass corrections. Several missing terms are found and a discrepancy is confirmed in the works of Drachman
[in Long Range Casimir Forces: Theory and Recent Experiments on Atomic Systems, edited by F. S. Levin and
D. A. Micha (Plenum, New York, 1993)] and Drake [Adv. At., Mol., Opt. Phys. 31, 1 (1993)]. As a benchmark,
we present a detailed tabulation of different energy levels.
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I. INTRODUCTION

The Rydberg states of few-electron atomic systems were
investigated extensively from the mid-1980s to 1990s [1–6].
According to the theory of Kelsey and Spruch [7,8], exper-
imental and theoretical studies on high-(n,L) states can test
the Casimir-Polder effect, where n and L are, respectively,
the principal and angular momentum quantum numbers of
the Rydberg electron. The systems that have been studied
include helium and lithium with one electron being excited
to a high-(n,L) state. A series of precision measurements
were performed by Hessels et al. [9–13] on Rydberg states of
helium using microwave spectroscopy. Hessels et al. [14,15]
also did the radio-frequency measurements on lithium Ry-
dberg states. On the theoretical side, a substantial work on
Rydberg states of helium was carried out independently by
Drake [1–3] and by Drachman [5] around the same period
of time using the quantum mechanical perturbation method
and the optical potential method, including relativistic and
quantum electrodynamic (QED) effects. These methods are
equivalent in nature and embody the picture of long-range
interaction. A recent extension to higher angular momentum
states of helium was done by El-Wazni and Drake [16]. Bhatia
and Drachman [17–19] also calculated relativistic and QED
effects in the Rydberg states of lithium. Later, Woods and
Lundeen [20,21] extended Drake and Drachman’s work to
more complex atoms, which allows for a high-L Rydberg
atom to have nonzero core angular momentum, for the purpose
of modeling the effective potential and thus extracting core
properties experimentally. Very recently, a new exotic Rydberg
atom H−+, which consists of a Rydberg positron e+ attached
to the ground state H−, was detected in the laboratory by
Storry et al. [22]. Since these Rydberg states are embedded in
the Ps+H continuum, they are in fact resonant states [23]. It
is therefore interesting to do theoretical calculation on these
states and explore the spectrum of H−+.

The main purpose of this paper is to present a complete
calculation of nonrelativistic Rydberg energy levels using the
standard perturbation method up to the order of 〈x−10〉, where
x stands for the distance of the Rydberg particle relative to the
core, and to compare our results with the work of Drake [2]
and Drachman [5]. We find that there are several terms of order

〈x−10〉 missing in the work of Drake [2] and Drachman [5].
We also confirm a discrepancy that exists between Drake [2]
and Drachman’s [5] calculations. As a benchmark for future
reference, we tabulate numerical values for the nonrelativistic
energy levels of helium in various Rydberg states.

II. THEORY AND METHOD

A. Hamiltonian

Consider an atomic or molecular system that consists of
n + 2 charged particles. The Hamiltonian of the system (in
a.u.) is

H = − 1

2m0
∇2

R0
−

n∑
i=1

1

2mi

∇2
Ri

− 1

2mn+1
∇2

Rn+1

+
n+1∑

i>j�0

qiqj

|Ri − Rj | , (1)

where Ri is the position vector of the ith particle relative to
the origin of a laboratory frame, with 0 � i � n + 1, mi its
mass, and qi its charge. We assume that the (n + 1)th particle
is far away from the core, which is made up of the remaining
n + 1 particles. We also take the zeroth particle as a reference
one. In reality, it could be the nucleus. In order to eliminate
the center of mass degree of freedom for the whole system, we
make the following coordinate transformations [24]:

X = 1

MT

n+1∑
j=0

mj Rj (2)

ri = Ri − R0, i = 1,2, . . . ,n (3)

rn+1 = Rn+1 − 1

MC

n∑
j=0

mj Rj , (4)

where MT = ∑n+1
j=0 mj is the total mass of the whole system,

and MC = ∑n
j=0 mj the total mass of the core. From the above

expressions, we can see that X represents the position vector
of the center of mass of the whole system, ri is the position
vector of ith particle in the core relative to the reference
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particle, and rn+1 is the position vector of the Rydberg
particle relative to the center of mass of the core. Thus, we
have established a one-to-one transformation between the set
(R0,R1,R2, . . . ,Rn,Rn+1) and the set (X,r1,r2, . . . ,rn,rn+1).
The corresponding differential operators transform according
to

∇R0 = −
n∑

i=1

∇i − m0

MC

∇n+1 + m0

MT

∇X (5)

∇Ri
= ∇i − mi

MC

∇n+1 + mi

MT

∇X (6)

∇Rn+1 = ∇n+1 + mn+1

MT

∇X, (7)

where ∇i ≡ ∇ri
and ∇n+1 ≡ ∇rn+1 . After some simplification,

the Hamiltonian (1) can be rewritten in the form

H = −
n∑

i=1

1

2μi

∇2
i −

1

2μx

∇2
n+1−

1

2MT

∇2
X− 1

m0

n∑
i>j�1

∇i · ∇j

+
n∑

i=1

qiq0

ri

+
n∑

i>j�1

qiqj

rij

+
n∑

i=1

qiqn+1∣∣ri−rn+1− 1
MC

∑n
j=1 mj rj

∣∣
+ q0qn+1∣∣rn+1+ 1

MC

∑n
j=1 mj rj

∣∣ , (8)

where rij = ri − rj is the relative position between two core
particles i and j , μi = mim0

mi+m0
(1 � i � n) is the reduced mass

of ith electron in the core with the reference particle 0, and
μx = mn+1MC

mn+1+MC
is the reduce mass of the Rydberg particle

relative to the core. Since H does not contain X, X is a cyclic
coordinate and thus can be ignored. Furthermore, the last two
terms of (8) may be combined by introducing

εij = δij − mj/MC, 0 � i � n, 1 � j � n (9)

i.e.,
n∑

i=1

qiqn+1∣∣ri − rn+1 − 1
MC

∑n
j=1 mj rj

∣∣ + q0qn+1∣∣rn+1 + 1
MC

∑n
j=1 mj rj

∣∣
=

n∑
i=1

qiqn+1∣∣rn+1 − ∑n
j=1 εij rj

∣∣ + q0qn+1∣∣rn+1 − ∑n
j=1 ε0j rj

∣∣
=

n∑
i=0

qiqn+1∣∣rn+1 − ∑n
j=1 εij rj

∣∣ . (10)

The Hamiltonian can thus be partitioned into the form

H = Hc + Hx + Vcx, in 2R∞, (11)

where

Hc = −
n∑

i=1

1

2μi

∇2
i − 1

m0

n∑
i>j�1

∇i · ∇j +
n∑

i=1

q0qi

ri

+
n∑

r>j�1

qiqj

rij

(12)

Hx = − 1

2μx

∇2
x + qxqc

x
(13)

Vcx =
n∑

i=0

qiqx∣∣x − ∑n
j=1 εij rj

∣∣ − qcqx

x
(14)

with qx ≡ qn+1, x ≡ rn+1, and qc ≡ ∑n
j=0 qj being the total

charge of the core. In (11), R∞ is the Rydberg constant and
2R∞ represents the atomic units of energy expressed in cm−1.
It is clear that Hc is the Hamiltonian of the core [24], Hx the
Hamiltonian of the Rydberg particle in the field of point charge
qc, and Vcx the interaction potential energy between the core
and the Rydberg particle.

For a highly excited Rydberg particle, we may assume that
|x| > |∑n

j=1 εij rj | for 0 � i � n. Under this condition, we
have

1

|x − d| =
∞∑

�=0

�∑
m=−�

4π

2� + 1

d�

x�+1
Y ∗

�m(x̂)Y�m(d̂), (15)

with d = ∑n
j=1 εij rj . Using the formula [24]

Y�m(r̂) =
√

3

4π

(
�−1∏
s=1

√
2s + 3

s + 1

)
(r̂ ⊗ r̂ ⊗ · · · r̂︸ ︷︷ ︸

�

)(�)
m (16)

with the understanding that
∏�−1

s=1

√
2s+3
s+1 = 1 when � = 1, we

obtain

d�Y�m(d̂) =
√

3

4π

(
�−1∏
s=1

√
2s + 3

s + 1

)
(d ⊗ d ⊗ · · · d︸ ︷︷ ︸

�

)(�)
m

=
√

3

4π

(
�−1∏
s=1

√
2s + 3

s + 1

)
n∑

j1j2···j��1

(
εij1εij2 · · · εij�

)
× (

rj1 ⊗ rj2 ⊗ · · · rj�

)(�)
m

. (17)

Thus we have
n∑

i=0

qiqx∣∣x − ∑n
j=1 εij rj

∣∣
=

∞∑
�=0

�∑
m=−�

4π

2� + 1
[qxx

−�−1Y ∗
�m(x̂)]T�m(r1,r2, . . . ,rn),

(18)

where

T�m(r1,r2, . . . ,rn) =
√

3

4π

(
�−1∏
s=1

√
2s + 3

s + 1

)

×
n∑

j1j2···j��1

(
n∑

i=0

qiεij1εij2 · · · εij�

)

× (
rj1 ⊗ rj2 ⊗ · · · rj�

)(�)
m

. (19)

It is easy to see from (15) that the term with � = 0 is 1/x

and its corresponding term in Vcx is qcqx/x, which cancels
exactly with the second term in Vcx . In other words, there is
no monopole contribution to the interaction potential. Finally,
we obtain the following multipole expansion for the interaction
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potential energy Vcx , where in each term the degree of freedom
of the Rydberg particle is separated from the core coordinates

Vcx =
∞∑

�=1

�∑
m=−�

4π

2� + 1
[qxx

−�−1Y ∗
�m(x̂)]︸ ︷︷ ︸

Rydberg

T�m(r1,r2, . . . ,rn)︸ ︷︷ ︸
core

.

(20)

If we make the scaling transformation x → μx x, we obtain
the Hamiltonian

H = hc + hx + vcx, in 2R∞, (21)

where

hc = −
n∑

i=1

1

2μi

∇2
i − 1

m0

n∑
i>j�1

∇i · ∇j +
n∑

i=1

q0qi

ri

+
n∑

r>j�1

qiqj

rij

(22)

hx = μx

(
− 1

2
∇2

x + qxqc

x

)
(23)

vcx =
n∑

i=0

qiqx∣∣ 1
μx

x − ∑n
j=1 εij rj

∣∣ − μx

qcqx

x

=
∞∑

�=1

�∑
m=−�

4π

2� + 1
μ�+1

x [qxx
−�−1Y ∗

�m(x̂)]

× T�m(r1,r2, . . . ,rn). (24)

The above formulation is general for any system containing
n + 2 charged particles. If the system under consideration
is an atomic system with n + 1 electrons and one nucleus,
we assume that the zeroth particle (the reference particle) is
the nucleus with its mass M and its nuclear charge Z. The
Hamiltonian of the system becomes

H = − 1

2μ

n∑
i=1

∇2
i − 1

M

n∑
i>j�1

∇i · ∇j −
n∑

i=1

Z

ri

+
n∑

i>j�1

1

rij

− 1

2μx

∇2
x +

n∑
i=0

qxqi∣∣x − ∑n
j=1 εij rj

∣∣ , (25)

where q0 = Z, qi = −1 (1 � i � n), qx = −1, μ is the
reduced mass of the electron relative to the nucleus, and μx is
the reduced mass of the Rydberg electron relative to the core
mass M + nme. In order to see the finite nuclear mass effect
more clearly, we make the following scaling transformations:

ri → μ ri , i = 1,2, . . . n (26)

x → μx x. (27)

The Hamiltonian (25) can thus be transformed to

H = hc + hx + vcx, in 2RM, (28)

where RM = μ

me
R∞ and

hc = −1

2

n∑
i=1

∇2
i − μ

M

n∑
i>j�1

∇i · ∇j −
n∑

i=1

Z

ri

+
n∑

r>j�1

1

rij

(29)

hx = μx

μ

(
− 1

2
∇2

x − Z − n

x

)
(30)

vcx = −
n∑

i=0

qi∣∣ μ

μx
x − ∑n

j=1 εij rj

∣∣ + μx

μ

(Z − n)

x

=
∞∑

�=1

�∑
m=−�

4π

2� + 1

(
μx

μ

)�+1

× [qxx
−�−1Y ∗

�m(x̂)] T�m(r1,r2, . . . ,rn). (31)

From now on, we use the following unified expressions for
hx and vcx

hx = a

(
− 1

2
∇2

x − Z1

x

)
(32)

vcx =
∞∑

�=1

�∑
m=−�

C� u∗
�m(x) T�m(r1,r2, . . . ,rn), (33)

where a = μx or μx/μ, Z1 = −qxqc with Z1 > 0 in order to
form a bound or quasi-bound Rydberg state,

C� ≡ 4π

2� + 1
a�+1 qx, (34)

and

u�m(x) ≡ x−�−1Y�m(x̂) (35)

denotes the irregular solid harmonics satisfying the Laplace
equation ∇2u�m(x) = 0. It should be mentioned that the
Rydberg particle could be either an electron or positron, or
any other charged particle.

B. Perturbation expansion

1. Second-order energy: General expression

In (28), we can treat vcx as a perturbation to the unper-
turbed Hamiltonian H0 = hc + hx , which is uncoupled. The
eigenvalue equations for hc and hx are, respectively,

hcφncLcMc
= εnc

(Lc)φncLcMc
(36)

hxχnxLxMx
= enx

χnxLxMx
, (37)

where the eigenvalue enx
only depends on the principal

quantum number nx because of the hydrogenic nature of hx .
The initial eigenstates for hc and hx are assumed to be

hcφ0 = ε0φ0 (38)

hxχn0L0M0 = en0χn0L0M0 . (39)

Thus,

H0	0 = E0	0, (40)
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where

	0 = φ0χn0L0M0 (41)

E0 = ε0 + en0 . (42)

In this work, we only consider the case where φ0 is in an
S state, which results in the consequence that the first-order
energy correction due to vcx is zero, i.e.,


E1 = 〈	0|vcx |	0〉 = 0, (43)

The reason why (43) is valid is that there is no monopole term
in the multipole expansion of vcx in (33).

The second-order energy correction can be calculated
according to


E2 = 〈	0|vcx |	1〉, (44)

where

|	1〉 =
∑

n

〈	n|vcx |	0〉
E0 − En

|	n〉 (45)

and n represents a set of quantum numbers describing an
intermediate eigenstate of H0, i.e.,

H0	n = En	n, (46)

where

	n = φncLcMc
χnxLxMx

(47)

En = εnc
(Lc) + enx

. (48)

We first denote the excitation energies for the core and the
Rydberg electron by

δεnc
(Lc) = εnc

(Lc) − ε0 (49)

δenx
= enx

− en0 . (50)

Considering the Rydberg particle is in a highly excited state,
we make the following key assumption that [2]∣∣δenx

∣∣ <
∣∣δεnc

(Lc)
∣∣. (51)

In the above we have implicitly assumed that δεnc
(Lc) 
= 0.

Now we can perform the following expansion

1

E0 − En

= − 1

δεnc
(Lc)

1

1 + δenx

δεnc (Lc)

=
∞∑
i=0

(−1)i+1 (δenx
)i[

δεnc
(Lc)

]i+1 . (52)

Substituting (52) into (45) yields

|	1〉 =
∞∑
i=0

(−1)i+1
∑

ncLcMc

∑
nxLxMx

〈
φncLcMc

χnxLxMx

∣∣vcx

∣∣φ0χn0L0M0

〉 hi
s[

δεnc
(Lc)

]i+1

∣∣φncLcMc
χnxLxMx

〉
, (53)

where we have applied the eigenvalue equation (37) of hx(
δenx

)i∣∣χnxLxMx

〉 = hi
s

∣∣χnxLxMx

〉
, (54)

with the definition of hs ≡ hx − en0 operating on the Rydberg electron. Now the second-order energy correction (44) becomes


E2 =
∞∑
i=0

(−1)i+1
∑

ncLcMc

∑
nxLxMx

〈
φncLcMc

χnxLxMx

∣∣vcx

∣∣φ0χn0L0M0

〉 1[
δεnc

(Lc)
]i+1

〈
φ0χn0L0M0

∣∣vcxh
i
s

∣∣φncLcMc
χnxLxMx

〉
. (55)

Substituting (33) into (55) and using the Wigner-Eckart theorem for the matrix element T�m

〈φncLcMc
|T�m|φ0〉 = (−1)Lc−Mc

(
Lc � 0

−Mc m 0

)
〈φncLc

‖T�‖φ0〉 = 1√
2Lc + 1

δ�Lc
δmMc

〈φncLc
‖T�‖φ0〉, (56)

we arrive at

〈
φncLcMc

χnxLxMx

∣∣vcx

∣∣φ0χn0L0M0

〉 = CLc

1√
2Lc + 1

〈
φncLc

∥∥TLc

∥∥φ0
〉〈
χnxLxMx

∣∣u∗
LcMc

(x)
∣∣χn0L0M0

〉
, (57)

where CLc
is defined in (34). It is noted here that Lc � 1 in (57), as indicated in (33). Similarly,

〈
φ0χn0L0M0

∣∣vcxh
i
s

∣∣φncLcMc
χnxLxMx

〉 = CLc
(−1)Lc

1√
2Lc + 1

〈
φ0

∥∥TLc

∥∥φncLc

〉〈
χn0L0M0

∣∣uLcMc
(x)hi

s

∣∣χnxLxMx

〉
. (58)

Substituting (57) and (58) into (55) leads to the final expression for 
E2


E2 =
∞∑
i=0

(−1)i+1
∑
ncLc

C2
Lc

1

2Lc + 1

∣∣〈φ0

∥∥TLc

∥∥φncLc

〉∣∣2(
δεnc

(Lc)
)i+1 w

(2)
i (Lc). (59)

022505-4



GENERAL THEORY FOR RYDBERG STATES OF ATOMS: . . . PHYSICAL REVIEW A 95, 022505 (2017)

In the above w
(2)
i (Lc) is the quantity that describes the Rydberg

particle and is given by

w
(2)
i (Lc) = 〈

χn0L0M0

∣∣Ûi(Lc)
∣∣χn0L0M0

〉
, (60)

where the operator Ûi(�) is defined by

Ûi(�) ≡
∑
m

u�m hi
s u∗

�m. (61)

It is seen that Ûi(�) is a Hermitian operator. In obtaining (59),
the following two relations have been used, namely, the closure
relation ∑

nxLxMx

∣∣χnxLxMx

〉〈
χnxLxMx

∣∣ = I (62)

and 〈
φncLc

∥∥TLc

∥∥φ0
〉 = (−1)Lc

〈
φ0

∥∥TLc

∥∥φncLc

〉∗
. (63)

It would be convenient to define the 2Lc -pole generalized
polarizability for the state of the S-symmetric core

α(i,Lc) ≡ 23−iπ

(2Lc + 1)2

∑
nc

∣∣〈φ0

∥∥TLc

∥∥φncLc

〉∣∣2[
δεnc

(Lc)
]i+1 . (64)

In fact for the first few values of i, we have

α(0,Lc) = αLc
(65)

α(1,Lc) = βLc
(66)

α(2,Lc) = γLc
(67)

α(3,Lc) = δLc
(68)

α(4,Lc) = ςLc
(69)

α(5,Lc) = ηLc
(70)

α(6,Lc) = θLc
(71)

α(7,Lc) = ιLc
(72)

as defined by Drake [2] up to i = 3. We therefore have the
final expression for the second-order energy correction


E2 =
∞∑
i=0

∞∑
Lc=1

δe2(i,Lc), (73)

where

δe2(i,Lc) = q2
x (−1)i+1 2i+1π

2Lc + 1
a2Lc+2α(i,Lc)w(2)

i (Lc).

(74)

2. Second-order energy: Calculations

Consider w
(2)
0 (Lc) first. Using the formula

�∑
m=−�

Y�m(x̂)Y ∗
�m(x̂) = 2� + 1

4π
, (75)

we have

w
(2)
0 (Lc) = 2Lc + 1

4π

〈
χn0L0M0

∣∣x−2Lc−2
∣∣χn0L0M0

〉
= 2Lc + 1

4π
〈x−2Lc−2〉n0L0 (76)

with | 〉n0L0 ≡ |χn0L0M0〉. It should be pointed out that 〈x−s〉n0L0

diverges unless s � 2L0 + 2. The analytical expressions for
〈x−s〉n0L0 with s up to 16 are given explicitly by Drake and
Swainson [25]. Thus the result for i = 0 is

δe2(0,Lc) = − 1
2q2

x a2Lc+2αLc
〈x−2Lc−2〉n0L0 . (77)

For the case of i = 1, we first notice that

hs

∣∣χn0L0M0

〉 = 0. (78)

Thus we have

Lc∑
Mc=−Lc

〈
χn0L0M0

∣∣[uLcMc
,
[
hs,u

∗
LcMc

]]∣∣χn0L0M0

〉

=
Lc∑

Mc=−Lc

〈
χn0L0M0

∣∣uLcMc
hsu

∗
LcMc

∣∣χn0L0M0

〉

+
Lc∑

Mc=−Lc

〈
χn0L0M0

∣∣u∗
LcMc

hsuLcMc

∣∣χn0L0M0

〉

= 2
Lc∑

Mc=−Lc

〈
χn0L0M0

∣∣uLcMc
hsu

∗
LcMc

∣∣χn0L0M0

〉
, (79)

where we have used the property that u∗
LcMc

= (−1)McuLc−Mc
,

as well as the fact that any summation above will be the same
when switching Mc to −Mc. Therefore, the w

(2)
1 (Lc) can be

recast into

w
(2)
1 (Lc) = 1

2

∑
Mc

〈
χn0L0M0

∣∣[uLcMc
,
[
hs,u

∗
LcMc

]]∣∣χn0L0M0

〉
= −a

4

∑
Mc

〈
χn0L0M0

∣∣[uLcMc
,
[∇2,u∗

LcMc

]]∣∣χn0L0M0

〉
,

(80)

where we have ignored the subscript x in ∇2. Since u�m(x) is a
harmonic function, it satisfies the Laplace equation ∇2u�m =
0. It is therefore straightforward to show the following operator
relations

[∇2,uLcMc

] = 2
(∇uLcMc

) · ∇ (81)

[
uLcMc

,
[∇2,u∗

LcMc

]] = −2
(∇uLcMc

)(∇u∗
LcMc

)
. (82)

Furthermore, using the following two formulas [26]

∇u�m(x) =
√

(� + 1)(2� + 1)|x|−�−2Y��+1m(x̂) (83)

and

J∑
M=−J

YJ�M (x̂) · Y∗
J�M (x̂) = 2J + 1

4π
, (84)
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where YJ�M (x̂) is the vector spherical harmonics, we arrive at

w
(2)
1 (Lc) = a

8π
(Lc + 1)(2Lc + 1)2〈x−2Lc−4〉n0L0 . (85)

Finally, the corresponding energy correction for given i = 1
and Lc is

δe2(1,Lc) = 1
2q2

x a2Lc+3(Lc + 1)(2Lc + 1)βLc
〈x−2Lc−4〉n0L0 .

(86)

Now we consider the general case where i is an arbitrary
positive integer. We first consider the following expression

hs[f (x)Y�m(x̂)]. (87)

Noting that

hs = −a

2
∇2 − aZ1

x
− en0

= −a

2

[
− L2

x2
+ 1

x2

∂

∂x

(
x2 ∂

∂x

)]
− aZ1

x
− en0 , (88)

where L2 is the angular momentum squared, we arrive at

hs[f (x)Y�m(x̂)] = [hr (�)f (x)]Y�m(x̂). (89)

In the above, hr (�) is defined by

hr (�) ≡ a

2

�(� + 1)

x2
− a

2

1

x2

d

dx

(
x2 d

dx

)
− aZ1

x
− en0 , (90)

acting only on the radial function f (x). The repeated use
of (89) yields

hp
s [f (x)Y�m(x̂)] = [

hp
r (�)f (x)

]
Y�m(x̂). (91)

It is seen that the operator hs , when applying to f (x)Y�m(x̂),
only changes the radial part, not the angular part.

Consider w
(2)
i (Lc). Let the wave function of the Rydberg

electron be ∣∣χn0L0M0

〉 = Rn0L0 (x)YL0M0 (x̂). (92)

Then we have

w
(2)
i (Lc) =

∑
Mc

∫
x2 dx d�Rn0L0 (x)Y ∗

L0M0
(x̂)x−Lc−1YLcMc

(x̂)

×hi
sx

−Lc−1Y ∗
LcMc

(x̂)Rn0L0 (x)YL0M0 (x̂). (93)

Note that

Y ∗
LcMc

(x̂)YL0M0 (x̂) = (−1)Mc

∑
�1ω1

(Lc,L0,�1)1/2

√
4π

(
Lc L0 �1

0 0 0

)(
Lc L0 �1

−Mc M0 ω1

)
Y ∗

�1ω1
(x̂), (94)

where the notation (�1,�2, . . .) ≡ (2�1 + 1)(2�2 + 1) . . ., and∫
d�Y ∗

L0M0
(x̂)YLcMc

(x̂)Y ∗
�1ω1

(x̂) = (−1)Mc
(L0,�1,Lc)1/2

√
4π

(
L0 �1 Lc

0 0 0

)(
L0 �1 Lc

M0 ω1 −Mc

)
. (95)

The sum over Mc and ω1 in w
(2)
i (Lc) can then be performed

according to∑
Mcω1

(
Lc L0 �1

−Mc M0 ω1

)(
L0 �1 Lc

M0 ω1 −Mc

)
= 1

2L0 + 1
.

(96)

With all these above, we finally have

w
(2)
i (Lc) = 2Lc + 1

4π

∑
�1

(2 �1 + 1)

(
Lc L0 �1

0 0 0

)2

×
∫ ∞

0
dx x−Lc+1Rn0L0 (x)

{
hi

r (�1)

× [
x−Lc−1Rn0L0 (x)

]}
. (97)

In (97) after the application of hi
r (�1) on x−Lc−1Rn0L0 (x),

we need to evaluate the following type of integral:

J (s,n) =
∫ ∞

0
dx x−sRn0L0 (x)R(n)

n0L0
(x), (98)

where s is a positive integer and R
(n)
n0L0

(x) denotes the
nth-order derivative of Rn0L0 (x). We start by applying the

Hamiltonian (88) to the wave function of the Rydberg electron
Rn0L0 (x)YL0M0 (x̂), resulting in the following equation:

2

x
R′

n0L0
(x) + R′′

n0L0
(x) − L0(L0 + 1)

x2
R + 2Z1

x
R + 2en0

a
R

= 0. (99)

Performing dn

dxn on the above equation, expanding the deriva-
tives of products by using the Leibniz formula, and finally
integrating

∫ ∞
0 dx x−sRn0L0 (x) · · · throughout, we arrive at

the recursion relation

J (s,n + 2) + 2
n∑

i=0

(−1)n−i n!

i!
J (n − i + 1 + s,i + 1)

−L0(L0+1)
n∑

i=0

(−1)n−i n!(n−i+1)

i!
J (n−i+2+s,i)

+ 2Z1

n∑
i=0

(−1)n−i n!

i!
J (n−i+1+s,i) + 2en0

a
J (s,n) = 0.

(100)

The above recursion relation shows that, in order to calculate
J (s,n), one needs to know J (s ′,m) with 0 � m � n − 1. The
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initial integrals are

J (s,0) = 〈x−s−2〉n0L0 , (101)

and J (s,1) that can be evaluated as follows

J (s,1) = 1

2

∫ ∞

0
x−s dR2

n0L0
(x)

= 1

2
x−sR2

n0L0
(x)|∞0 + 1

2
s

∫ ∞

0
dx x−s−1R2

n0L0
(x)

= s

2
〈x−s−3〉n0L0 . (102)

In the above, the surface term vanishes at ∞ because Rn0L0 (x)
decays to zero exponentially; it also vanishes at x = 0,
provided L0 > s/2 due to the fact that Rn0L0 (x) ∼ xL0 as
x ∼ 0.

It is advantageous to transform e
j
n0〈x−s〉n0L0 into a series of

〈x−s ′ 〉n0L0 . This can be done by using the so-called hypervirial

theorem [5]: 〈
χn0L0M0

∣∣[xp d

dx
,hx

]∣∣χn0L0M0

〉 = 0, (103)

where

hx = −a

2

(
2

x

d

dx
+ d2

dx2

)
+ a

2

L0(L0 + 1)

x2
− aZ1

x
. (104)

We note that[
xp d

dx
,hx

]
= [xp,hx]

d

dx
+ xp

[
d

dx
,hx

]
. (105)

It is a straightforward matter to find that

[xp,hx] = a

2
p(p + 1)xp−2 + apxp−1 d

dx
(106)[

d

dx
,hx

]
= a

1

x2

d

dx
− aL0(L0 + 1)

1

x3
+ aZ1

1

x2
. (107)

Substituting the above into (105), the hypervirial theorem (103) reads

p

〈
xp−1 d2

dx2

〉
n0L0

+
[

1 + 1

2
p(p + 1)

]〈
xp−2 d

dx

〉
n0L0

− L0(L0 + 1)〈xp−3〉n0L0 + Z1〈xp−2〉n0L0 = 0. (108)

The second-order derivative operator above can be replaced by

d2

dx2
= − 2

x

d

dx
+ L0(L0 + 1)

1

x2
− 2Z1

x
− 2en0

a
. (109)

After putting it back into (108) and then using 〈xp−2d/dx〉n0L0 = −p

2 〈xp−3〉n0L0 from (102), one finally arrives at

en0〈xp−1〉n0L0 = a
1 − 2p

2p
Z1〈xp−2〉n0L0 + a

p − 1

2p
[L0(L0 + 1) − 1

4
p(p − 2)]〈xp−3〉n0L0 . (110)

The term e
j
n0〈x−s〉n0L0 can be calculated by repeated use of (110).

With the above preparations, we are now in a position to evaluate w
(2)
i (Lc) and then the second-order energy corrections

δe2(i,Lc), with the help of software MAPLE. We have already obtained w
(2)
0 (Lc) and w

(2)
1 (Lc) in (76) and (85) respectively. For

w
(2)
2 (Lc) we have

w
(2)
2 (Lc) = −Z1a

2(Lc+1)2(2Lc+1)

4π (2Lc + 3)
〈x−2Lc−5〉n0L0+

a2(Lc + 1)2(Lc + 2)(2Lc + 1)2

8π

[
1 + L0(L0 + 1)

(Lc + 1)(2Lc + 3)

]
〈x−2Lc−6〉n0L0 .

(111)

For w
(2)
3 (Lc) we have

w
(2)
3 (Lc) = −Z1a

3(Lc + 1)2(Lc + 2)(2Lc + 1)(6Lc + 11)

8π (2Lc + 5)
〈x−2Lc−7〉n0L0

+ a3(Lc + 1)2(Lc + 2)(Lc + 3)(2Lc + 1)2(2Lc + 3)

16π

[
1 + 3L0(L0 + 1)

(Lc + 1)(2Lc + 5)

]
〈x−2Lc−8〉n0L0 . (112)

In the following, we list some special values of the second-order energy corrections. For δe2(2,Lc) we have

δe2(2,1) = q2
x a6 γ1

{
8Z1

5
〈x−7〉n0L0 − 36

(
1 + L0(L0 + 1)

10

)
〈x−8〉n0L0

}
, (113)

δe2(2,2) = q2
x a8 γ2

{
18Z1

7
〈x−9〉n0L0 − 180

(
1 + L0(L0 + 1)

21

)
〈x−10〉n0L0

}
, (114)

δe2(2,3) = q2
x a10 γ3

{
32Z1

9
〈x−11〉n0L0 − 560

(
1 + L0(L0 + 1)

36

)
〈x−12〉n0L0

}
. (115)
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For δe2(3,Lc), we have

δe2(3,1) = q2
x a7 δ1

{
−408Z1

7
〈x−9〉n0L0 + 720

(
1 + 3

14
L0(L0 + 1)

)
〈x−10〉n0L0

}
, (116)

δe2(3,2) = q2
x a9 δ2

{
−184Z1〈x−11〉n0L0 + 6300

(
1 + 1

9
L0(L0 + 1)

)
〈x−12〉n0L0

}
, (117)

δe2(3,3) = q2
x a11 δ3

{
−4640Z1

11
〈x−13〉n0L0 + 30240

(
1 + 3

44
L0(L0 + 1)

)
〈x−14〉n0L0

}
. (118)

For δe2(4,Lc), we have

δe2(4,1) = q2
x a8 ς1

{
−164Z2

1

7
〈x−10〉n0L0 + 16368Z1

7

(
1 + 59

1364
L0(L0 + 1)

)
〈x−11〉n0L0

− 600

7

(
252 + 82L0 + 83L2

0 + 2L3
0 + L4

0

)〈x−12〉n0L0

}
, (119)

δe2(4,2) = q2
x a10 ς2

{
−264Z2

1

5
〈x−12〉n0L0 + 140736Z1

11

(
1 + 97

3665
L0(L0 + 1)

)
〈x−13〉n0L0

− 4200

11

(
792 + 142L0 + 143L2

0 + 2L3
0 + L4

0

)〈x−14〉n0L0

}
, (120)

δe2(4,3) = q2
x a12 ς3

{
−3104Z2

1

33
〈x−14〉n0L0 + 6449600Z1

143

(
1 + 427

24186
L0(L0 + 1)

)
〈x−15〉n0L0

− 158760

143

(
5720

3
+ 218L0 + 219L2

0 + 2L3
0 + L4

0

)
〈x−16〉n0L0

}
. (121)

For δe2(5,Lc), we have

δe2(5,1) = q2
x a9 η1

{
12096Z2

1

5
〈x−12〉n0L0 − 1283904Z1

11

(
1 + 382

3715
L0(L0 + 1)

)
〈x−13〉n0L0

+ 126000

11

(
396

5
+ 34L0 + 35L2

0 + 2L3
0 + L4

0

)
〈x−14〉n0L0

}
, (122)

δe2(5,2) = q2
x a11 η2

{
101712Z2

1

11
〈x−14〉n0L0 − 145356480Z1

143

(
1 + 19889

302826
L0(L0 + 1)

)
〈x−15〉n0L0

+ 11907000

143

(
1144

5
+ 170

3
L0 + 173

3
L2

0 + 2L3
0 + L4

0

)
〈x−16〉n0L0

}
, (123)

For δe2(6,Lc), we have

δe2(6,1) = q2
x a10 θ1

{
42112Z3

1

55
〈x−13〉n0L0 − 12166784Z2

1

55

(
1 + 2076

95053
L0(L0 + 1)

)
〈x−14〉n0L0

+ 5824128Z1

715

(
13632820

15167
+ 6876328

45501
L0 + 6921829

45501
L2

0 + 2L3
0 + L4

0

)
〈x−15〉n0L0

− 588000

143

(
61776

5
+ 6492L0 + 6808L2

0 + 633L3
0 + 319L4

0 + 3L5
0 + L6

0

)
〈x−16〉n0L0

}
. (124)

3. Third-order energy

The third-order energy correction can be calculated according to


E3 = 〈	1|vcx |	1〉, (125)

where 	1 is defined in (45) and further expanded in (53). In the above we have used the fact that 
E1 = 0 [see (43)]. Using the
similar procedure towards (59) leads to the final expression for 
E3:


E3 =
∞∑
i=0

∞∑
j=0

(−1)i+j
∑

L′
c�Lc�1

CL′
c
C�CLc√

(L′
c,Lc)

w(3)
c (i,j ; L′

c,�,Lc)w(3)
ij (L′

c,�,Lc), (126)
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where the quantity w(3)
c (i,j ; L′

c,�,Lc) describing the core is defined by

w(3)
c (i,j ; L′

c,�,Lc) ≡
∑
ncn′

c

〈
φ0

∥∥TL′
c

∥∥φn′
cL

′
c

〉〈
φn′

cL
′
c

∥∥T�

∥∥φncLc

〉〈
φncLc

∥∥TLc

∥∥φ0
〉

[
δεnc

(Lc)
]i+1[

δεn′
c
(L′

c)
]j+1 , (127)

and the quantity relevant to the Rydberg electron w
(3)
ij (L′

c,�,Lc) is defined by

w
(3)
ij (L′

c,�,Lc) ≡
∑

M ′
cmMc

(−1)M
′
c

(
L′

c � Lc

−M ′
c m Mc

)〈
χn0L0M0

∣∣uL′
cM

′
c
hj

s u∗
�m hi

s u∗
LcMc

∣∣χn0L0M0

〉
. (128)

The above expression can be simplified by integrating over the angular coordinates. Since

w
(3)
ij (L′

c,�,Lc) =
∑

M ′
cmMc

(−1)M
′
c

(
L′

c � Lc

−M ′
c m Mc

)∫
x2 dx d�Rn0L0 (x)Y ∗

L0M0
(x̂)x−L′

c−1YL′
cM

′
c
(x̂)

×hj
s x−�−1Y ∗

�m(x̂) hi
s x−Lc−1Y ∗

LcMc
(x̂)Rn0L0 (x)YL0M0 (x̂), (129)

the product of the two spherical harmonic functions Y ∗
LcMc

(x̂) and YL0M0 (x̂) can be reduced to a single one Y ∗
�1ω1

(x̂) according
to (94). Then using (91) one obtains

hi
s

[
x−Lc−1Rn0L0 (x)Y ∗

�1ω1
(x̂)

] = [
hi

r (�1)x−Lc−1Rn0L0 (x)
]
Y ∗

�1ω1
(x̂), (130)

where on the right-hand side, hi
r (�1) is understood to operate on all radial functions contained in the square brackets. Furthermore,

the product of Y ∗
�m(x̂) and Y ∗

�1ω1
(x̂) can be combined into Y�2ω2 (x̂). The application of (91) again yields

hj
s

[
x−�−1hi

r (�1)x−Lc−1Rn0L0 (x)Y�2ω2 (x̂)
] = [

hj
r (�2)x−�−1hi

r (�1)x−Lc−1Rn0L0 (x)
]
Y�2ω2 (x̂). (131)

The last step is the integration over d� in (129) for the product of three remaining spherical harmonics Y ∗
L0M0

(x̂), YL′
cM

′
c
(x̂), and

Y�2ω2 (x̂), which can be performed using (95). We therefore arrive at

w
(3)
ij (L′

c,�,Lc) = 2L0 + 1

(4π )3/2
(L′

c,�,Lc)1/2
∑
�1�2

(�1,�2)

(
Lc L0 �1

0 0 0

)(
� �1 �2

0 0 0

)(
L′

c �2 L0

0 0 0

)

×G(3)(�1,�2)
∫ ∞

0
dxx−L′

c+1Rn0L0 (x)hj
r (�2)

[
x−�−1hi

r (�1) x−Lc−1Rn0L0 (x)
]
, (132)

where the angular coefficient G(3) is given by

G(3)(�1,�2) ≡
∑

M ′
cmMc

∑
ω1ω2

(−1)M
′
c+Mc+M0

(
L′

c � Lc

−M ′
c m Mc

)(
Lc L0 �1

−Mc M0 ω1

)(
� �1 �2

m ω1 ω2

)(
L′

c �2 L0

M ′
c ω2 −M0

)
. (133)

The above angular coefficient G(3)(�1,�2) can further be simplified using the graphical method of angular momentum [27]:

G(3)(�1,�2) = (−1)�+L0
1

2L0 + 1

{
�2 �1 �

Lc L′
c L0

}
. (134)

We finally obtain the following expression:

w
(3)
ij (L′

c,�,Lc) = (−1)�+L0

(4π )3/2
(L′

c,�,Lc)1/2
∑
�1�2

(�1,�2)

(
Lc L0 �1

0 0 0

)(
� �1 �2

0 0 0

)(
L′

c �2 L0

0 0 0

){
�2 �1 �

Lc L′
c L0

}

×
∫ ∞

0
dx x−L′

c+1Rn0L0 (x) hj
r (�2)

[
x−�−1 hi

r (�1) x−Lc−1Rn0L0 (x)
]
. (135)

From the selection rule of the 3 − j symbol, it is seen that

L′
c + � + Lc = even, (136)

with the lowest value of 4. The correction 
E3 may thus be expressed in the form


E3 =
∞∑
i=0

∞∑
j=0

∑
s=4,6,8,...

δe3(i,j ; s), (137)
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where

δe3(i,j ; s) =
∑

L′
c�Lc�1

L′
c + �+Lc=s

(−1)i+j
CL′

c
C�CLc√

(L′
c,Lc)

w(3)
c (i,j ; L′

c,�,Lc)w(3)
ij (L′

c,�,Lc). (138)

It is easy to show that ∑
s

δe3(i,j ; s) =
∑

s

δe3(j,i; s) (139)

by noting that w(3)
c (i,j ; L′

c,�,Lc) = w(3)
c (j,i; Lc,�,L

′
c) and all reduced matrix elements are real. Thus we can write the third-order

energy correction as


E3 =
∞∑
i=0

∑
s=4,6,8,...

δe3(i,i; s) + 2
∞∑

i>j

∑
s=4,6,8,...

δe3(i,j ; s). (140)

We can similarly obtain δe3(i,j ; s) for given i, j , and s, which are listed below:

δe3(0,0; 4) = q3
x a7 π3/2

[
16

225

√
10 w(3)

c (0,0; 1,1,2) + 8
135

√
6 w(3)

c (0,0; 1,2,1)
]〈x−7〉n0L0 , (141)

δe3(0,0; 6) = −q3
x a9 π3/2

[
16

735

√
21 w(3)

c (0,0; 1,2,3) + 16
525

√
15 w(3)

c (0,0; 1,3,2)

+ 16
1225

√
35 w(3)

c (0,0; 2,1,3) + 8
875

√
14 w(3)

c (0,0; 2,2,2)
]〈x−9〉n0L0 , (142)

δe3(0,0; 8) = q3
x a11 π3/2

[
32

567 w(3)
c (0,0; 1,3,4) + 32

1323

√
7 w(3)

c (0,0; 1,4,3) + 16
1575

√
14 w(3)

c (0,0; 2,2,4)

+ 32
3675

√
15 w(3)

c (0,0; 2,3,3) + 8
2625

√
70 w(3)

c (0,0; 2,4,2) + 32
3969

√
21 w(3)

c (0,0; 3,1,4)

+ 16
5145

√
21 w(3)

c (0,0; 3,2,3)
]〈x−11〉n0L0 , (143)

δe3(0,0; 10) = −q3
x a13 π3/2

[
16

3267

√
55 w(3)

c (0,0; 1,4,5) + 16
891

√
5 w(3)

c (0,0; 1,5,4)

+ 16
12705

√
330 w(3)

c (0,0; 2,3,5) + 32
31185

√
385 w(3)

c (0,0; 2,4,4) + 16
8085

√
210 w(3)

c (0,0; 2,5,3)

+ 16
17787

√
462 w(3)

c (0,0; 3,2,5) + 16
4851

√
22 w(3)

c (0,0; 3,3,4) + 8
11319

√
154 w(3)

c (0,0; 3,4,3)

+ 16
9801

√
165 w(3)

c (0,0; 4,1,5) + 16
18711

√
77 w(3)

c (0,0; 4,2,4)
]〈x−13〉n0L0 , (144)

δe3(1,0; 4) = −q3
x a8 π3/2

[
8

25

√
10 w(3)

c (1,0; 1,1,2) + 16
45

√
6 w(3)

c (1,0; 1,2,1) + 16
75

√
10 w(3)

c (1,0; 2,1,1)
]〈x−9〉n0L0 , (145)

δe3(1,0; 6) = q3
x a10 π3/2

[
128
735

√
21 w(3)

c (1,0; 1,2,3) + 32
175

√
15 w(3)

c (1,0; 1,3,2) + 128
1225

√
35 w(3)

c (1,0; 2,1,3)

+ 96
875

√
14 w(3)

c (1,0; 2,2,2) + 64
525

√
15 w(3)

c (1,0; 2,3,1) + 96
1225

√
35 w(3)

c (1,0; 3,1,2)

+ 64
735

√
21 w(3)

c (1,0; 3,2,1)
]〈x−11〉n0L0 , (146)

δe3(1,0; 8) = −q3
x a12 π3/2

[
400
567 w(3)

c (1,0; 1,3,4) + 320
1323

√
7 w(3)

c (1,0; 1,4,3) + 8
63

√
14 w(3)

c (1,0; 2,2,4) + 64
735

√
15 w(3)

c (1,0; 2,3,3)

+ 8
175

√
70 w(3)

c (1,0; 2,4,2) + 400
3969

√
21 w(3)

c (1,0; 3,1,4) + 64
1029

√
21 w(3)

c (1,0; 3,2,3)

+ 16
245

√
15 w(3)

c (1,0; 3,3,2) + 160
1323

√
7 w(3)

c (1,0; 3,4,1) + 320
3969

√
21 w(3)

c (1,0; 4,1,3)

+ 8
105

√
14 w(3)

c (1,0; 4,2,2) + 160
567 w(3)

c (1,0; 4,3,1)
]〈x−13〉n0L0 , (147)

δe3(1,1; 4) = −q3
x a9 π3/2

{
Z1

[
4

75

√
10 w(3)

c (1,1; 1,1,2) + 4
135

√
6 w(3)

c (1,1; 1,2,1)
]〈x−10〉n0L0

− [
4

25

√
10 [36 + L0(L0 + 1)] w(3)

c (1,1; 1,1,2) + 16
5

√
6 w(3)

c (1,1; 1,2,1)
]〈x−11〉n0L0

}
, (148)

δe3(1,1; 6) = −q3
x a11 π3/2

{−Z1
[

64
3675

√
21 w(3)

c (1,1; 1,2,3) + 16
875

√
15 w(3)

c (1,1; 1,3,2) + 96
6125

√
35 w(3)

c (1,1; 2,1,3)

+ 36
4375

√
14 w(3)

c (1,1; 2,2,2)
]〈x−12〉n0L0 + [

32
3675

√
21 [440 + 7L0(L0 + 1)] w(3)

c (1,1; 1,2,3)

− 32
2625

√
15 [L0(L0 + 1) − 330] w(3)

c (1,1; 1,3,2) + 32
6125

√
35 [660+13L0(L0+1)] w(3)

c (1,1; 2,1,3)

+ 48
4375

√
14 [165+2L0(L0+1)] w(3)

c (1,1; 2,2,2)
]〈x−13〉n0L0

}
, (149)
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δe3(2,0; 4) = −q3
x a9 π3/2

{
Z1

[
4

75

√
10 w(3)

c (2,0; 1,1,2) + 2
27

√
6 w(3)

c (2,0; 1,2,1) + 2
45

√
10 w(3)

c (2,0; 2,1,1)
]〈x−10〉n0L0

− [
4
25

√
10 [28 + L0(L0 + 1)] w(3)

c (2,0; 1,1,2) + 2
15

√
6 [28 + L0(L0 + 1)] w(3)

c (2,0; 1,2,1)

+ 2
25

√
10 [28 + L0(L0 + 1)] w(3)

c (2,0; 2,1,1)
]〈x−11〉n0L0

}
, (150)

δe3(2,0; 6) = −q3
x a11 π3/2

{−Z1
[

16
735

√
21 w(3)

c (2,0; 1,2,3) + 24
875

√
15 w(3)

c (2,0; 1,3,2) + 16
1225

√
35 w(3)

c (2,0; 2,1,3)

+ 72
4375

√
14 w(3)

c (2,0; 2,2,2)+ 8
375

√
15 w(3)

c (2,0; 2,3,1)+ 72
6125

√
35 w(3)

c (2,0; 3,1,2)

+ 8
525

√
21 w(3)

c (2,0; 3,2,1)
]〈x−12〉n0L0 + [

64
735

√
21 [45 + L0(L0 + 1)] w(3)

c (2,0; 1,2,3)

+ 64
875

√
15 [45 + L0(L0 + 1)] w(3)

c (2,0; 1,3,2) + 64
1225

√
35 [45 + L0(L0 + 1)] w(3)

c (2,0; 2,1,3)

+ 192
4375

√
14 [45 + L0(L0 + 1)] w(3)

c (2,0; 2,2,2) + 32
875

√
15 [45 + L0(L0 + 1)] w(3)

c (2,0; 2,3,1)

+ 192
6125

√
35 [45 + L0(L0 + 1)] w(3)

c (2,0; 3,1,2) + 32
1225

√
21 [45 + L0(L0 + 1)] w(3)

c (2,0; 3,2,1)
]〈x−13〉n0L0

}
,

(151)

δe3(3,0; 4) = −q3
x a10 π3/2{−Z1

[
56
25

√
10 w(3)

c (3,0; 1,1,2) + 184
75

√
6 w(3)

c (3,0; 1,2,1)

+ 184
125

√
10 w(3)

c (3,0; 2,1,1)
]〈x−12〉n0L0 + [

64
25

√
10 [35 + 3L0(L0 + 1)] w(3)

c (3,0; 1,1,2)

+ 128
75

√
6 [35 + 3L0(L0 + 1)] w(3)

c (3,0; 1,2,1) + 128
125

√
10 [35 + 3L0(L0 + 1)] w(3)

c (3,0; 2,1,1)
]〈x−13〉n0L0

}
,

(152)

δe3(4,0; 4) = −q3
x a11 π3/2

{−Z2
1

[
256
825

√
10 w(3)

c (4,0; 1,1,2) + 592
1485

√
6 w(3)

c (4,0; 1,2,1)

+ 592
2475

√
10 w(3)

c (4,0; 2,1,1)
]〈x−13〉n0L0 + Z1

[
248
275

√
10 [99 + 2L0(L0 + 1)] w(3)

c (4,0; 1,1,2)

+ 8
165

√
6 [1661 + 29L0(L0 + 1)] w(3)

c (4,0; 1,2,1) + 8
275

√
10 [1661 + 29L0(L0 + 1)] w(3)

c (4,0; 2,1,1)
]〈x−14〉n0L0

− [
48
25

√
10

(
L4

0 + 2L3
0 + 179L2

0 + 178L0 + 1260
)
w(3)

c (4,0; 1,1,2) + 16
15

√
6
(
L4

0 + 2L3
0 + 179L2

0 + 178L0

+ 1260
)
w(3)

c (4,0; 1,2,1) + 16
25

√
10

(
L4

0 + 2L3
0 + 179L2

0 + 178L0 + 1260
)
w(3)

c (4,0; 2,1,1)
]〈x−15〉n0L0

}
, (153)

δe3(2,1; 4) = −q3
x a10 π3/2

{−Z1
[

152
125

√
10 w(3)

c (2,1; 1,1,2) + 32
25

√
6 w(3)

c (2,1; 1,2,1)

+ 144
125

√
10 w(3)

c (2,1; 2,1,1)
]〈x−12〉n0L0 + [

128
125

√
10 [55 + 4L0(L0 + 1)] w(3)

c (2,1; 1,1,2)

+ 32
75

√
6 [110 + 3L0(L0 + 1)] w(3)

c (2,1; 1,2,1) + 96
125

√
10 [55 + 4L0(L0 + 1)] w(3)

c (2,1; 2,1,1)
]〈x−13〉n0L0

}
, (154)

δe3(2,2; 4) = −q3
x a11 π3/2

{−Z2
1

[
1216
4125

√
10 w(3)

c (2,2; 1,1,2) + 112
675

√
6 w(3)

c (2,2; 1,2,1)
]〈x−13〉n0L0

+Z1
[

16
1375

√
10 [6919 + 128L0(L0 + 1)] w(3)

c (2,2; 1,1,2) + 32
75

√
6 [88 + L0(L0 + 1)] w(3)

c (2,2; 1,2,1)
]〈x−14〉n0L0

− [
176
125

√
10

(
L4

0 + 2L3
0 + 2069

11 L2
0 + 2058

11 L0 + 1560
)
w(3)

c (2,2; 1,1,2)

+ 8
25

√
6
(
L4

0 + 2L3
0 + 129L2

0 + 128L0 + 2860
)
w(3)

c (2,2; 1,2,1)
]〈x−15〉n0L0

}
. (155)

4. Fourth-order energy

The fourth-order energy correction can be evaluated according to


E4 = 
E
(1)
4 + 
E

(2)
4 , (156)

where


E
(1)
4 ≡ 〈	1|vcx |	2〉, (157)


E
(2)
4 ≡ −
E2 〈	1|	1〉. (158)

In the above we have applied again the condition 
E1 = 0; also, |	1〉 is the first-order wave function correction given by

|	1〉 =
∑
m

〈	m|vcx |	0〉
(E0 − Em)

|	m〉 (159)
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and |	2〉 is the second-order correction

|	2〉 =
∑
k′n

〈	k′ |vcx |	n〉〈	n|vcx |	0〉
(E0 − Ek′)(E0 − En)

|	k′ 〉. (160)

We focus on 
E
(1)
4 first. Substituting (159) and (160) into (157) yields


E
(1)
4 =

∑
mnk′

〈	0|vcx |	m〉〈	m|vcx |	k′ 〉〈	k′ |vcx |	n〉〈	n|vcx |	0〉
(E0 − Em)(E0 − En)(E0 − Ek′)

. (161)

Let

	0 = φ0χn0L0M0 , (162)

	m = φnc1 Lc1 Mc1
χnx1 Lx1 Mx1

, (163)

	k′ = φnc2 Lc2 Mc2
χnx2 Lx2 Mx2

, (164)

	n = φnc3 Lc3 Mc3
χnx3 Lx3 Mx3

. (165)

We first perform the following expansions according to (52)

1

E0 − Em

=
∞∑
i=0

(−1)i+1

(
δenx1

)i[
δεnc1

(
Lc1

)]i+1 (166)

1

E0 − Ek′
=

∞∑
j=0

(−1)j+1

(
δenx2

)j[
δεnc2

(
Lc2

)]j+1 (167)

1

E0 − En

=
∞∑

k=0

(−1)k+1

(
δenx3

)k[
δεnc3

(
Lc3

)]k+1 . (168)

It should be pointed out that in making the above expansions, the necessary condition for these expansions to be valid is that
the excitation energies δεncp

(Lcp
) 
= 0 for p = 1,2,3. However, it is allowed for δεnc2

(Lc2 ) = 0, i.e., φnc2 Lc2 Mc2
= φ0, because the

intermediate state 	k′ is connected to another intermediate state 	m or 	n by vcx . When this happens E0 − Ek′ = −δenx2
and so

a special treatment is needed for this case. We thus further split 
E
(1)
4 into two parts:


E
(1)
4 = 
E

(1)
4a + 
E

(1)
4b , (169)

where the first term is for the case of δεnc2
(Lc2 ) 
= 0, and the second term for δεnc2

(Lc2 ) = 0. We deal with 
E
(1)
4a first.

Substituting (162)–(168) into the right-hand side of (161) and evaluating various matrix elements of vcx we obtain


E
(1)
4a =

∞∑
i,j,k=0

(−1)i+j+k+1
∑

Lc2 �0

∑
Lc1 ,Lc3 �1

∑
�1,�2�1

(−1)Lc2
CLc1

CLc3
C�1C�2√(

Lc1 ,Lc3

)
×w(4)

c

(
i,j,k; Lc2 ,Lc1 ,�1,�2,Lc3

)
w

(4)
ijk

(
Lc2 ,Lc1 ,�1,�2,Lc3

)
. (170)

In the above, the quantity describing the core w(4)
c is defined by

w(4)
c

(
i,j,k; Lc2 ,Lc1 ,�1,�2,Lc3

) ≡
∑

nc1 n∗
c2

nc3

〈
φ0

∥∥TLc1

∥∥φnc1 Lc1

〉〈
φnc1 Lc1

∥∥T�1

∥∥φnc2 Lc2

〉〈
φnc2 Lc2

∥∥T�2

∥∥φnc3 Lc3

〉〈
φnc3 Lc3

∥∥TLc3

∥∥φ0
〉

[
δεnc1

(
Lc1

)]i+1[
δεnc2

(
Lc2

)]j+1[
δεnc3

(
Lc3

)]k+1 , (171)

where n∗
c2

indicates that the intermediate spectrum {φnc2 Lc2 Mc2
} should exclude the ground state of the core φ0. It is easy to see

that w(4)
c has the following symmetry:

w(4)
c

(
i,j,k; Lc2 ,Lc1 ,�1,�2,Lc3

) = w(4)
c

(
k,j,i; Lc2 ,Lc3 ,�2,�1,Lc1

)
. (172)

The quantity describing the Rydberg electron w
(4)
ijk is defined by

w
(4)
ijk

(
Lc2 ,Lc1 ,�1,�2,Lc3

) ≡
∑

Mc1 Mc2 Mc3

∑
m1m2

(−1)Mc1 +Mc2

(
Lc1 �1 Lc2

−Mc1 m1 Mc2

)(
Lc2 �2 Lc3

−Mc2 m2 Mc3

)

× 〈
χn0L0M0

∣∣uLc1 Mc1
hi

su
∗
�1m1

hj
s u

∗
�2m2

hk
su

∗
Lc3 Mc3

∣∣χn0L0M0

〉
. (173)
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One can further simplify w
(4)
ijk by applying similar steps leading to (132), arriving at

w
(4)
ijk

(
Lc2 ,Lc1 ,�1,�2,Lc3

) = 2L0 + 1

(4π )2

(
Lc1 ,Lc3 ,�1,�2

)1/2 ∑
�1�2�3

(�1,�2,�3)

×
(

Lc3 L0 �1

0 0 0

)(
�2 �1 �2

0 0 0

)(
�1 �2 �3

0 0 0

)(
L0 �3 Lc1

0 0 0

)
G(4)(�1,�2,�3)

×
∫ ∞

0
dx x−Lc1 +1 Rn0L0 (x) hi

r (�3) x−�1−1 hj
r (�2) x−�2−1 hk

r (�1) x−Lc3 −1 Rn0L0 (x), (174)

with G(4) being defined by

G(4)(�1,�2,�3) ≡
∑

Mc1 Mc2 Mc3

∑
m1m2

∑
ω1ω2ω3

(−1)Mc2 +Mc3 +m1

(
Lc1 �1 Lc2

−Mc1 m1 Mc2

)(
Lc2 �2 Lc3

−Mc2 m2 Mc3

)

×
(

Lc3 L0 �1

−Mc3 M0 ω1

)(
�2 �1 �2

m2 ω1 ω2

)(
�1 �2 �3

−m1 ω2 ω3

)(
L0 �3 Lc1

M0 ω3 −Mc1

)
. (175)

The use of the graphical method of angular momentum leads to [27]

G(4)(�1,�2,�3) = (−1)�1+�2
1

2L0 + 1

{
�3 �2 �1

Lc2 Lc1 L0

}{
�2 �1 �2

Lc3 Lc2 L0

}
. (176)

We finally have

w
(4)
ijk

(
Lc2 ,Lc1 ,�1,�2,Lc3

) = (−1)�1+�2

(4π )2

(
Lc1 ,Lc3 ,�1,�2

)1/2 ∑
�1�2�3

(�1,�2,�3)

(
Lc3 L0 �1

0 0 0

)

×
(

�2 �1 �2

0 0 0

)(
�1 �2 �3

0 0 0

)(
L0 �3 Lc1

0 0 0

){
�3 �2 �1

Lc2 Lc1 L0

}{
�2 �1 �2

Lc3 Lc2 L0

}

×
∫ ∞

0
dx x−Lc1 +1 Rn0L0 (x) hi

r (�3) x−�1−1 hj
r (�2) x−�2−1 hk

r (�1) x−Lc3 −1 Rn0L0 (x). (177)

From the four 3 − j symbols in (177) one can see that Lc1 + �1 + �2 + Lc3 must be even with the lowest value of 4. We thus
rewrite 
E

(1)
4a in the form


E
(1)
4a =

∞∑
i,j,k=0

∑
s=4,6,8,...

δe4(i,j,k; s), (178)

where

δe4(i,j,k; s) =
∑

Lc2 �0

∑
Lc1 ,�1,�2,Lc3 �1

Lc1 +�1+�2+Lc3 =s

(−1)i+j+k+1+Lc2
CLc1

CLc3
C�1C�2√(

Lc1 ,Lc3

) w(4)
c

(
i,j,k; Lc2 ,Lc1 ,�1,�2,Lc3

)
w

(4)
ijk

(
Lc2 ,Lc1 ,�1,�2,Lc3

)
.

(179)

We now list δe4(i,j,k; s) below up to the order of 〈x−10〉n0L0 , where the symmetry condition (172) is applied:

δe4(0,0,0; 4) = −q4
x a8 π2

[
16
81w(4)

c (0,0,0; 0,1,1,1,1) + 32
405w(4)

c (0,0,0; 2,1,1,1,1)
]〈x−8〉n0L0 , (180)

δe4(1,0,0; 4) = q4
x a9 π2

[
112
81 w(4)

c (0,0,1; 0,1,1,1,1) + 224
405w(4)

c (0,0,1; 2,1,1,1,1)
]〈x−10〉n0L0 , (181)

δe4(0,1,0; 4) = q4
x a9 π2

[
128
81 w(4)

c (0,1,0; 0,1,1,1,1) + 352
405w(4)

c (0,1,0; 2,1,1,1,1)
]〈x−10〉n0L0 , (182)

δe4(0,0,1; 4) = q4
x a9 π2

[
112
81 w(4)

c (0,0,1; 0,1,1,1,1) + 224
405w(4)

c (0,0,1; 2,1,1,1,1)
]〈x−10〉n0L0 , (183)

δe4(0,0,0; 6) = q4
x a10 π2

[
32

945

√
6 w(4)

c (0,0,0; 2,1,1,3,1) + 32
675w(4)

c (0,0,0; 1,1,2,2,1) + 16

525
w(4)

c (0,0,0; 3,1,2,2,1)

+ 32
225w(4)

c (0,0,0; 0,1,1,2,2) + 64
7875

√
35 w(4)

c (0,0,0; 2,1,1,2,2) + 64
3375

√
15 w(4)

c (0,0,0; 1,2,1,2,1)
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+ 32
2625

√
15 w(4)

c (0,0,0; 3,2,1,2,1) + 32
2205

√
14 w(4)

c (0,0,0; 2,1,1,1,3) + 32
1125w(4)

c (0,0,0; 1,2,1,1,2)

+ 16
875w(4)

c (0,0,0; 3,2,1,1,2)
]〈x−10〉n0L0 . (184)

Let us consider 〈	1|	1〉 in (158), which can be expressed in the form

〈	1|	1〉 =
∑

n

〈	0|vcx |	n〉〈	n|vcx |	0〉
(E0 − En)2

. (185)

Assuming

	0 = φ0χn0L0M0 , (186)

	n = φncLcMc
χnxLxMx

, (187)

and using the expansion of 1/(E0 − En) in (52), 〈	1|	1〉 can be reduced to

〈	1|	1〉 =
∞∑

i,j=0

(−1)i+j
∑
Lc�1

C2
Lc

(2Lc + 1)2i+j−2

π
α(i + j + 1,Lc)w(2)

i+j (Lc), (188)

where α(i + j + 1,Lc) and w
(2)
i+j (Lc) are defined in (64) and (60) respectively. Since 〈	1|	1〉 depends on i and j through i + j ,

we can apply the following transformation

∞∑
j=0

∞∑
i=0

f (i + j ) =
∞∑

k=0

k∑
i=0

f (k) =
∞∑

k=0

(k + 1)f (k), (189)

to (188) resulting in

〈	1|	1〉 = q2
x

∞∑
i=0

(−1)i(i + 1)
∑
Lc�1

2i+2πa2Lc+2

2Lc + 1
α(i + 1,Lc)w(2)

i (Lc). (190)

Comparing to (73) one can see that 〈	1|	1〉 has the same expression as 
E2, provided that −2(i + 1)α(i + 1,Lc) is replaced by
α(i,Lc). Thus, if we set

〈	1|	1〉 =
∞∑
i=0

∑
Lc�1

ep(i,Lc), (191)

according to (76), (85), and (111), we have the following specific expressions:

ep(0,Lc) = q2
x a2Lc+2 βLc

〈x−2Lc−2〉n0L0 , (192)

ep(1,Lc) = −2 q2
x a2Lc+3(Lc + 1)(2Lc + 1) γLc

〈x−2Lc−4〉n0L0 , (193)

ep(2,Lc) = −6 q2
x a2Lc+4 δLc

(Lc + 1)2

{
2Z1

2Lc + 3
〈x−2Lc−5〉n0L0 − (Lc + 2)(2Lc + 1)

(
1 + L0(L0 + 1)

(Lc + 1)(2Lc + 3)

)
〈x−2Lc−6〉n0L0

}
.

(194)

Using these results, one obtains the following correction of (158) up to order O(x−10)


E
(2)
4 = 1

2 q4
x a8 α1 β1 〈x−4〉2

n0L0
+ 1

2 q4
x

[
a10 α1 β2 + a10 β1 α2 − 12 a9 α1 γ1 − 6 a9 β2

1

] 〈x−4〉n0L0 〈x−6〉n0L0 + O(x−11). (195)

Finally we consider 
E
(1)
4b in (169), which corresponds to the case of φnc2 Lc2 Mc2

= φ0 and thus E0 − Ek′ = −δenx2
= −(enx2

−
en0 ) in (161). After evaluating relevant matrix elements of vcx , we obtain the following expression


E
(1)
4b =

∞∑
i,k=0

(−1)i+k+1 2i+k−6

π2

∑
Lc1 ,Lc3 �1

C2
Lc1

C2
Lc3

(
Lc1 ,Lc3

)
Wg

(
i,k; Lc1 ,Lc3

)
α
(
i,Lc1

)
α
(
k,Lc3

)
, (196)

where α(i,Lc) is the 2Lc -pole generalized polarizability defined in (64) and

Wg

(
i,k; Lc1 ,Lc3

) =
∑

Mc1 Mc3

〈
χn0L0M0

∣∣uLc1 Mc1
hi

su
∗
Lc1 Mc1

Ĝ(n0)uLc3 Mc3
hk

su
∗
Lc3 Mc3

∣∣χn0L0M0

〉
(197)
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with Ĝ(n0) being the reduced Schrödinger-Coulomb Green’s function defined in Refs. [28,29]

Ĝ(n0) ≡
∑

nx2 Lx2 Mx2

∣∣χnx2 Lx2 Mx2

〉〈
χnx2 Lx2 Mx2

∣∣
enx2

− en0

. (198)

It should be mentioned that in (198), the sum is over all states, including the continuum, with enx2

= en0 . By taking the complex

conjugate of Wg(i,k; Lc1 ,Lc3 ) and noting that it is real, one arrives at the following relation

Wg

(
i,k; Lc1 ,Lc3

) = Wg

(
k,i; Lc3 ,Lc1

)
. (199)

Using (75) one can see that

Wg

(
0,0; Lc1 ,Lc3

) =
(
Lc1 ,Lc3

)
16π2

S2Lc1 ,2Lc3
(n0,L0), (200)

where

Si,j (n0,L0) = 〈
χn0L0M0

∣∣x−i−2Ĝ
(
en0

)
x−j−2

∣∣χn0L0M0

〉
. (201)

In general, Wg can further be recast into

Wg

(
i,k; Lc1 ,Lc3

) = 〈
χn0L0M0

∣∣Ûi

(
Lc1

)
Ĝ
(
en0

)
Ûk

(
Lc3

)∣∣χn0L0M0

〉 = 〈
χn0L0M0

∣∣Ûi

(
Lc1

)∣∣gk

(
Lc3

)〉
, (202)

where

∣∣gk

(
Lc3

)〉 = Ĝ
(
en0

)
Ûk

(
Lc3

)∣∣χn0L0M0

〉 =
∑

nx2Lx2 Mx2

∣∣χnx2Lx2 Mx2

〉〈
χnx2Lx2 Mx2

∣∣Ûk

(
Lc3

)∣∣χn0L0M0

〉
enx2

− en0

(203)

and Ûi(�) is defined in (61). The above defined |gk(Lc3 )〉 may be interpreted as the first-order wave function correction due to the
perturbation −Ûk(Lc3 ), thus satisfying the following equation

hs

∣∣gk

(
Lc3

)〉 = Ûk

(
Lc3

)∣∣χn0L0M0

〉 − 〈
χn0L0M0

∣∣Ûk

(
Lc3

)∣∣χn0L0M0

〉∣∣χn0L0M0

〉
. (204)

This equation can be considered as the reduction formula for hs acting on |gk(Lc3 )〉, where the right-hand side of (204) does not
involve the Green’s function.

Next consider the following case:

Wg

(
1,k; Lc1 ,Lc3

) =
∑
Mc1

〈
χn0L0M0

∣∣uLc1 Mc1
hsu

∗
Lc1 Mc1

∣∣gk

(
Lc3

)〉
. (205)

In order to simply the above expression, we try to move hs to act on |gk(Lc3 )〉 directly so that (204) can be applied. Since

uLc1 Mc1
hsu

∗
Lc1 Mc1

= uLc1 Mc1

[
hs,u

∗
Lc1 Mc1

] + uLc1 Mc1
u∗

Lc1 Mc1
hs = −a uLc1 Mc1

∇u∗
Lc1 Mc1

· ∇ + uLc1 Mc1
u∗

Lc1 Mc1
hs (206)

according to (81), we have

Wg

(
1,k; Lc1 ,Lc3

) = a
∑
Mc1

∫
d3x(∇χ∗

n0L0M0
) · (∇u∗

Lc1 Mc1
)uLc1 Mc1

gk

(
Lc3

) + a

2

〈
χn0L0M0

∣∣
⎛
⎝∇2

∑
Mc1

uLc1 Mc1
u∗

Lc1 Mc1

⎞
⎠∣∣gk

(
Lc3

)〉
+ 〈

χn0L0M0

∣∣∑
Mc1

uLc1 Mc1
u∗

Lc1 Mc1
hs

∣∣gk

(
Lc3

)〉
. (207)

In the above, we have performed an integration by parts and applied ∇2u�m = 0 and 2∇u�m · ∇u∗
�m = ∇2(u�mu∗

�m). On the other
hand, using

uLc1 Mc1
hsu

∗
Lc1 Mc1

= [
uLc1 Mc1

,hs

]
u∗

Lc1 Mc1
+ hsuLc1 Mc1

u∗
Lc1 Mc1

= a
(∇uLc1 Mc1

) · ∇u∗
Lc1 Mc1

+ hsuLc1 Mc1
u∗

Lc1 Mc1
(208)

and noting that 〈χn0L0M0 |hs = 0, we have

Wg

(
1,k; Lc1 ,Lc3

) = −a
∑
Mc1

∫
d3x

(∇χ∗
n0L0M0

) · (∇uLc1 Mc1

)
u∗

Lc1 Mc1
gk

(
Lc3

)
(209)

after performing an integration by parts. Furthermore, it is easy to verify that∑
m

(∇u�m)u∗
�m =

∑
m

u�m(∇u∗
�m) (210)
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according to (83). Therefore, by adding (207) and (209) and using the formula
∑

m u�mu∗
�m = x−2�−2 (2� + 1)/(4π ) we arrive at

Wg

(
1,k; Lc1 ,Lc3

) = 2Lc1 + 1

8π

[
a

2

〈
χn0L0M0

∣∣∇2x−2Lc1 −2
∣∣gk

(
Lc3

)〉 + 〈χn0L0M0 |x−2Lc1 −2 hs

∣∣gk

(
Lc3

)〉]

= 2Lc1 + 1

8π

[
a
(
Lc1 + 1

)(
2Lc1 + 1

)〈
χn0L0M0

∣∣x−2Lc1 −4
∣∣gk

(
Lc3

)〉 + 〈
χn0L0M0

∣∣x−2Lc1 −2 Ûk

(
Lc3

)∣∣χn0L0M0

〉
−〈x−2Lc1 −2〉n0L0

〈
χn0L0M0

∣∣Ûk

(
Lc3

)∣∣χn0L0M0

〉]
, (211)

where (204) has been used. Consider the case of k = 0. Since

Û0
(
Lc3

) = 2Lc3 + 1

4π
x−2Lc3 −2, (212)

∣∣g0
(
Lc3

)〉 = 2Lc3 + 1

4π
Ĝ
(
en0

)
x−2Lc3 −2

∣∣χn0L0M0

〉
, (213)

we have the following expression

Wg(1,0; Lc1 ,Lc3 ) =
(
Lc1 ,Lc3

)
32π2

[
a
(
Lc1 + 1

)(
2Lc1 + 1

)
S2Lc1 +2,2Lc3

(n0,L0)

+〈x−2(Lc1 +Lc3 )−4〉n0L0 − 〈x−2Lc1 −2〉n0L0〈x−2Lc3 −2〉n0L0

]
. (214)

It is noted that Wg(1,k; Lc1 ,Lc3 ) in (211) can further be expressed according to

Wg

(
1,k; Lc1 ,Lc3

) = a(Lc1 + 1)(2Lc1 + 1)2

2(2Lc1 + 3)
Wg

(
0,k; Lc1 + 1,Lc3

) + 1

2
w

(4)
0k

(
Lc1 ,Lc3

) − 2Lc1 + 1

8π
w

(2)
k

(
Lc3

) 〈x−2Lc1 −2〉n0L0 , (215)

where
w

(4)
ij (�,�′) ≡ 〈

χn0L0M0

∣∣Ûi(�)Ûj (�′)
∣∣χn0L0M0

〉
, (216)

and w
(2)
i (�) = 〈χn0L0M0 |Ûi(�)|χn0L0M0〉 is defined in (60). Since w

(4)
ij is real, it is seen that w

(4)
ij (�,�′) = w

(4)
ji (�′,�). Applying a

similar procedure leading to (135), we arrive at

w
(4)
ij (�,�′) = (�,�′)

16π2

∑
�1�2

(�1,�2)

(
�′ L0 �1

0 0 0

)2(
� L0 �2

0 0 0

)2

×
∫ ∞

0
dx x−�+1Rn0L0 (x) hi

r (�2)
[
x−�−�′−2 hj

r (�1) x−�′−1Rn0L0 (x)
]
. (217)

We list some special values for w
(4)
ij (�,�′) below:

w
(4)
00 (�,�′) = (�,�′)

16π2
〈x−2(�+�′)−4〉n0L0 , (218)

w
(4)
01 (1,1) = 63a

16π2
〈x−10〉n0L0 , (219)

w
(4)
01 (2,1) = 135a

16π2
〈x−12〉n0L0 , (220)

w
(4)
01 (1,2) = 405a

32π2
〈x−12〉n0L0 , (221)

w
(4)
01 (2,2) = 825a

32π2
〈x−14〉n0L0 , (222)

w
(4)
02 (1,1) = −3Z1a

2

4π2
〈x−11〉n0L0 + 21a2

(
L2

0 + L0 + 36
)

16π2
〈x−12〉n0L0 , (223)

w
(4)
02 (1,2) = −315Z1a

2

176π2
〈x−13〉n0L0 + 405a2

(
L2

0 + L0 + 55
)

88π2
〈x−14〉n0L0 , (224)

w
(4)
02 (2,1) = −15Z1a

2

11π2
〈x−13〉n0L0 + 405a2

(
L2

0 + L0 + 55
)

176π2
〈x−14〉n0L0 , (225)

w
(4)
03 (1,1) = −2529Z1a

3

88π2
〈x−13〉n0L0 + 1701a3

(
3L2

0 + 3L0 + 44
)

88π2
〈x−14〉n0L0 , (226)

w
(4)
11 (1,1) = −Z1a

2

4π2
〈x−11〉n0L0 + a2

(
2L2

0 + 2L0 + 315
)

8π2
〈x−12〉n0L0 , (227)
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w
(4)
11 (1,2) = −45Z1a

2

88π2
〈x−13〉n0L0 + 45a2

(
L2

0 + L0 + 297
)

88π2
〈x−14〉n0L0 , (228)

w
(4)
11 (2,2) = −225Z1a

2

208π2
〈x−15〉n0L0 + 225a2

(
2L2

0 + 2L0 + 1001
)

416π2
〈x−16〉n0L0 , (229)

w
(4)
11 (1,3) = −21Z1a

2

26π2
〈x−15〉n0L0 + 21a2

(
2L2

0 + 2L0 + 1001
)

52π2
〈x−16〉n0L0 . (230)

Finally, we evaluate Wg(2,k; Lc1 ,Lc3 ):

Wg

(
2,k; Lc1 ,Lc3

) =
∑
Mc1

〈
χn0L0M0

∣∣uLc1 Mc1
h2

s u
∗
Lc1 Mc1

∣∣gk

(
Lc3

)〉
=

∑
Mc1

〈
χn0L0M0

∣∣[uLc1 Mc1
,hs

][
hs,u

∗
Lc1 Mc1

]∣∣gk

(
Lc3

)〉 + ∑
Mc1

〈
χn0L0M0

∣∣uLc1 Mc1
hsu

∗
Lc1 Mc1

hs

∣∣gk

(
Lc3

)〉
. (231)

In the above expression, the first term on the right-hand side can be neglected because it contributes terms of order 〈x−11〉n0L0

and below. The second term can be simplified by applying (204)

Wg

(
2,k; Lc1 ,Lc3

) ≈ 〈
χn0L0M0

∣∣Û1
(
Lc1

)
Ûk

(
Lc3

)∣∣χn0L0M0

〉 − 〈
χn0L0M0

∣∣Û1
(
Lc1

)∣∣χn0L0M0

〉〈
χn0L0M0

∣∣Ûk

(
Lc3

)∣∣χn0L0M0

〉
= w

(4)
1k

(
Lc1 ,Lc3

) − w
(2)
1

(
Lc1

)
w

(2)
k

(
Lc3

)
, (232)

where (60) and (216) have been used. Therefore, the final result for 
E
(1)
4b , accurate to 〈x−10〉n0L0 , is


E
(1)
4b = − 1

4 q4
x a8 α2

1S2,2(n0,L0) − 1
2 q4

x a9 α1(a α2 − 6β1)S4,2(n0,L0) + 1
2 q4

x a8 α1β1〈x−8〉n0L0

− 1
2 q4

x a8 α1β1
(〈x−4〉n0L0

)2 + 1
2 q4

x a9
(
a α1β2 + a α2β1 − 28α1γ1 − 10β2

1

)〈x−10〉n0L0

− 1
2 q4

x a9
(
a α1β2 + a α2β1 − 12α1γ1 − 6β2

1

)〈x−4〉n0L0〈x−6〉n0L0 + O(x−11). (233)

In the above, we have neglected S4,4(n0,L0) and S6,2(n0,L0). Substituting (233) and (195) into (169) and (156), we finally arrive
at the following expression for the total fourth-order energy correction


E4 = 
E
(1)
4a − 1

4 q4
x a8 α2

1S2,2(n0,L0) − 1
2 q4

x a9 α1(a α2 − 6β1)S4,2(n0,L0) + 1
2 q4

x a8 α1β1〈x−8〉n0L0

+ 1
2 q4

x a9
(
a α1β2 + a α2β1 − 28α1γ1 − 10β2

1

)〈x−10〉n0L0 , (234)

where 
E
(1)
4a is given by (178). For the fifth-order correction 
E5, it contributes terms of O(x−11) and smaller and can thus be

neglected.
Finally, let us discuss a scaling property of Si,j (n0,L0) defined in (201), which was calculated by Swainson and Drake in

Ref. [28] using h′
x = −∇2

r /2 − 1/r as the Rydberg electron Hamiltonian. It can also be calculated using equation (6.1.12) in
Ref. [29] where an extra factor of 2 needs to be applied because of the units used. Our Hamiltonian hx = a(−∇2

x/2 − Z1/x),
however, can be transformed into h′

x by letting r = Z1x, i.e., hx = aZ2
1h

′
x . Since

Si,j (n0,L0) =
∑

nx2 Lx2 Mx2

〈χn0L0M0 |x−i−2 1

enx2
− en0

∣∣χnx2 Lx2 Mx2

〉〈
χnx2 Lx2 Mx2

∣∣x−j−2
∣∣χn0L0M0

〉

by applying the definition of Ĝ(n0) in (198), we then have the corresponding transformation Si,j (n0,L0) = (Zi+j+2
1 /a) S ′

i,j (n0,L0),
where S ′

i,j (n0,L0) is the one calculated in Ref. [28].

III. RESULTS AND DISCUSSION

After collecting all terms up to 〈x−10〉n0L0 , the second-order correction �E2 can be expressed as follows:

�E2

q2
x

=
4∑

Lc=1

(
− 1

2

)
a2Lc+2αLc

〈x−2Lc−2〉n0L0 +
3∑

Lc=1

1

2
a2Lc+3(Lc + 1)(2Lc + 1)βLc

〈x−2Lc−4〉n0L0

+
2∑

Lc=1

a2Lc+4γLc
(Lc + 1)2

{
2Z1

2Lc + 3
〈x−2Lc−5〉n0L0 − (Lc + 2)(2Lc + 1)

[
1 + L0(L0 + 1)

(Lc + 1)(2Lc + 3)

]
〈x−2Lc−6〉n0L0

}

+ a7δ1

{
−408Z1

7
〈x−9〉n0L0 + 720

[
1 + 3

14
L0(L0 + 1)

]
〈x−10〉n0L0

}
+ a8ς1

(
− 164Z2

1

7
〈x−10〉n0L0

)
, (235)
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where we have moved the qx-related factor to the left-hand side. It should be noted that the last term in the above expression of
�E2 is absent in both Drake’s [2] and Drachman’s [5] formulas.

The third-order correction �E3 reads

�E3

−q3
x

= −a7π
3
2

(
16

√
10

225
w(3)

c (0,0; 1,1,2) + 8
√

6

135
w(3)

c (0,0; 1,2,1)

)
〈x−7〉n0L0

+ a9π
3
2

(
16

√
21
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w(3)

c (0,0; 1,2,3)+16
√

15
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c (0,0; 1,3,2)+16
√

35
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w(3)

c (0,0; 2,1,3)+8
√

14
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c (0,0; 2,2,2)
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〈x−9〉n0L0

+ 2a8π
3
2

(
8
√

10

25
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c (1,0; 1,1,2) + 16
√

6

45
w(3)

c (1,0; 1,2,1) + 16
√

10
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w(3)

c (1,0; 2,1,1)

)
〈x−9〉n0L0

+ a9π
3
2 Z1

(
4
√

10
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w(3)

c (1,1; 1,1,2) + 4
√

6

135
w(3)

c (1,1; 1,2,1)

)
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+ 2a9π
3
2 Z1

(
4
√

10

75
w(3)

c (2,0; 1,1,2) + 2
√

6
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w(3)

c (2,0; 1,2,1) + 2
√

10

45
w(3)

c (2,0; 2,1,1)

)
〈x−10〉n0L0 . (236)

It should be noted again that all the 〈x−10〉n0L0 terms above are entirely missing in the works of Drake [2] and Drachman [5].
Finally, the expression for �E4 is

�E4

q4
x

= −a8π2

(
16
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w(4)
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405
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+ 2a9π2

(
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w(4)
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405
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2
a8α1β1〈x−8〉n0L0 + 1

2
a9

(
aα1β2 + aα2β1 − 28α1γ1 − 10β2

1

)〈x−10〉n0L0

− 1

4
a8α2

1S2,2(n0,L0) − 1

2
a9α1(aα2 − 6β1)S2,4(n0,L0). (237)

The above expression is in agreement with Drake’s formula [2] and differs from the result of Drachman [5] regarding the term
(−28α1γ1 − 10β2

1 )〈x−10〉n0L0 . In Drachman’s calculation, he obtains (−12α1γ1 − 14β2
1 )〈x−10〉n0L0 instead.

The expressions in (235), (236), and (237) are valid for any atomic system in a high-L atomic state with the core in an S-state
as far as the nonrelativistic Hamiltonian (1) is concerned. For heliumlike systems, all quantities of describing the core properties,
such as α(i,Lc) in (64), w(3)

c in (127), and w(4)
c in (171) can be calculated either analytically or numerically. For α(1,3), for

example, our numerical result is 102.03125000000000(2)Z−10 using a 60-term Sturmian basis set [30], while the analytical value
given in Ref. [2] is 3265

32 Z−10. We have checked the analytical values listed in Ref. [2] and contained in Ref. [5] and found that
all are correct except θ , the nonadiabatic correction of order 〈x−10〉n0L0 to the term 〈x−8〉n0L0 in (237), i.e.,

θ = 2
[
2a9π2

(
112
81 w(4)

c (0,0,1; 0,1,1,1,1) + 224
405w(4)

c (0,0,1; 2,1,1,1,1)
)

+ a9π2
(

128
81 w(4)

c (0,1,0; 0,1,1,1,1) + 352
405w(4)

c (0,1,0; 2,1,1,1,1)
)]

. (238)

The value 791313
128 Z−12 of θ used in [2] and [5] is incorrect and it should be 8348.7968750000000000(1)Z−12 numerically. To

verify this, we carried out an analytical derivation using a method similar to [5] and obtained θ = 534323
64 Z−12 that is in agreement

with our numerical value.
The finite nuclear mass effect is fully considered in our derivation of expressions 
E2, 
E3, and 
E4 either explicitly through

the parameter a = μx/μ or implicitly through the nuclear mass related parameters, such as in T�m(r1,r2, . . . ,rn) defined by (19).
It is possible to express the total energy as a sum of the zeroth-order energy and a series expansion of corrections in powers of
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y = μ/M . For a heliumlike system, we have

EM = −Z2

2
− (Z − 1)2

2n2
0

+ 
E∞ + yε
(1)
M + y2ε

(2)
M + y3ε

(3)
M + y4ε

(4)
M + · · · , (239)

in 2RM . In the above,


E∞ = − 9

4Z4
〈x−4〉n0L0 + 69

8Z6
〈x−6〉n0L0 + 319

30Z8

(
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)
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ε
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2n2
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M (242)

with
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[
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ε
(3)
M = − 18
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(Z − 1)〈x−4〉n0L0 + 15

4Z6
(35Z + 13)〈x−6〉n0L0 − 427

5Z8

(
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, (244)

ε
(4)
M = − (Z − 1)2

2n2
0

+ ε̃
(4)
M (245)
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with

ε̃
(4)
M = − 9

2Z4
(2Z2 − 4Z + 7)〈x−4〉n0L0 + 45

8Z6
(13Z2 − 10Z − 20)〈x−6〉n0L0

+ 1

20Z8
(211Z3 + 6822Z2 − 47086Z + 69873)〈x−7〉n0L0 + O

(〈x−8〉n0L0

)
. (246)

Tables I to VI in the Supplemental Material [31] list numerical values for 
E∞, ε
(1)
M , and ε̃

(2)
M of helium in Rydberg states

with L0 from 4–15 and n0 from L0 + 1 to 16, where 
n (n = 4,6,7,8,9,10) denotes the contribution of the terms involving
〈x−n〉n0L0 , and 
2,2 and 
2,4 denote, respectively, the contributions involving S ′

2,2(n0,L0) and S ′
2,4(n0,L0). In these tables, we

keep ten significant figures for all the numbers. Our results could serve as a benchmark for future reference.
In summary, we have presented a complete calculation for the nonrelativistic energy levels of a Rydberg atom up to the order

of 〈x−10〉n0L0 . We have also corrected the existing errors in the literature and recovered various missing terms from the previous
works. It is desirable to revisit relativistic and quantum electrodynamic corrections [1,2,5] to the nonrelativistic energies so that
a meaningful comparison with experimental measurements can be made. Work along this direction is a topic for future research.
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