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Prediction of quantum many-body chaos in the protactinium atom
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The energy-level spectrum of the protactinium atom (Pa, Z = 91) is simulated with a configuration interaction
calculation. Levels belonging to the separate manifolds of a given total angular momentum and parity J π

exhibit distinct properties of many-body quantum chaos. Moreover, an extremely strong enhancement of small
perturbations takes place. As an example, effective three-electron interaction is investigated and found to play a
significant role in the system. Chaotic properties of the eigenstates allow one to develop a statistical theory and
predict probabilities of different processes in chaotic systems.
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I. INTRODUCTION

Spectra of complex many-body quantum systems often
demonstrate universal statistical behavior. In the 1950s,
Wigner showed that it can be modeled by means of random ma-
trix theory (RMT) applying this method to atomic nuclei [1].
Soon after, Rosenzweig and Porter published an analysis
of experimental spectra of atoms [2]: several sixth-period
transition metals (Z = 72, . . . ,77) displayed an agreement
with RMT in the nearest-neighbor spacing distribution of
their even-parity energy levels, whereas spectra of lighter
atoms with similar electronic structure (transition metals
Z = 21, . . . ,28 and Z = 39, . . . ,46) showed more regular
behavior. This fact was attributed to the applicability of
the LS-coupling scheme in lighter atoms. In 1983, it was
demonstrated [3] that experimental spectra of neutral atoms
and ions of Nd, Sm, and Tb follow the predictions of RMT.
Later, a realistic numerical model of Ce was investigated [4–7]
and it was shown that the properties of its excited states are
consistent with the behavior of random two-body interaction
matrices [8–10].

Many-body systems that exhibit such properties are often
called chaotic. They are sensitive to small perturbations and,
for that reason, extremely difficult to model accurately, since
a small addition to the Hamiltonian results in a significant
change of the energy levels. Chaotic properties of the eigen-
states have important consequences. Chaos allows one to
develop statistical theory and calculate matrix elements of
different operators between extremely complex many-body
states, including electromagnetic transition probabilities and
probabilities of other processes—see, e.g., [11–17].

In fact, small perturbations in these systems are subject to
statistical enhancement due to the large number of principal
basis components N participating in an eigenfunction of a
chaotic system [18–21]. Mixing of neighboring eigenstates
|�a〉 and |�b〉 by a small single-particle interaction V scales
as

〈�a|V |�b〉
�Eab

∼
√

N, (1)

where �Eab is the difference in energies between the states.

Eigenfunctions of compound nuclei tend to have
N ∼ 104–106 [22]. Enhancement of parity-nonconserving
effects for nuclei was predicted [18,19] and subsequently
measured [23] (see also review [11] and references therein).
The eigenfunctions of highly chaotic Ce atom were estimated
to have N ∼ 102. We show that protactinium has an order of
magnitude higher, N ∼ 103. It leads to an extremely strong
enhancement of small perturbations, which approaches the
level of enhancement seen in compound nuclei. Effective
three-electron interaction, usually small in atoms, becomes
remarkably strong in Pa, mixing the basis states and altering
the positions of energy levels.

Random matrices

Consider the basic version of RMT of ensembles of matrices
N × N, N → ∞ with Gaussian random elements, where each
matrix follows a set of symmetry rules; the probability density
of matrix to appear in an ensemble is determined by its trace.
There are three most common ensembles: Gaussian orthogonal
(GOE), unitary (GUE), and symplectic (GSE) [24]. GOE is
connected with Hamiltonians of time-reversal and rotationally
invariant systems (or with systems without rotational invari-
ance, but with integer spin); GUE is relevant in the more
general case when the time-reversal symmetry is broken; GSE
is used for time-reversal invariant systems with half-integer
spin and broken rotational symmetry [25].

The characteristic property of distribution of the eigen-
values in any of the named ensembles is the repulsion of
neighboring levels. It is the strongest in GSE and the weakest
in GOE.

By the presupposition of ergodicity, statistical properties
of spectra of matrices across the ensemble are transferable to
the spectrum of one of the wide range of matrices from the
ensemble.

The tool mostly used to examine the repulsion of levels is
the nearest-neighbor spacing (NNS) distribution. In matrices,
it is defined as follows: let H be a matrix from one of the three
ensembles, its eigenvalues listed as E1 � E2 � · · · � EN .
Take some of them, En � · · · � Ek , and let them fall into
a sufficiently large interval �E. The spacings Si = Ei+1 − Ei

should then be divided by the average spacing D within �E
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to receive the dimensionless si , which can be compared later
with similarly normalized spacings from other parts of the
spectrum,

Si = Ei+1 − Ei, (2)

D = 〈Si〉�E, (3)

si = Si/D. (4)

The probability for a normalized spacing sj to fall into an
interval [s,s + ds] is dP = P (s)ds and the NNS distribution
is then defined as the probability density P (s). The procedure
of obtaining dimensionless spacings si from a spectrum that
is nonuniform in density is called unfolding [26]. It can
be performed either as shown above, through finding the
average spacing on a limited-length interval and then moving
the interval along the spectrum, or it is possible to derive
local average spacing from a polynomial fit of the spectrum
cumulative function. The latter method will be described below
in Sec. II B.

Considering a two-dimensional case, Wigner predicted the
NNS distribution of GOE to be of the following shape [1]:

PGOE(s) = πs

2
exp

(
−π

4
s2

)
, (5)

which was later named Wigner surmise. It turned out to be very
close to the exact NNS distribution p(s) for GOE calculated
later [27,28].

Along with the eigenvalues of matrices, the NNS distribu-
tion can be found for a large number (N → ∞) of randomly
and independently placed points on a limited interval [29]. In
this case, the repulsion of neighboring points is absent; in fact,
they tend to cluster. This p(x) is referred to as Poisson NNS
distribution,

P (x) = e−x. (6)

If the investigated system has good quantum numbers, its
Hamiltonian matrix can be written in a block-diagonal form.
The spectrum is then composed of noninteracting subsets of
levels and its NNS may resemble Poisson (6) more than the
Wigner case (5) due to the absent repulsion.

It is useful to introduce the one-parameter Brody func-
tion [30], which turns into Poisson distribution (6) for η = 0
and is close to Wigner distribution for GOE (5) when η = 1:

Pη(s) = Asηexp(−αsη+1), (7)

A = (η + 1)α, (8)

α =
[
�

(
η + 2

η + 1

)]η+1

. (9)

Thus we define the repulsion parameter η ∈ [0,1].

II. METHOD

A. Configuration interaction model

Protactinium (Pa) is an actinide with atomic number
Z = 91. Its ground state has total angular momentum
J = 11/2, parity π = +1, and it belongs to the configuration

[Rn]5f 26d17s2. The unfilled 5f shell along with five valence
electrons gives rise to a complex and dense spectrum.

We use the configuration interaction (CI) package described
in [31] to model the overall statistical properties of lower-
energy levels of Pa. Hartree-Fock-Dirac one-electron functions
φi are generated for the configuration [Rn]5f 26d17s27p0. The
φi of valence electrons are built in the field of frozen [Rn] core.
They are arranged into Slater determinants |	i〉 belonging to
107 even or 100 odd relativistic configurations. For the basis of
the Hamiltonian matrix, we choose |	i〉 with the projection of
total angular momentum M = 0.5 to account for states with
all possible J . We diagonalize the matrix H and obtain the
eigenfunctions and corresponding eigenvalues,

|�i〉 =
∑

k

Cik|	k〉, (10)

Ĥ |�i〉 = Ei |�i〉. (11)

The resulting energy spectrum is then split into subspaces of
fixed total angular momentum and parity Jπ , which are later
analyzed separately.

Predictions of the model are compared with the experimen-
tal data [32]. The straightforward CI calculation described
above produces the correct ground state and a plausible order
of the energy levels’ leading configurations.

Strictly speaking, in the case of heavy open-shell atoms,
we are not working with the pure RMT [4,6–8]. Due to the
two-body nature of residual Coulomb interaction, the matrix
element 〈	i |H |	j 〉 is zero when the basis determinants differ
in more than two single-electron φi . If the basis states |	i〉 are
enumerated according to their energy εk = 〈	k|H |	k〉, then
the matrix H has diagonal consisting of ordered εk and sparsely
distributed off-diagonal elements Hij , decreasing with larger
distances |i − j |. The characteristic distance of this decrease
is denoted as b, roughly corresponding to the bandwidth of
band random matrix theory (bRMT). Nevertheless, spacings
of eigenvalues of such a matrix should follow the Wigner
distribution (5) [8,33,34].

B. Unfolding procedure

In order to bring the local density of the spectrum to
unity, one needs to perform unfolding [25,26]. Then, for each
subspace Jπ , the unfolded NNS statistics is built and fitted
with Brody function (7) to obtain the repulsion parameter η.

We plot the cumulative function N (E), where N is the
successive number of a level and E its energy. The overall
density of the spectrum defined as

ρ(E′) =
∑
N

δ(E′ − EN ) (12)

is connected to the cumulative function,

N (E) =
∫ E

−∞
ρ(E′)dE′. (13)

We approximate N (E) with a fifth-order polynomial pN(E)(E)
and find the smoothed form of the level density as its derivative,

ρ(E) ≡ ρsmooth(E) = dpN(E)

dE
. (14)
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This density can be understood as ρ(E) = D−1(E), where D

is the local mean level spacing. To build a NNS statistics, we
divide each spacing by the relevant D(E),

si = Si

D
= Siρ. (15)

A set of unfolded dimensionless spacings si , i = 0,1,2, . . . ,n

is obtained.

C. Strength function

In order to establish the approximate number of basis states
|	k〉 strongly participating in a given eigenfunction (10), we
investigate values of Cik . Let the energy of a basis state
(determinant) be defined as εk = 〈	k|H |	k〉. We enumerate
the basis states according to their energy and plot the squared
coefficients of an eigenfunction |�i〉 on the determinants
energy axis as |Cik|2 = |Ci(εk)|2. Significantly large |Ci(εk)|2
usually appear around the eigenvalue Ei within a certain
interval,

|Ei − εk| � �, (16)

where � is called spreading width. It is intimately connected
to the Wigner strength function [35],

ρW (E,k) =
∑

i

|Cik|2δ(E − Ei), (17)

which can be rewritten through the Green’s function of the
system [12],

Gkj (E) =
∑

i

CikC
∗
ij

E − Ei + iα
, α > 0, α → 0, (18)

ρW (E,k) = − 1

π
Im[Gkk(E)]. (19)

After performing an appropriate averaging to eliminate Cik

fluctuations which take place in an individual |�i〉, the strength
function can be expressed through certain self-energy operator
k:

ρW (E,k) = 1

2π

�k

(E − εk − �k)2 + �2
k/4

, (20)

�k = −2Im[k(E)], �k = Re[k(E)]. (21)

Here, �k is the energy spreading width of the basis component
k and �k is the shift of the eigenvector center from the basis
state energy εk . Generally speaking, �k and �k depend on
energy and the shape of (20) does not have to be simply
Lorentzian. In fact, in pure GOE, it is a semicircle [12,25,35].
But when the average squared off-diagonal element V 2

ij = V 2

is not very large, allowing for the condition V 2 � D2b

(D being average energy spacing between the basis states and
b the bandwidth of bRMT), the strength function for an infinite
band random matrix can be written [12,35] as

ρW (E,k) = 1

2π

�

(εk − E)2 + �2/4
, (22)

where the spreading width is now

� = 2πV 2

D
, � � Db. (23)

TABLE I. Repulsion parameters η obtained from fitting NNS
data with Brody function (7). Each set of spacings corresponds to a
spectral subspace with fixed parity π and total angular momentum
J . The number of levels of a given J π manifold participating in the
fitting is denoted as Nlev.

π = +1 π = −1

J Nlev η Nlev η

7/2 160 0.89 ± 0.11 151 0.94 ± 0.12
9/2 153 0.96 ± 0.12 156 0.91 ± 0.11
11/2 121 0.92 ± 0.12 136 0.99 ± 0.13
13/2 83 0.64 ± 0.13 99 0.95 ± 0.15

This approximation to the strength function is still applicable
when both V 2 and D change along the matrix, if the change
is sufficiently slow. Nevertheless, in a real system, the shift
�k ≡ −� presented in (20) should not be neglected in low-
lying eigenstates. The repulsion of levels near the beginning
of the energy spectrum is not compensated from below,
and therefore the resulting eigenvalue Ei lies lower than
the energies εk of its basis states. For similar reasons, the
shape of (22) is asymmetrically distorted for the lower levels.
In higher parts of the spectrum, both of these edge effects
decrease [4].

III. RESULTS AND DISCUSSION

A. NNS distribution histograms and fitting

Using methods described in Secs. II A and II B, we obtained
spacings distributions for different manifolds Jπ . In each
manifold, only levels with n > 10 are considered because
the first low-lying levels of the spectrum are not expected
to participate in chaotic behavior. We examine energies
0 � Ee < 44454 cm−1 for even eigenvalues and 8065 cm−1 <

Eo < 40748 cm−1 for odd ones (zero corresponds to the
ground state). The density of calculated levels on these energy
ranges might be less than in a real Pa atom since we do not
account for core polarization in our model.

The probability density of spacings for each Jπ is estimated
with Brody function (7). The resulting repulsion parameters η

for several manifolds Jπ are listed in Table I, and an example
histogram of Jπ = 7/2+ is presented in Fig. 1. Additionally,
we build a NNS statistics for the three manifolds acessible
with E1 transitions from the ground state (Fig. 2).

The results for repulsion parameters in Table I are compara-
ble with η = 1 and thus with the Wigner distribution for GOE.
The only exception is Jπ = 13/2+, where η = 0.64 ± 0.13
suggests intermediate statistics between Poisson and Wigner
cases. It can be due to slightly lower density of this spectral
manifold: there are only N + 10 = 93 levels of Jπ = 13/2+
on the energy range 0 < Ee < 44 454 cm−1.

B. Spreading width

The strength function (17) is connected to the smooth en-
velope w(εk,E) of the squared coefficients |Cik|2 = |Ci(εk)|2
as follows [4]:

ρW (E,k) = D−1|Cik|2 ≡ D−1w(εk,E), (24)
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FIG. 1. Nearest-neighbor spacing (NNS) histogram built for the
unfolded J π = 7/2+ spectrum. The unfolded spacing’s probability
distribution is fitted with Brody function [solid line, (7)] and repulsion
parameter η is obtained. Nlev is the number of levels with J π = 7/2+

considered during the fitting. Dimensionless level spacing s is given
in terms of local average spacing D of the spectrum (see Sec. II B).
The histogram is normalized to unity.

with the local mean level spacing defined as

D−1 ≡ ρ(E) =
∑

i

δ(E − Ei), E  Ei. (25)

In our case, averaging is performed on the neighboring
eigenstates to account for possible gradual change of the
smooth envelope along the spectrum. Figure 3 shows basis
coefficients distribution of a sample eigenfunction, before
any averaging is applied. It is supposed that the Hamiltonian
matrix of Pa fulfills the conditions for its strength function

FIG. 2. NNS statistics of Nlev = 411 levels accessible from the
ground state J π = 11/2+ with E1 transitions. The probability distri-
bution of the spacings is fitted with a weighted sum of Wigner and
Poisson distributions p(S) = AWpWigner(s) + (1 − AW )pPoisson(s).

FIG. 3. Coefficients Cik = Ci(εk) arranged by the basis state
energy εk . The plot corresponds to the eigenfunction with energy
E = 0.08247 a.u. = 2.24418 eV (vertical line), which has the succes-
sive number Nlev = 70 in manifold J π = 9/2+. We define the lowest
basis state energy εk0 as being zero. Large basis components lie within
a certain energy interval. The admixture of isolated components can
be considered small. Therefore we can define an energy spreading
width � for the given eigenfunction. The coefficients Cik behave like
random variables with the variance 〈C2

ik〉 depending on the energy
difference (εk − Ei)—see Fig. 4 and Eqs. (27) and (28).

to be roughly of Lorentzian shape (22), with the addition
of a possible overall shift �. Therefore, we consider levels
far enough from the edges of the spectrum. The number of
principal components is introduced as N ≡ π�

2D
. Then the

Lorentzian smooth envelope of the squared coefficients could
be written as

w(εk,E) = DρW (E,k) (26)

= 1

N

�2/4

(εk − E − �)2 + �2/4
. (27)

For averaging over neighboring levels, it is convenient to treat
x = εk − E as a single variable; we presume that the shift
� is constant for close eigenvalues. First, we make binned
statistics for x = [−0.2,0.2] a.u. ≈ [−5.44,5.44] eV and 40
bins. Then each bin is averaged over 19 neighboring levels. The
resulting binned plot is fitted by the Lorentzian (27). Table II
contains estimated parameters and Fig. 4 is an example of a
fitted histogramlike plot.

It should be noted that the tails of the plot decrease
much faster than predicted by (27) since the condition
|εk − E| < Db corresponding to (23) is being violated and
the tails start to drop exponentially [4,35,36]. For comparison,
we use another function for fitting that decreases faster on the
edges than (27), namely, the squared Lorentzian:

w′(εk,E) = 1

N

(�̃2/4)2

[(εk − E − �)2 + �̃2/4]2
, � = �̃

2
. (28)

Spreading widths � and numbers of principal components
N obtained from fitting w′(εk,E) agree with those resulting
from the Lorentzian fit (27). The shift � was estimated as the
expected (mean) value of the binned plot.
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TABLE II. Least-squares parameters of the Lorentzian fit (27).
J and π are the total angular momentum and parity of the given
manifold of wave functions; the second column shows the numbers
of J π levels participating in averaging of coefficients |Ci(εk)|2.
Spreading width � and number of principal components N are listed
in the next two columns. Approximate shift � of the Lorentzian fit
with respect to the eigenvalue is considered constant over averaged
levels; its error is estimated as half the size of the bin. The shift
decreases in the higher part of the spectrum.

J Levels � (eV) N � (eV)

π = +1
7/2 61–79 2.4 ± 0.1 871 ± 36 0.35 ± 0.14
7/2 111–129 2.7 ± 0.2 1171 ± 57 0.12 ± 0.14
9/2 61–79 2.2 ± 0.1 905 ± 38 0.57 ± 0.14
9/2 111–129 2.6 ± 0.2 1192 ± 62 0.37 ± 0.14
11/2 61–79 2.2 ± 0.2 996 ± 47 0.71 ± 0.14
13/2 60–78 2.2 ± 0.1 1106 ± 47 0.65 ± 0.14

π = −1
7/2 61–79 1.7 ± 0.1 955 ± 30 0.64 ± 0.14
7/2 111–129 2.4 ± 0.2 1706 ± 88 0.35 ± 0.14
9/2 61–79 1.9 ± 0.1 1124 ± 46 0.78 ± 0.14
9/2 111–129 2.4 ± 0.2 1825 ± 91 0.58 ± 0.14
11/2 61–79 2.0 ± 0.1 1483 ± 58 0.96 ± 0.14
13/2 61–79 2.3 ± 0.1 2124 ± 87 1.12 ± 0.14

C. Small perturbation enhancement

One of the most important features of the chaotic systems,
as we mentioned in Sec. I, is high sensitivity to small
perturbations. In particular, the mixing of the states scales
with the number of principal components N in the wave

FIG. 4. Averaged binned statistics of squared coefficients
|Cik|2 = |Ci(εk)|2 for 61–79 levels of J π = 9/2+, where we assume
x = εk − Ei being the difference between basis state energy εk and
the eigenvalue Ei . Lorentzian (27) and squared Lorentzian (28)
fits are applied, with estimated overall shift � ≈ 0.57 eV. The
resulting parameters are spreading width � = 2.2 ± 0.1 eV and
number of principal components N = 905 ± 38 for the Lorentzian,
and � = 2.0 ± 0.1 eV and N = 939 ± 23 for the squared Lorentzian
fit.

FIG. 5. Weights of the eigenfunctions of the two-particle Hamil-
tonian in the eigenfunction of the Hamiltonian with included TEI.
The plot is for eigenfunction number 135 from the subspace 7/2+.
We denote y = E0,i − Ek . The energies E0,i and Ek correspond to
the unperturbed and full Hamiltonians, respectively.

function as (1). This scaling holds only while the mixing
is small, but for sufficiently large N , the mixing becomes
strong. Perturbation at this point cannot be considered small
any longer and perturbation theory fails.

As an example of the behavior described above, we have
studied the effective three-electron interaction (TEI) between
valence electrons. Such interaction is caused by the core po-
larization effects [37,38]. Typically, it is very small, i.e., about
10−3 of the residual Coulomb interaction between valence
electrons. The latter is defined as the difference between the
two-electron Coulomb interaction and the self-consistent field,
used to form the one-electron orbitals. Residual interaction
determines configurational mixing. For atoms and ions with
filling d or f shells, TEI is enhanced by one or two orders of
magnitude [39,40], but is still much smaller than the residual
interaction, which is typically of the order of unity in atomic
units.

We calculated TEI in protactinium for the subspace 7/2+
with one of the highest level densities. The average ratio of the
TEI and the residual Coulomb nondiagonal matrix elements is
found to be 0.017. Similarly, the ratio for the maximal matrix
elements is equal to 0.015. Thus, for the nonchaotic system,
one would expect rather small mixing of the eigenfunctions.
However, diagonalization of the TEI Hamiltonian for the
subspace 7/2+ results in a complete mixing of the unperturbed
eigenfunctions. An example of one of the new eigenfunctions
in the basis set of the old ones is shown in Fig. 5. We see that
there are four principal components with comparable weights
and about 15 components with weights above 1%. This means
that effective three-electron interaction in protactinium cannot
be considered small and has to be treated on the same footing
as the residual Coulomb interaction. This result is in agreement
with the estimate (1). For the subspace 7/2+, the number of
principal components is N ∼ 103. Multiplying the ratio of the
matrix elements by

√
N ∼ 30, we get 0.017 × 30 = 0.5.
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In fact, estimate (1) gives only the lower limit of possible
scaling since it is written for a single-particle interaction
V . Systems with multiple-particle interaction Vmult can bear
additional factor M equal to the number of nonzero matrix
elements between the basis states 〈	i |Vmult|	j 〉 with a fixed i,

〈�a|Vmult|�b〉
�Eab

∼
√

M(N )N, (29)

1 < M(N ) � N. (30)

Therefore multiple-particle interaction mixings can scale
faster than

√
N . In the case of n = 5 valence electrons, a

three-particle operator, and N ≈ 1000, the factor can be
estimated as M(N ) ≈ 15.

It should be noted that strong three-electron effects due to
configuration mixing can occur in nonchaotic systems, such
as Be-like Cl ions [41].

IV. CONCLUSION

According to the CI calculation described in Sec. II A, the
Pa atom clearly shows many-body chaos behavior in its energy
spectrum, starting already from relatively close to the ground
level. Properties of the two-electron Hamiltonian matrix of
Pa correspond to those of random two-body interaction
(RTBI) matrices, which have large leading diagonal and
sparse bandlike structure of random interaction nondiagonal
elements. The RTBI model demonstrates some aspects of
behavior close to pure random matrix theory, such as Wigner
distribution of spacings between energy levels, but it differs,
for instance, in the composition of its eigenfunctions [8,33,34].
In this regard, the Pa atom is very similar to the highly chaotic
Ce atom thoroughly investigated before [4,6,7]; therefore,
properties of its Hamiltonian can be treated statistically [5].
Approximate quantum numbers such as total electron orbital

angular momentum L and spin S disappear due to the
enhancement of the spin-orbit interaction and such classi-
fication of atomic energy levels becomes meaningless [4–
7]. The number of principal components participating in
excited eigenstates of Pa is N ∼ 103, an order of magnitude
larger than for Ce and closer to that of compound nuclei
(N ∼ 104–106).

Such strong mixing of basis states is of particular interest
since it leads to statistical enhancement of small perturbations,
another signature of quantum many-body chaos. This fact was
illustrated by the calculation of effective three-electron inter-
action of unperturbed Hamiltonian eigenstates in Sec. III C.
The mixing turned out to be close in strength to the residual
Coulomb interaction mixing already accounted for in the
unperturbed Hamiltonian, confirming drastic enhancement of
a small interaction.

Other small perturbations can be enhanced in a similar
fashion and made feasible for experimental observation, e.g.,
parity nonconserving mixings due to weak interaction between
the atomic nucleus and electrons.

In conclusion, we would like to note that an indication of
chaos in the spectra of a Pa atom near the ionization threshold
has been recently observed by the Professor Wendt group at
Johannes Gutenberg University, Mainz [42].
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